![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1503345
¼¼°èÀÇ µðÁöÅÐ Æ®À© ½ÃÀå Àü¸Á(-2030³â) : À¯Çüº°, ¹èÆ÷, ±â¾÷ ±Ô¸ðº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Digital Twin Market Forecasts to 2030 - Global Analysis By Type (Parts Twin, Product Twin, Process Twin, System Twin and Other Types), Deployment, Enterprise Size, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µðÁöÅÐ Æ®À© ½ÃÀåÀº 2024³â 176¾ï ´Þ·¯ ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 36.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,138¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
µðÁöÅÐ Æ®À©Àº ¹°¸®Àû ¹°Ã¼, ÇÁ·Î¼¼½º, ½Ã½ºÅÛÀ» °¡»óÀ¸·Î Ç¥ÇöÇÑ °ÍÀ¸·Î, ½Ç½Ã°£ ½Ã¹Ä·¹À̼Ç, ¸ð´ÏÅ͸µ, ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼¾¼, IoT ÀåÄ¡ ¹× ±âŸ ¼Ò½º¿¡¼ ¼öÁýµÈ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¹°¸®Àû ½ÇüÀÇ Æ¯¼º, µ¿ÀÛ ¹× ¼º´ÉÀ» ¹Ý¿µÇÕ´Ï´Ù. µðÁöÅÐ Æ®À©Àº ½ÇÁ¦ ¹°Ã¼³ª ÇÁ·Î¼¼½º¿¡ ¿µÇâÀ» ÁÖÁö ¾ÊÀ¸¸é¼µµ ¿¹ÃøÀû ÅëÂû·Â, ½Ã³ª¸®¿À Å×½ºÆ®, ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. µðÁöÅÐ Æ®À©ÀÌ ÁøÈÇÔ¿¡ µû¶ó ´õ ½º¸¶Æ®ÇÑ µµ½Ã, È¿À²ÀûÀÎ °øÀå, °³ÀÎÈµÈ ÀÇ·á, Áö¼Ó °¡´ÉÇÑ °üÇà¿¡ ±â¿©Çϰí, »óÈ£ ¿¬°áµÈ ¼¼»ó¿¡¼ »ê¾÷ÀÌ Çõ½ÅÇϰí, ¿î¿µÇϰí, °¡Ä¡¸¦ Á¦°øÇÏ´Â ¹æ½Ä¿¡ Çõ¸íÀ» ÀÏÀ¸Å³ °ÍÀÔ´Ï´Ù.
Àδõ½ºÆ®¸® 4.0ÀÇ ºÎ»ó
µðÁöÅÐ Æ®À©Àº ¹°¸®Àû ÀÚ»ê°ú °øÁ¤ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, °¡»ó ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ¹°¸®Àû ÀÚ»ê°ú °øÁ¤ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, °¡»ó ½Ã¹Ä·¹À̼ÇÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µðÁöÅÐ Æ®À©ÀÌ ÀÌ·¯ÇÑ º¯È¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °øÀå°ú ±â¾÷ÀÌ ½º¸¶Æ® ±â¼ú°ú IoT ±â±â¸¦ µµÀÔÇÔ¿¡ µû¶ó ¾÷¹« È¿À²¼ºÀ» ÃÖÀûÈÇϰí, Á¦Ç° °³¹ß Áֱ⸦ ´ÜÃàÇϸç, ´Ù¿îŸÀÓÀ» ÁÙÀ̱â À§ÇØ µðÁöÅÐ Æ®À©¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå È®´ëÀÇ ¹è°æ¿¡´Â AI¿Í ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ¿© µðÁöÅÐ ÅëÇÕ »ýŰ迡¼ »ý»ê¼º, ǰÁú °ü¸® ¹× Áö¼Ó°¡´É¼º ÀÌ´Ï¼ÅÆ¼ºê¸¦ °³¼±Çϱâ À§ÇÑ ¹ÎøÇÏ°í ¹ÝÀÀ¼ºÀÌ ¶Ù¾î³ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÖ½À´Ï´Ù.
