½ÃÀ庸°í¼
»óÇ°ÄÚµå
1503368
¼¼°èÀÇ ºí·ç ¼ö¼Ò ½ÃÀå Àü¸Á(-2030³â) : ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ ¹× Áö¿ªº° ºÐ¼®Blue Hydrogen Market Forecasts to 2030 - Global Analysis By Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ºí·ç ¼ö¼Ò ½ÃÀåÀº 2024³â 196¾ï 2,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 13.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î 2030³â 443¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ºí·ç ¼ö¼Ò´Â ¼öÁõ±â ¸Þź °³Áú(SMR)À̶ó´Â °øÁ¤À» ÅëÇØ Ãµ¿¬°¡½º·ÎºÎÅÍ »ý»êµÈ ¼ö¼Ò¸¦ ¸»Çϸç, Á¦Ç°º°·Î ÀÌ»êÈź¼Ò(CO2)°¡ ¹ß»ýÇϴµ¥, SMR °úÁ¤¿¡¼ ¹èÃâµÇ´Â CO2´Â ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ È¸¼öÇÏ¿© ÁöÇÏ¿¡ ÀúÀåÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹æ½ÄÀº ±âÁ¸ õ¿¬°¡½º »ç¿ë ´ëºñ ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, Àúź¼Ò ¹Ì·¡¸¦ À§ÇÑ °úµµ±âÀû ¿¡³ÊÁö¿øÀ¸·Î ºí·ç ¼ö¼Ò¸¦ ÀÚ¸®¸Å±èÇÏ°í ÀÖ½À´Ï´Ù.
¿¹Ãø¿¡ µû¸£¸é, Ķ¸®Æ÷´Ï¾ÆÁÖ ¿¬·áÀüÁö ÆÄÆ®³Ê½ÊÀº 2050³â±îÁö 1,000°³ÀÇ ¼ö¼ÒÃæÀü¼Ò¿Í 100¸¸´ëÀÇ ¼ö¼ÒÀü±âÂ÷¸¦ ¼³Ä¡ÇÏ¿© 2050³â±îÁö Ķ¸®Æ÷´Ï¾ÆÁÖ ÃÖÁ¾ ¿¡³ÊÁö ¼Òºñ·®ÀÇ ¾à 30%¸¦ °ø±ÞÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óÇÏ°í ÀÖ½À´Ï´Ù.
»ê¾÷ÀÇ Å»Åº¼ÒÈ
ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS)À» ÅëÇØ Ãµ¿¬°¡½º·ÎºÎÅÍ »ý»êµÇ´Â û»ö ¼ö¼Ò´Â ¹èÃâ·® ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ³ë·ÂÇÏ´Â »ê¾÷°è¿¡ Àúź¼Ò ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ±ÔÁ¦ ¾Ð·Â°ú Áö¼Ó°¡´É¼º ¸ñÇ¥°¡ ³ô¾ÆÁü¿¡ µû¶ó »ê¾÷°è´Â ȼ® ¿¬·á·ÎºÎÅÍ ÀüȯÇϱâ À§ÇØ Ã»»ö ¼ö¼Ò¸¦ ã°í ÀÖÀ¸¸ç, ±× °á°ú ½ÃÀåÀÌ È°¼ºÈµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ CCS ±â¼ú¿¡ ´ëÇÑ ÅõÀڴ û»ö ¼ö¼ÒÀÇ ½ÇÇà °¡´É¼ºÀ» ³ôÀÌ°í »ê¾÷ ÀÀ¿ë ºÐ¾ß·ÎÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈÇÏ¿© ½ÃÀå È®´ë¸¦ Áö¿øÇÏ°í ÀÖ½À´Ï´Ù.
ÀÌ¿ë °¡´ÉÇÑ CCS ÀÎÇÁ¶ó¿Í ±â¼úÀÌ Á¦ÇѵǾî ÀÖ½À´Ï´Ù.
