![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1503374
Ç÷οì Äɹ̽ºÆ®¸® ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ÈÇйÝÀÀ À¯Çü, µ¿ÀÛ ¸ðµå, ¿î¿µ ±Ô¸ð, ±â¼ú, ¿ëµµ, Áö¿ªº° ¼¼°è ºÐ¼®Flow Chemistry Market Forecasts to 2030 - Global Analysis By Product, Chemical Reactions Type, Mode of Operation, Scale of Operation, Technology, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Ç÷οì Äɹ̽ºÆ®¸® ½ÃÀåÀº 2024³â¿¡ 19¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí 2030³â¿¡´Â 35¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 12.4%ÀÔ´Ï´Ù.
À¯µ¿ÈÇÐÀº ÈÇÐÇÕ¼ºÀÇ ÇÑ ¹æ¹ýÀ¸·Î, ¹ÝÀÀ ¹°ÁúÀ» ¹ÝÀÀ±â¸¦ ÅëÇØ ¿¬¼ÓÀûÀ¸·Î °ø±ÞÇÏ¿© ¿Âµµ, ¾Ð·Â, È¥ÇÕºñ µîÀÇ ¹ÝÀÀ Á¶°ÇÀ» Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯µ¿ÈÇÐÀº ¹ÝÀÀÀÇ ºü¸¥ ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÏ°í º¹ÀâÇÑ ºÐÀÚÀÇ ÇÕ¼ºÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ¾ÈÀü¼º, È®À强, È¿À²¼º Çâ»ó µî ±âÁ¸ ¹èÄ¡ °øÁ¤¿¡ ºñÇØ ¸î °¡Áö ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù.
À¯·´À§¿øÈ¸¿¡ µû¸£¸é µ¶ÀÏÀÇ ÃÑ ¿¬±¸°³¹ßºñ´Â 1,308¾ï 8,800¸¸ ´Þ·¯·Î 2021³â 1,217¾ï 5,000¸¸ ´Þ·¯¿¡¼ Áõ°¡Çß´Ù°í ÇÕ´Ï´Ù. À§¿øÈ¸´Â ¶ÇÇÑ "ÈÇÐ »ê¾÷ Àüȯ °æ·Î"¸¦ ÅëÇØ ÈÇÐ »ê¾÷À» Áö¿øÇϱâ À§ÇØ ÀÚ±Ý Á¶´Þ¿¡ ´ëÇÑ ÁöħÀ» µµÀÔÇß½À´Ï´Ù.
ÈÇÐÀÚ ±³À°¿¡ ´ëÇÑ °ü½É Áõ°¡
±³À°¹ÞÀº ÈÇÐÀÚµéÀº ÈÇÐ ÇÕ¼ºÀÇ ¾ÈÀü¼º, È®À强 ¹× È¿À²¼º Çâ»ó°ú °°Àº ¿¬¼Ó È帧 °øÁ¤ÀÇ ÀÌÁ¡À» Ȱ¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÇØ´Â Á¦¾à, Á¤¹Ð ÈÇÐ ¹× ±âŸ »ê¾÷¿¡¼ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå È®ÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çаè¿Í »ê¾÷°è°¡ À¯Ã¼ÈÇÐ ¿¬±¸°³¹ß¿¡ ´õ¿í ±ä¹ÐÇÏ°Ô Çù·ÂÇϸé ÀÌ ºÐ¾ß°¡ ºü¸£°Ô ¹ßÀüÇϰí Àü ¼¼°è¿¡¼ ³Î¸® äÅÃµÉ ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù.
º¹ÀâÇÑ ÅëÇÕ
À¯µ¿ÈÇÐÀÇ ÅëÇÕÀÇ º¹À⼺Àº ¿¬¼Ó °øÁ¤¿¡¼ ¹ÝÀÀ Á¶°Ç, ¿ë¸Å ÀûÇÕ¼º, ½Ã¾à °ø±Þ µî ¿©·¯ º¯¼ö¸¦ ÃÖÀûÈÇØ¾ß ÇÏ´Â ¹®Á¦¿¡¼ ºñ·ÔµË´Ï´Ù. »ê¾÷°è´Â ÀÌ·¯ÇÑ ÅëÇÕÀÇ ¾î·Á¿òÀ¸·Î ÀÎÇØ À¯Ã¼ÈÇÐÀ» Àû¿ëÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ À¯¸ÁÇÑ ±â¼ú¿¡ ´ëÇÑ ±¤¹üÀ§ÇÑ Ã¤Åðú ÅõÀÚ¸¦ °¡·Î¸·°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº °³¹ß ºñ¿ë Áõ°¡, Àü¹® Áö½ÄÀÇ Çʿ伺, ÀáÀçÀû È®À强 Á¦ÇÑÀ¸·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÕ´Ï´Ù.