³ôÀº µµÀÔ ºñ¿ë
³ôÀº µµÀÔ ºñ¿ë¿¡´Â Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î, ±âÁ¸ ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ» Æ÷ÇÔÇÑ Ãʱ⠼³Á¤ ºñ¿ë°ú Áö¼ÓÀûÀÎ À¯Áöº¸¼ö ¹× ±³À°ÀÌ Æ÷ÇԵ˴ϴÙ. ¼Ò±Ô¸ð Á¶Á÷À̳ª ¿¹»êÀÌ ÇÑÁ¤µÈ ºÎ¼ÀÇ °æ¿ì, È¿À²¼º°ú Çõ½Å°ú °°Àº ÀáÀçÀû ÀÌÁ¡¿¡µµ ºÒ±¸Çϰí ÀÌ·¯ÇÑ ºñ¿ë ¶§¹®¿¡ µðÁöÅÐ Æ®À© ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ³ôÀº ºñ¿ëÀº ROI ½ÇÇöÀ» Áö¿¬½Ã۰í, ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡¸ç, ½ÃÀå ¼ºÀåÀ» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´É¼ºÀ» À§ÇÑ ³ë·Â
µðÁöÅÐ Æ®À©Àº ¿¹Ãø ºÐ¼®°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ÅëÇØ ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈÇϰí, Æó±â¹°À» ÃÖ¼ÒÈÇϸç, ¿î¿µ È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÏ°í µ¥ÀÌÅ͸¦ ºÐ¼®ÇÔÀ¸·Î½á ±â¾÷Àº ȯ°æ Ä£ÈÀûÀÎ °üÇà°ú Áö¼Ó °¡´ÉÇÑ Çõ½ÅÀÇ ±âȸ¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °Á¶´Â ȯ°æ Ä£ÈÀû °üÇà¿¡ ´ëÇÑ ±ÔÁ¦ ¿ä°Ç°ú ¼ÒºñÀÚÀÇ ±â´ë¿¡ ºÎÇÕÇÏ¿© Á¦Á¶, ¿¡³ÊÁö, ¿î¼Û, °Ç¼³ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ µðÁöÅÐ Æ®À© ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.
µ¥ÀÌÅÍ °ü¸®ÀÇ °úÁ¦
µ¥ÀÌÅÍ °ü¸® ¹®Á¦´Â µðÁöÅÐ Æ®À© ½ÃÀåÀÇ ¼ºÀå°ú È¿À²¼º¿¡ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍÀÇ ´ë·®ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®, µ¥ÀÌÅÍ Ç°Áú ¹× Àϰü¼º º¸Àå, µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã À¯Áö µîÀÇ ¹®Á¦´Â µµÀÔ°ú Ȱ¿ë¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ½Ã½ºÅÛÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇϰí Ç÷§Æû °£ »óÈ£¿î¿ë¼ºÀ» À¯ÁöÇÏ´Â º¹À⼺Àº µðÁöÅÐ Æ®À©ÀÇ µµÀÔÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº ÀÇ»ç°áÁ¤ Áö¿¬, ºÎÁ¤È®ÇÑ ÅëÂû·Â, ¿î¿µ ºñ¿ë Áõ°¡·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
µðÁöÅÐ Æ®À©Àº ¿ø°Ý ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, °¡»ó ½Ã¹Ä·¹À̼ÇÀ» ¿ëÀÌÇÏ°Ô ÇÏ¿© ¹°¸®Àû ¿î¿µ Áß´Ü¿¡µµ ¿¬¼Ó¼ºÀ» º¸ÀåÇÕ´Ï´Ù. Á¦Á¶¾÷, ÇコÄɾî, ¼Ò¸Å¾÷ µî ´Ù¾çÇÑ »ê¾÷¿¡¼ µðÁöÅÐ Æ®À©À» Ȱ¿ëÇÏ¿© ȸº¹Åº·Â¼ºÀ» °ÈÇϰí, °ø±Þ¸Á È¿À²¼ºÀ» °³¼±Çϸç, ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. óÀ½¿¡´Â °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ÁÖÃãÇß´ø µðÁöÅÐ ÀüȯÀÇ Á߿伺ÀÌ ºÎ°¢µÇ¸é¼ µðÁöÅÐ Æ®À© ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅзÎÀÇ ÀüȯÀº ÆÒµ¥¹Í ÀÌÈÄ¿¡µµ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Àü ¼¼°èÀûÀ¸·Î µðÁöÅÐ Æ®À© ½ÃÀåÀÇ Çõ½Å°ú È®ÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇÁ·Î¼¼½º Æ®À© ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÇÁ·Î¼¼½º Æ®À©Àº ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í, ´Ù¿îŸÀÓÀ» ÁÙÀ̸ç, ǰÁú °ü¸®¸¦ °³¼±Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿Â÷, Á¦¾à, ½Äǰ °¡°ø µîÀÇ »ê¾÷Àº ¿¹Áöº¸Àü, °øÁ¤ ÃÖÀûÈ, ±ÔÁ¦ Áؼö µîÀ» À§ÇØ ÇÁ·Î¼¼½º Æ®À©À» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ Æ®À©ÀÇ Àü¹®ÀûÀΠȰ¿ëÀº ºñ¿ë Àý°¨°ú »ý»ê¼º Çâ»óÀ» ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ÇÁ·Î¼¼½º ÀÚµ¿È ¹× Áö¼ÓÀûÀÎ °³¼±¿¡ ´ëÇÑ Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.
