![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1503379
ºÐÀÚ ¸ðµ¨¸µ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, ¸ðµ¨¸µ ±Ô¸ðº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Molecular Modelling Market Forecasts to 2030 - Global Analysis By Type, Component, Scale of Modelling, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀº 2024³â¿¡ 2¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 16.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 9¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.
ºÐÀÚ ¸ðµ¨¸µÀº ºÐÀÚÀÇ ±¸Á¶, Ư¼º ¹× °Åµ¿À» ¿¬±¸ÇÏ´Â µ¥ »ç¿ëµÇ´Â °è»ê ±â¼úÀ» ¸»ÇÕ´Ï´Ù. ºÐÀÚ ¸ðµ¨¸µ¿¡´Â ¿øÀÚ ¼öÁØ¿¡¼ ºÐÀÚÀÇ »óÈ£ ÀÛ¿ë°ú ¿ªÇÐÀ» ¿¹ÃøÇϱâ À§ÇÑ ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ǰú ¼öÇÐÀû ¸ðµ¨ÀÌ Æ÷ÇԵ˴ϴÙ. ºÐÀÚ ¸ðµ¨¸µÀº Á÷Á¢ÀûÀÎ ½ÇÇè °üÂû¸¸À¸·Î´Â Á¢±ÙÇϱ⠾î·Á¿î ºÐÀÚ ±¸Á¶¿¡ ´ëÇÑ ÀλçÀÌÆ®À» Á¦°øÇÔÀ¸·Î½á °úÇÐ ¿¬±¸ ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
±¹Á¦´ç´¢º´¿¬¸Í(IDF)ÀÇ 2021³â 12¿ù º¸°í¼¿¡ µû¸£¸é 2021³â 20-79¼¼ ¼ºÀÎ Áß ¾à 5¾ï 3700¸¸ ¸íÀÌ ´ç´¢º´À» ¾Î°í ÀÖÀ¸¸ç, ÀÌ Áß 90% ÀÌ»óÀÌ 2Çü ´ç´¢º´À» ¾Î°í ÀÖ´Ù°í ÇÕ´Ï´Ù.
Àç·á°úÇÐ ºÐ¾ß¿¡¼ÀÇ ÀÀ¿ë È®´ë
ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀÇ ¼ºÀåÀº ºÐÀÚ ±¸Á¶¿Í °Åµ¿¿¡ ´ëÇÑ Á¤È®ÇÑ ½Ã¹Ä·¹À̼ǿ¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ Àç·á °úÇÐ ºÐ¾ßÀÇ ¿ëµµ°¡ È®´ëµÇ¸é¼ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ½ÇÇèÀû Å×½ºÆ® Àü¿¡ ½Å¼ÒÀçÀÇ Æ¯¼º, »óÈ£ ÀÛ¿ë ¹× ¹ÝÀÀÀ» ¿¹ÃøÇÏ¿© Á¦¾à, ÈÇÐ, ³ª³ë±â¼ú µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ¿¬±¸°³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿¹Ãø ´É·ÂÀº ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇÏ°í ºñ¿ëÀ» Àý°¨Çϸç Á¦Ç°ÀÇ È¿À²¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.