CCS ½Ã¼³ÀÇ °Ç¼³°ú ¿î¿µ¿¡´Â ¸¹Àº ÅõÀÚ¿Í ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎÀÌ ÇÊ¿äÇÏ°í ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÎÇÁ¶ó°¡ ÃæºÐÇÏÁö ¾ÊÀ¸¸é ´ë±Ô¸ð ºí·ç ¼ö¼Ò »ý»êÀÇ °¡´É¼ºÀº Á¦ÇÑÀûÀ̸ç, ´Ù¸¥ ¿¡³ÊÁö¿ø¿¡ ºñÇØ °æÀï·ÂÀÌ ¶³¾îÁú ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. ¶ÇÇÑ, CCS ±â¼úÀÇ ¼º´É°ú ¿î¿µ»óÀÇ ºÒÈ®½Ç¼ºÀÌ CCS º¸±ÞÀÇ °É¸²µ¹·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù. µû¶ó¼ CCS ÀÎÇÁ¶ó¿Í ±â¼úÀÇ Á¦ÇÑµÈ °¡¿ë¼ºÀº »ý»êÀÇ È®À强°ú ºñ¿ë È¿À²¼ºÀ» Á¦ÇÑÇÏ°í ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ȼ®¿¬·á¸¦ ´ëüÇÒ ¼ö Àִ ûÁ¤ ´ëü ¿¬·áÀÇ Çʿ伺ÀÌ °Á¶µÇ¸é¼ ºí·ç ¼ö¼Ò ½ÃÀåÀÌ ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. ºí·ç ¼ö¼Ò´Â ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Àúź¼Ò ¿¡³ÊÁö ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¼ÒºñÀÚ, ±â¾÷, Á¤ºÎ°¡ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ºí·ç ¼ö¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀνÄÀº ºí·ç ¼ö¼Ò »ý»ê ¹× ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¿Í ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í, Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¹Ì·¡·ÎÀÇ Àüȯ¿¡ ÀÖ¾î Áß¿äÇÑ ¿ä¼Ò·Î¼ ºí·ç ¼ö¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë
CCS¸¦ µµÀÔÇϱâ À§Çؼ´Â CO2 ¹èÃâÀ» ȸ¼öÇÏ¿© ÁöÇÏ¿¡ ¾ÈÀüÇÏ°Ô ÀúÀåÇϱâ À§ÇÑ ¸·´ëÇÑ ¼³ºñ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãʱ⠺ñ¿ëÀº ƯÈ÷ Àú·ÅÇÑ ±âÁ¸ ȼ®¿¬·áÀÇ ´ë¾È°ú ºñ±³ÇßÀ» ¶§ ÀáÀçÀû ÅõÀÚÀÚ¿Í »ê¾÷°è°¡ ºí·ç ¼ö¼Ò µµÀÔÀ» ÁÖÀúÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ³ôÀº Ãʱ⠺ñ¿ëÀº ½ÃÀå ÁøÀÔ°ú È®ÀåÀÇ À庮ÀÌ µÇ¾î ȯ°æÀû ÀÌÁ¡°ú Àå±âÀûÀÎ ºñ¿ë È¿À²¼º¿¡µµ ºÒ±¸ÇÏ°í ºí·ç ¼ö¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
Äڷγª19 ÆÒµ¥¹ÍÀº »ê¾÷ È°µ¿ °¨¼Ò¿Í °æÁ¦ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ ÅõÀÚ ¹× ÇÁ·ÎÁ§Æ® ÀÏÁ¤¿¡ ¿µÇâÀ» ¹ÌÃÄ Ãʱ⿡´Â ºí·ç ¼ö¼Ò ½ÃÀåÀÇ ¼ºÀåÀ» µÐȽÃÄ×½À´Ï´Ù. ±×·¯³ª °æÁ¦°¡ ȸº¹µÇ°í ȯ°æ¿¡ ´ëÇÑ ¿ì¼±¼øÀ§°¡ ¿©ÀüÈ÷ ³ô±â ¶§¹®¿¡ Á¤ºÎ¿Í »ê¾÷°è´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀÌ°í ÀÖ½À´Ï´Ù. ¿Â½Ç°¡½º °¨Ãà ¹× ¿¡³ÊÁö Àüȯ ¸ñÇ¥ ´Þ¼º¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áø ºí·ç ¼ö¼Ò¿¡ ´ëÇÑ ÀÌ·¯ÇÑ »õ·Î¿î °Á¶´Â ±¤¹üÀ§ÇÑ È¸º¹ °èȹÀÇ ÀÏȯÀ¸·Î ºí·ç ¼ö¼Ò¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼öÁõ±â ¸Þź °³Áú(SMR) ºÐ¾ß°¡ ÃÖ´ë ±Ô¸ðÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼öÁõ±â ¸Þź °³Áú(SMR) ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, SMRÀº õ¿¬°¡½º¸¦ ¼ö¼Ò¿Í ÀÌ»êÈź¼Ò·Î ÀüȯÇÏ´Â ºí·ç ¼ö¼Ò ½ÃÀåÀÇ ÁÖ¿ä ±â¼ú·Î¼, Ã˸ÅÀÇ Á¸ÀçÇÏ¿¡ ¸ÞźÀÌ °í¿ÂÀÇ Áõ±â¿Í ¹ÝÀÀÇÏ¿© ¼ö¼Ò¿Í ÀÌ»êÈź¼Ò¸¦ »ý¼ºÇÕ´Ï´Ù. ¹èÃâµÈ CO2´Â ȸ¼öÇÏ¿© ÁöÇÏ¿¡ ÀúÀåÇÒ ¼ö Àֱ⠶§¹®¿¡(ź¼Ò Æ÷Áý ¹× ÀúÀå, CCS), SMRÀº ±âÁ¸ õ¿¬°¡½º ÀÌ¿ë¿¡ ºñÇØ ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀÌ¸é¼ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ ¹æ¹ýÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿¡³ÊÁö »ý»ê ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¡³ÊÁö »ý»ê ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. û»ö ¼ö¼Ò´Â ±âÁ¸ ¿¬·á¿¡ ºñÇØ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÏ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ¾î ¿¡³ÊÁö »ý»ê ºÐ¾ß¿¡¼ ¸¹Àº °ü½ÉÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ¹ßÀü¿ë °¡½º ÅÍºó¿¡ »ç¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ»êÈź¼Ò ´ë½Å ¼öÁõ±â¸¦ ÁÖ¿ä ¹èÃâ¹°·Î »ý¼ºÇÏ¿© ´õ ±ú²ýÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. µû¶ó¼ ºí·ç ¼ö¼Ò´Â Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀ» Áö¿øÇÏ°í, ¿¡³ÊÁö ¾Èº¸¸¦ °ÈÇϸç, Àúź¼Ò ¿¡³ÊÁö ¹Ì·¡·ÎÀÇ Àüȯ¿¡ µû¸¥ ȯ°æ ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀϺ», Çѱ¹, Áß±¹ µîÀÇ ±¹°¡µéÀº ¾ß½ÉÂù Żź¼ÒÈ ¸ñÇ¥¿Í ȼ®¿¬·á ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇÑ ³ë·ÂÀ¸·Î ¼ö¼Ò µµÀÔ¿¡ ¾ÕÀå¼°í ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â »ó´çÇÑ Ãµ¿¬°¡½º ¸ÅÀå·®À» º¸À¯ÇÏ°í ÀÖÀ¸¸ç, ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±¹Á¦ ±â¾÷ ¹× ¿¬±¸ ±â°ü°úÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ±â¼ú °³¹ß ¹× ÀÎÇÁ¶ó ±¸ÃàÀÌ ÁøÇà ÁßÀ̱⠶§¹®¿¡ ÀÌ Áö¿ªÀº ºí·ç ¼ö¼Ò ºÎ¹®ÀÇ ¼ºÀå ÀáÀç·ÂÀÌ ¸Å¿ì ³ô½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. õ¿¬°¡½º ÀÚ¿øÀÌ Ç³ºÎÇÏ°í ¿¡³ÊÁö »ý»ê °æÇèÀÌ Ç³ºÎÇÑ ÀÌ Áö¿ªÀº ºí·ç ¼ö¼Ò¸¦ Àü·«Àû ±âȸ·Î º¸°í ÀÖ½À´Ï´Ù. »ç¿ìµð¾Æ¶óºñ¾Æ, īŸ¸£, ¾Æ¶ø¿¡¹Ì¸®Æ®¿Í °°Àº ±¹°¡µéÀº ±âÁ¸ÀÇ °¡½º ó¸® ÀÎÇÁ¶ó¿Í Àü¹®¼ºÀ» È°¿ëÇÒ ¼ö ÀÖ´Â ¼ö´ÜÀ¸·Î ºí·ç ¼ö¼Ò¸¦ ¸ð»öÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Åº¼Ò Æ÷Áý ±â¼ú¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¿Í ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ È®¸³Àº ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Blue Hydrogen Market is accounted for $19.62 billion in 2024 and is expected to reach $44.35 billion by 2030 growing at a CAGR of 13.9% during the forecast period. Blue hydrogen refers to hydrogen produced from natural gas through a process called steam methane reforming (SMR), which generates carbon dioxide (CO2) as a by-product. The CO2 emitted during SMR is captured and stored underground (carbon capture and storage, CCS) to mitigate its environmental impact. This approach aims to reduce greenhouse gas emissions compared to traditional natural gas use, positioning blue hydrogen as a transitional energy source towards a low-carbon future.
According to projections, the California fuel cell partnership hopes to have 1,000 hydrogen refuelling stations and one million FCEVs. It might provide roughly 30% of the country's end-use energy by 2050.
Industrial decarbonization
Blue hydrogen, produced from natural gas with carbon capture and storage (CCS), provides a low-carbon solution for industries striving to meet emission targets. As regulatory pressures and sustainability goals increase, industries seek blue hydrogen to transition from fossil fuels, thus boosting its market. Additionally, investments in CCS technology enhance blue hydrogen's viability, further accelerating its adoption in industrial applications and supporting market expansion.