¿¹Ãø À¯Áöº¸¼ö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ÀåºñÀÇ »óŸ¦ Áö¼ÓÀûÀ¸·Î ¸ð´ÏÅ͸µÇÔÀ¸·Î½á µðÁöÅÐ Æ®À©Àº °íÀåÀÌ ¹ß»ýÇϱâ Àü¿¡ À¯Áöº¸¼ö Çʿ伺À» ¿¹ÃøÇϱ⠶§¹®¿¡ ¿¹Ãø À¯Áöº¸¼ö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¦Á¶, ¿¡³ÊÁö, ¿î¼Û ¹× ±âŸ »ê¾÷Àº À¯Áöº¸¼ö ÀÏÁ¤°ú ÀÚ¿ø ¹èºÐÀ» °£¼ÒÈÇÏ¿© Å« ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ·Îº¿ ÇÁ·Î¼¼½º ÀÚµ¿È(RPA), °¡»óÇö½Ç(VR), »ç¹°ÀÎÅͳÝ(IoT) µîÀÇ ±â¼úÀÌ µîÀåÇÏ¿© µðÁöÅÐ Æ®À© »ê¾÷¿¡ ¿µÇâÀ» ¹ÌÄ¡±â ½ÃÀÛÇ߱⠶§¹®ÀÔ´Ï´Ù. ¹Ì±¹ÀÇ International Business Machines Corporation, Microsoft Corporation, General Electric µî ÁÖ¿ä ±â¾÷µéÀº °í°´ È®º¸¿Í ½ÃÀå Á¡À¯À² È®´ë¸¦ À§ÇØ ½ÅÁ¦Ç° °³¹ß ¹× ±âÁ¸ Á¦Ç° °È¿¡ È¿°úÀûÀ¸·Î ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº µðÁöÅÐ ÀÎÇÁ¶óÀÇ ºÎ»ó, »ý»ê·® Áõ°¡, ±â¼ú µµÀÔ °³¼± µîÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®¿¡¼ µðÁöÅÐ Æ®À©ÀÇ È°¿ë°ú µðÁöÅÐÈ¿¡ ´ëÇÑ Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·ÂÀº ½ÃÀå¿¡ °·ÂÇÑ ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀϺ»ÀÇ µðÁöÅÐ Æ®À© ½ÃÀåÀº ·Îº¿ °øÇÐ ºÐ¾ß¿¡¼µµ °ý¸ñÇÒ ¸¸ÇÑ ¹ßÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. ÀϺ» ±â¾÷°ú ¿¬±¸±â°üµéÀº AI¸¦ Ȱ¿ëÇÏ¿© ´Ù¾çÇÑ ÀÛ¾÷À» ¼öÇàÇÏ´Â Çõ½ÅÀûÀÎ ·Îº¿À» °³¹ßÇÏ´Â µ¥ ¾ÕÀå¼°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Digital Twin Market is accounted for $17.6 billion in 2024 and is expected to reach $113.8 billion by 2030 growing at a CAGR of 36.5% during the forecast period. A digital twin is a virtual representation of a physical object, process, or system that allows for real-time simulation, monitoring, and analysis. It mirrors the physical entity's characteristics, behaviour, and performance using data collected from sensors, IoT devices, and other sources. This digital counterpart enables predictive insights, scenario testing, and optimization without impacting the actual object or process. As digital twins evolve, they contribute to smarter cities, efficient factories, personalized healthcare, and sustainable practices, revolutionizing how industries innovate, operate, and deliver value in an increasingly interconnected world.
Rise of industry 4.0
Digital twins play a pivotal role in this transformation, enabling real-time monitoring, predictive maintenance, and virtual simulations of physical assets and processes. As factories and enterprises adopt smart technologies and IoT devices, the demand for digital twins grows to optimize operational efficiency, enhance product development cycles, and reduce downtime. This market expansion is driven by the need for agile, responsive systems that leverage AI and analytics to improve productivity, quality control, and sustainability initiatives in a digitally integrated ecosystem.