Á¤¹ÐÈÇÐ ºÐ¾ß¿¡¼ÀÇ °ü½É Áõ´ë
À¯µ¿ÈÇÐÀº Á¤¹ÐÇÑ ¹ÝÀÀ Á¦¾î, ¾ÈÀü¼º Çâ»ó, È¿À²¼º Çâ»óÀ» ÅëÇØ Á¤¹ÐÈÇÐÀÇ º¹ÀâÇÑ ÇÕ¼º ¿ä°Ç¿¡ ºÎÇÕÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ¹ÝÀÀÀ» ¿¬¼ÓÀûÀ¸·Î ó¸®ÇÏ°í ¼öÀ²À» ÃÖÀûÈÇÏ´Â µ¿½Ã¿¡ °¡µ¿ ÁßÁö ½Ã°£ ¹× Æó±â¹° °ü·Ã ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¤¹ÐÈÇÐ ¾÷°è´Â È®À强°ú Áö¼Ó°¡´É¼ºÀÇ ÀåÁ¡À¸·Î ÀÎÇØ Ç÷οì Äɹ̽ºÆ®¸®¸¦ äÅÃÇϰí ÀÖÀ¸¸ç, Á¦¾à, ³ó¾à, Ư¼ö ÈÇÐ ¹°Áú µî ´Ù¾çÇÑ ¿ëµµ¿¡ Àû¿ëµÇ¾î ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÎ½Ä ¹× µµÀÔ Áö¿¬
È帧ÈÇп¡ ´ëÇÑ Àνİú äÅÃÀÇ Áö¿¬Àº Àϰý ó¸® °üÇàÀÇ °íÂøÈ¿Í ´ë±Ô¸ð Àç±³À° ¹× ÀÎÇÁ¶ó ÅõÀÚÀÇ Çʿ伺¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Áö¿¬Àº È¿À²¼º Çâ»ó, È®À强, Æó±â¹° °¨¼Ò¿Í °°Àº ±â¼úÀÇ ÀÌÁ¡À» ¹Þ¾ÆµéÀÌ´Â °ÍÀ» Áö¿¬½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÕ´Ï´Ù. »ê¾÷°è´Â Àͼ÷ÇÏÁö ¾Ê°í ÀÎ½ÄµÈ À§ÇèÀ¸·Î ÀÎÇØ Àüȯ¿¡ ½ÅÁßÀ» ±âÇϰí ÀÖÀ¸¸ç, ÀáÀçÀûÀÎ ÀÌÁ¡¿¡µµ ºÒ±¸Çϰí À¯Ã¼ÈÇÐ ½ÃÀåÀÇ ¼ºÀåÀÌ Á¦Çѵǰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â Ãʱ⿡´Â °ø±Þ¸Á È¥¶õ, ³ëµ¿·Â °¨¼Ò, R&D Ȱµ¿ Áö¿¬À¸·Î ÀÎÇØ À¯Ã¼ÈÇÐ ½ÃÀåÀ» È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. ±×·¯³ª ¿ø°Ý Á¶ÀÛ ¹× ÃÖ¼ÒÇÑÀÇ ÀÎÀû °³ÀÔ°ú °°Àº ÀÌÁ¡À» Á¦°øÇÏ´Â À¯Ã¼ ÈÇÐ °°Àº ¿¬¼Ó Á¦Á¶ ±â¼úÀÇ È¸º¹·ÂÀ» ºÎ°¢½ÃÄ×½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¼¼°è º¸°Ç À̽´°¡ Áö¼ÓµÇ´Â °¡¿îµ¥ Á¦¾à ¹× Á¤¹ÐÈÇÐ Á¦Á¶¸¦ À§ÇÑ À¯Ã¼ÈÇÐ ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½É°ú ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ½ÇÇè½Ç ±Ô¸ð ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½ÇÇè½Ç ±Ô¸ð ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÇÇè½Ç ±Ô¸ð È帧 ÈÇÐÀº ¼Ò±Ô¸ð ½Ã½ºÅÛÀ» ÅëÇØ ½Ã¾àÀÇ Á¦¾îµÇ°í ¿¬¼ÓÀûÀÎ È帧 ¼Ó¿¡¼ ÈÇÐ ¹ÝÀÀÀ» ¼öÇàÇÕ´Ï´Ù. ¿Âµµ, ¾Ð·Â, ü·ù ½Ã°£°ú °°Àº ¹ÝÀÀ ¸Å°³ º¯¼ö¸¦ Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖÀ¸¸ç, ±âÁ¸ ¹èÄ¡ ¹æ½Ä¿¡ ºñÇØ ¾ÈÀü¼º°ú È¿À²¼ºÀÌ Çâ»óµË´Ï´Ù. ÀÌ Á¢±Ù ¹æ½ÄÀº Àç·á ¼Òºñ¿Í Æó±â¹° ¹ß»ýÀ» ÁÙÀÌ¸é¼ ºü¸¥ ½ÇÇèÀ» °¡´ÉÇÏ°Ô Çϸç, ¿¬±¸ ¹× ¼Ò±Ô¸ð »ý»ê ȯ°æ¿¡¼ À¯±â ºÐÀÚÀÇ °øÁ¤ °³¹ß, ÃÖÀûÈ ¹× ÇÕ¼º¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
¿¹Ãø ±â°£ Áß Á¦¾à ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Á¦¾à ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¦¾à ¿ëµµÀÇ Ç÷οì Äɹ̽ºÆ®¸®´Â ¿¬¼Ó °øÁ¤¿¡¼ ¹ÝÀÀ Á¶°ÇÀ» Á¤¹ÐÇÏ°Ô Á¦¾îÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Á¦¾à ÇÕ¼º¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. È¿À²¼º, ¾ÈÀü¼º, È®À强À» ³ôÀÌ°í º¹ÀâÇÑ ºÐÀÚÀÇ ½Å¼ÓÇÑ ÇÕ¼ºÀ» ÃËÁøÇÏ¸ç »ý»ê ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ½Å¾à °³¹ß, ¿ø·á ÇÕ¼º ¹× »õ·Î¿î Á¦Á¦ °³¹ßÀ» °¡¼ÓÈÇÏ¿© ÀǾàǰÀÇ Çõ½Å°ú È¿À²¼º¿¡ Å©°Ô ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Ç÷οìÄɹ̽ºÆ®¸® ½ÃÀåÀº »ê¾÷ÈÀÇ ¹ßÀü, Á¦¾à ¹× ÈÇÐ ºÐ¾ßÀÇ ±Þ¼ÓÇÑ È®Àå, Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ½ÄÀ» Áö¿øÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀ¸·Î ÀÎÇØ °·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº °·ÂÇÑ Á¦Á¶ ´É·Â°ú R&D ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¼±µµÀûÀÎ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÀΰǺñ Ç϶ô, ÀÎÇÁ¶ó °³¼±, ÷´Ü ±â¼ú äÅà Áõ°¡ µîÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
ºÏ¹ÌÀÇ À¯Ã¼ÈÇÐ ½ÃÀåÀº Á¦¾à, ÈÇÐ, Çмú ºÐ¾ß¿¡¼ ¸¹Àº äÅÃÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÷´ÜÀÎ ÀÎÇÁ¶ó, źźÇÑ ¿¬±¸ »ýŰè, ÁÖ¿ä ½ÃÀå ±â¾÷°ú Çõ½Å°¡µéÀÇ ÁýÁßÀûÀÎ ÁýÁß µîÀÇ ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. ºÏ¹Ì ½ÃÀåÀº À¯µ¿ ¹ÝÀÀ±â ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¼¼°è À¯µ¿ÈÇÐ ½ÃÀå¿¡¼ÀÇ ÀÔÁö¸¦ °ÈÇϰí ÀÖ´Â ¿ªµ¿ÀûÀÎ ½ÃÀåÀÔ´Ï´Ù.
According to Stratistics MRC, the Global Flow Chemistry Market is accounted for $1.95 billion in 2024 and is expected to reach $3.54 billion by 2030 growing at a CAGR of 12.4% during the forecast period. Flow chemistry is a method of chemical synthesis that involves continuously pumping reactants together through a reactor, allowing for precise control over reaction conditions such as temperature, pressure, and mixing ratios. Flow chemistry enables rapid optimization of reactions and facilitates the synthesis of complex molecules. This approach offers several advantages over traditional batch processing, including enhanced safety, scalability, and efficiency.
According to the European Commission, total R&D expenditure by Germany reached USD 130.88 billion, increasing from USD 121.75 billion in 2021. It also introduced guidance on funding for supporting the chemical industry through the Transition Pathway of the Chemical Industry.
Growing focus on educating chemists
Educated chemists are better equipped to harness the advantages of continuous flow processes, such as improved safety, scalability, and efficiency in chemical synthesis. This increased understanding fosters innovation in pharmaceuticals, fine chemicals, and other industries, driving market expansion. Moreover, as academia and industry collaborate more closely on flow chemistry research and development, the field stands to benefit from accelerated advancements and broader adoption globally.