Limited availability of CCS infrastructure and technology
CCS facilities are costly to build and operate, requiring significant investment and regulatory approval. Without adequate infrastructure, the potential for large-scale blue hydrogen production remains restricted, limiting its competitiveness against other energy sources. Additionally, uncertainties surrounding CCS technology performance and operational challenges further deter widespread adoption. Therefore, the limited availability of CCS infrastructure and technology hampers market growth by constraining the scalability and cost-effectiveness of production.
Increasing awareness of sustainable energy solutions
Increasing awareness of sustainable energy solutions propels the blue hydrogen market by highlighting the need for cleaner alternatives to fossil fuels. Blue hydrogen offers a low-carbon energy option that aligns with environmental goals. As consumers, businesses, and governments become more conscious of sustainability, demand for blue hydrogen rises. This awareness drives investment and innovation in blue hydrogen production and infrastructure, fostering its market growth as a key component in the transition to a sustainable energy future.
High initial costs
Implementing CCS involves significant capital investments in capturing CO2 emissions and storing them safely underground. These upfront expenses can deter potential investors and industries from adopting blue hydrogen, especially when compared to cheaper, conventional fossil fuel alternatives. Consequently, the high initial costs act as a barrier to market entry and expansion, slowing down the growth of the blue hydrogen market despite its environmental benefits and long-term cost-effectiveness.
Covid-19 Impact
The covid-19 pandemic initially slowed the blue hydrogen market due to reduced industrial activity and economic uncertainty, impacting investment and project timelines. However, as economies recover and environmental priorities remain strong, governments and industries are increasingly focusing on sustainable energy solutions. This renewed emphasis could accelerate investments in blue hydrogen as part of broader recovery plans, driven by its potential role in reducing greenhouse gas emissions and supporting energy transition goals.
The steam methane reforming (SMR) segment is expected to be the largest during the forecast period
The steam methane reforming (SMR) segment is estimated to have a lucrative growth. SMR is a key technology in the blue hydrogen market, responsible for converting natural gas into hydrogen and carbon dioxide. In SMR, methane reacts with high-temperature steam in the presence of a catalyst to produce hydrogen and CO2. The CO2 emitted can be captured and stored underground (carbon capture and storage, CCS), making SMR a viable method for producing hydrogen with reduced greenhouse gas emissions compared to traditional natural gas use.
The energy generation segment is expected to have the highest CAGR during the forecast period
The energy generation segment is anticipated to witness the highest CAGR growth during the forecast period. Blue hydrogen is increasingly explored for energy generation applications due to its potential to reduce carbon emissions compared to conventional fuels. It can be used in gas turbines for power generation, providing a cleaner alternative by producing water vapour as the primary emission instead of CO2. This makes blue hydrogen suitable for supporting renewable energy integration, enhancing energy security, and addressing environmental concerns in the transition towards a low-carbon energy future.
Asia Pacific is projected to hold the largest market share during the forecast period. Countries like Japan, South Korea, and China are leading in hydrogen adoption due to ambitious decarbonization goals and efforts to reduce reliance on fossil fuels. These nations possess significant natural gas reserves and are investing heavily in carbon capture and storage (CCS) technologies. Additionally, partnerships with international companies and research institutions are advancing technological developments and infrastructure; thereby the region shows strong potential for growth in the blue hydrogen sector.
Middle East & Africa is projected to have the highest CAGR over the forecast period. The region, rich in natural gas resources and possessing extensive experience in energy production, views blue hydrogen as a strategic opportunity. Countries like Saudi Arabia, Qatar, and the UAE are exploring blue hydrogen as a means to capitalize on existing infrastructure and expertise in gas processing. The region's significant investment in carbon capture technology and establishing regulatory frameworks further propels the growth of the market.
Key players in the market
Some of the key players profiled in the Blue Hydrogen Market include Linde PLC, Air Products and Chemicals, Mitsubishi Heavy Industries, Equinor, British Petroleum Company, Shell Corporation, TotalEnergies, Sinopec, Eni S.p.A, Gazprom, Petrobras, Orsted, Saudi Aramco, Qatar Petroleum, Woodside Energy.
In September 2023, British Petroleum Company launched a six-week consultation on their proposals for H2Teesside, a facility which will produce blue hydrogen and enable large scale decarbonisation of local industry. H2Teesside aims to be one of the UK's largest blue hydrogen production facilities, targeting 1.2GW of hydrogen production by 2030.
In February 2023, Linde PLC signed a long-term agreement to distribute and supply hydrogen to OCI's blue ammonia production plant in Texas, U.S. This agreement is expected to allow Linde Plc to strengthen its fuel and blue ammonia platform in supplying to the U.S. and international exports.