High implementation costs
High implementation costs encompass initial setup expenses, including hardware, software, and integration with existing systems, as well as ongoing maintenance and training. For smaller organizations and sectors with tighter budgets, these expenses can deter investment in digital twin technologies despite their potential benefits in efficiency and innovation. Additionally, high costs may delay ROI realization, impacting decision-making and slowing market growth.
Focus on sustainability initiatives
Digital twins enable industries to optimize energy consumption, minimize waste, and enhance operational efficiencies through predictive analytics and real-time monitoring. By simulating scenarios and analyzing data, organizations can identify opportunities for eco-friendly practices and sustainable innovations. This emphasis on sustainability aligns with regulatory requirements and consumer expectations for environmentally responsible practices, thereby encouraging investment in digital twin technologies across sectors such as manufacturing, energy, transportation, and construction drive the market growth.
Data management challenges
Data management challenges pose a significant obstacle to the digital twin market's growth and effectiveness. Issues such as handling large volumes of real-time data from diverse sources, ensuring data quality and consistency, and maintaining data security and privacy can hinder implementation and utilization. Complexities in integrating data from various systems and maintaining interoperability across platforms further complicate digital twin deployments. These challenges may lead to delays in decision-making, inaccurate insights, and increased operational costs.
Covid-19 Impact
Digital twins facilitated remote monitoring, predictive maintenance, and virtual simulations, enabling continuity amid disruptions to physical operations. Industries such as manufacturing, healthcare, and retail leveraged digital twins to enhance resilience, improve supply chain efficiency, and ensure safety protocols. Despite initial setbacks due to economic uncertainties, the pandemic underscored the importance of digital transformation, driving increased investments in digital twin technologies. This shift towards digitalization is expected to persist post-pandemic, fueling further innovation and expansion in the digital twin market globally.
The process twin segment is expected to be the largest during the forecast period
The process twin is expected to be the largest during the forecast period as it enhance operational efficiency, reduce downtime, and improve quality control. Industries such as automotive, pharmaceuticals, and food processing leverage process twins for predictive maintenance, process optimization, and compliance with regulatory standards. This specialized application of digital twins not only drives cost savings and productivity gains but also fosters innovation in process automation and continuous improvement.
The predictive maintenance segment is expected to have the highest CAGR during the forecast period
The predictive maintenance segment is expected to have the highest CAGR during the forecast period by continuously monitoring equipment health through real-time data analytics and simulations, digital twins predict maintenance needs before failures occur. as this proactive approach enhances reliability, extends asset lifespan, and improves overall operational efficiency. Industries such as manufacturing, energy, and transportation benefit significantly, streamlining maintenance schedules and resource allocation.
North America is projected to hold the largest market share during the forecast period attributed to the emergence of technologies, such as Robotic Process Automation (RPA), Virtual Reality (VR), and the IoT, which has started to influence the digital twin industry. Key companies in the U.S., such as International Business Machines Corporation, Microsoft Corporation, and General Electric, are effectively working on new product development and enhancement of existing products to acquire customers and capture more market shares.
Asia Pacific is projected to hold the highest CAGR over the forecast period owing to rising digital infrastructure, increasing manufacturing output, and improved technological adoption, among others. Furthermore, the utilization of digital twins in smart city projects, and supportive government initiatives for digitalization are creating robust growth opportunities for the market. Moreover the digital twin market in Japan has made remarkable progress in the field of robotics. Japanese companies and research institutions have been at the forefront of creating innovative robots that leverage AI to perform various tasks.
Key players in the market
Some of the key players in Digital Twin market include ABB Group, Amazon Web Services, Inc. , ANSYS Inc., Autodesk Inc., AVEVA Group plc, Bentley Systems Inc., Dassault Systemes SE, General Electric, Hexagon AB, Hitachi Ltd., IBM Corporation, Microsoft Corporation, PTC Inc., Robert Bosch GmbH, Rockwell Automation, SAP SE and Siemens AG
In June 2024, ABB launches next-generation Robotics control platform OmniCore. The OmniCore platform, the result of more than $170 million of investment in next generation robotics, is a step change to a modular and futureproof control architecture
In June 2024, ABB expands electrification portfolio with acquisition of Siemens' Wiring Accessories business in China. The offering ABB is acquiring includes wiring accessories, smart home systems, smart door locks and further peripheral home automation products
In June 2024, Valeo Partners with Dassault Systemes to Accelerate the Digitalization of Its R&D. The deployment will help Valeo develop the technologies needed to make the car more electrified, autonomous and software driven. It will also support the optimization of the company's research and development expenses.