Complexity of integration
The complexity of integration in flow chemistry arises from challenges in optimizing multiple variables like reaction conditions, solvent compatibility, and reagent delivery in continuous processes. Industries face hurdles in adapting flow chemistry due to these integration challenges, which can deter widespread adoption and investment in this promising technology. This complexity hampers market growth by increasing development costs, requiring specialized expertise, and potentially limiting scalability.
Rising interest from fine chemicals sector
Flow chemistry offers precise control over reactions, enhanced safety, and increased efficiency, aligning well with the complex synthesis requirements of fine chemicals. This technology enables continuous processing of reactions, reducing costs associated with downtime and waste while optimizing yields. As the fine chemicals industry increasingly adopts flow chemistry for its scalability and sustainability benefits, it is expected to propel market expansion, catering to diverse applications in pharmaceuticals, agrochemicals, and specialty chemicals.
Perception and adoption lag
Perception and adoption lag in flow chemistry arise due to entrenched practices in batch processing and the need for extensive retraining and infrastructure investment. This delay hampers market growth by slowing acceptance of the technology's benefits, such as improved efficiency, scalability, and reduced waste. Industries are cautious about transitioning due to unfamiliarity and perceived risks, which restricts the flow chemistry market's expansion despite its potential advantages.
Covid-19 Impact
The covid-19 pandemic initially disrupted the flow chemistry market due to supply chain disruptions, reduced workforce availability, and delays in research and development activities. However, it also highlighted the resilience of continuous manufacturing technologies like flow chemistry, which offer advantages such as remote operation and minimal human intervention. This has spurred interest and investment in flow chemistry systems for pharmaceutical and fine chemical production amid ongoing global health challenges.
The laboratory scale segment is expected to be the largest during the forecast period
The laboratory scale segment is estimated to have a lucrative growth. Laboratory-scale flow chemistry involves conducting chemical reactions within a controlled, continuous flow of reagents through small-scale systems. It offers precise control over reaction parameters like temperature, pressure, and residence time, enhancing safety and efficiency compared to traditional batch methods. This approach enables rapid experimentation with reduced material consumption and waste production, making it ideal for process development, optimization, and synthesis of organic molecules in research and small-scale production settings.
The pharmaceutical segment is expected to have the highest CAGR during the forecast period
The pharmaceutical segment is anticipated to witness the fastest CAGR growth during the forecast period. Flow chemistry in pharmaceutical applications revolutionizes drug synthesis by enabling precise control over reaction conditions in continuous processes. It enhances efficiency, safety, and scalability, facilitating rapid synthesis of complex molecules and reducing production costs. This technology accelerates drug discovery, synthesis of APIs and development of novel drug formulations, contributing significantly to pharmaceutical innovation and efficiency.
The Flow Chemistry market in the Asia-Pacific region is experiencing robust growth driven by increasing industrialization, rapid expansion in pharmaceutical and chemical sectors, and government initiatives supporting sustainable manufacturing practices. Countries like China, India, Japan, and South Korea are prominent players due to their strong manufacturing capabilities and growing investments in research and development. The region benefits from lower labour costs, improving infrastructure, and rising adoption of advanced technologies.
In North America, the Flow Chemistry market is characterized by strong adoption in pharmaceuticals, chemicals, and academia. The region benefits from advanced infrastructure, a robust research ecosystem, and a high concentration of key market players and innovators. North America's market is dynamic, with continuous advancements in flow reactor technology and increasing investments in R&D enhancing its position in the global flow chemistry landscape.
Key players in the market
Some of the key players profiled in the Flow Chemistry Market include Corning Incorporated, ThalesNano, AGI Group, Vapourtec Limited, FutureChemistry Holding BV, Uniqsis Limited, Little Things Factory GmbH, H.E.L Group, Milestone Srl, Chemtrix BV, Biotage AB, Cambridge Reactor Design Ltd., Parr Instrument Company, Lonza Group AG, and Advion Interchim Scientific, Syrris Limited.
In December 2023, AGI Group acquired Chemtrix B.V. This acquisition of Chemtrix B.V. is anticipated to scale up AGI Group's capabilities in the flow chemistry market for application in the pilot as well as the manufacturing field.
In July 2023, H.E.L Group announced a collaboration with IIT Kanpur to leverage sustainable energy driven by the institute. The objective of this initiative was to create new testing labs for conducting research in new chemistry development, battery storage, and thermal characteristics study.