º¹À⼺°ú ÇØ¼®ÀÇ °úÁ¦
ºÐÀÚ ¸ðµ¨¸µÀÇ º¹À⼺Àº ºÐÀÚ °£ Èû, ¾çÀÚ È¿°ú µî ºÐÀÚÀÇ °Åµ¿¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¼ö¸¹Àº º¯¼ö¿¡¼ ºñ·ÔµË´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº Á¤È®ÇÑ ½Ã¹Ä·¹À̼ǰú ÇØ¼®À» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ¸ðµ¨¸µ Á¢±Ù ¹æ½Ä°ú ´Ù¾çÇÑ Á¤È®µµ ¼öÁØÀº ÇØ¼®ÀÇ ¾î·Á¿òÀ» ¾ß±âÇϸç, ÀÌ´Â ½Å¾à °³¹ß, Àç·á °úÇÐ ¹× ±âŸ ºÐ¾ßÀÇ ½Å·Ú¼º°ú ÀÇ»ç °áÁ¤¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ±× °á°ú, Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î °³¹ß¿¡ µû¸¥ ³ôÀº ºñ¿ëÀÌ Á¢±Ù¼ºÀ» Á¦ÇÑÇÏ°í ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
°è»ê ±â¼úÀÇ ¹ßÀü
ÄÄÇ»ÆÃ ±â¼úÀÇ ¹ßÀüÀ¸·Î ½Ã¹Ä·¹À̼ÇÀÇ Á¤È®µµ¿Í ¼Óµµ°¡ Çâ»óµÇ¾î º¹ÀâÇÑ ºÐÀÚ °£ »óÈ£ ÀÛ¿ëÀ» º¸´Ù Ãæ½ÇÇÏ°Ô ¿¬±¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. °í¼º´É ÄÄÇ»ÆÃÀº ´õ Å« µ¥ÀÌÅÍ ¼¼Æ®¿Í ´õ º¹ÀâÇÑ ºÐÀÚ ±¸Á¶¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ°Ô ÇÏ¿© ½Å¾à °³¹ß, Àç·á °úÇÐÀÇ ¹ßÀü, ¸ÂÃãÇü ÀǷḦ ÃËÁøÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ¹ßÀüÀº Á¦¾à, »ý¸í °øÇÐ ¹× Àç·á °úÇÐ ¿¬±¸¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀ» Àü·Ê¾ø´Â ±â´ÉÀ¸·Î ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù.
°ËÁõ ¹× Á¤È®¼º ¹®Á¦
ºÐÀÚ ¸ðµ¨¸µÀÇ °ËÁõ ¹®Á¦´Â ÈûÀå, ¿ë¸ÅÇÕ¼º ¸ðµ¨, °è»ê ¾Ë°í¸®ÁòÀÇ Á¤È®¼ºÀ» Æ÷ÇÔÇÏ¿© ¿¹ÃøµÈ ºÐÀÚ ±¸Á¶¿Í »óÈ£ ÀÛ¿ëÀÇ ½Å·Ú¼º¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ºÎÁ¤È®ÇÑ Á¤º¸´Â ½Å¾à °³¹ßÀÇ ¹æÇâÀ» À߸ø Àâ¾Æ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½ÇÆÐ¿Í Á¦Ç° °³¹ß Áö¿¬À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á´Â °è»ê Á¢±Ù¹ý¿¡ ´ëÇÑ ½Å·Ú¸¦ ¶³¾î¶ß¸®°í, Á¦¾à ¹× Àç·á °úÇÐ »ê¾÷¿¡ ÇʼöÀûÀÎ ºÐÀÚ ¸ðµ¨¸µ ¼ºñ½º ¹× ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç ½ÃÀå Ãâ½Ã¸¦ ¹æÇØÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Á¦¾àȸ»çµéÀÌ ½Å¾à ¹× ¹é½Å °³¹ß¿¡¼ °è»ê ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀÌ¸é¼ ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÈÇß½À´Ï´Ù. ¿¬±¸ ¹æ¹ýÀ» °¡¼ÓÈÇÏ°í ¹°¸®Àû »óÈ£ ÀÛ¿ëÀ» ÃÖ¼ÒÈÇØ¾ß ÇÒ Çʿ伺ÀÌ °¡»ó ½ºÅ©¸®´×°ú ºÐÀÚ ½Ã¹Ä·¹À̼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °è»ê Åø¿¡ ´ëÇÑ ¼ö¿ä ±ÞÁõÀº ºÐÀÚ ¸ðµ¨¸µ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÏ°í ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ¿© ÆÒµ¥¹Í ±â°£°ú ±× ÀÌÈÄ¿¡µµ ½ÃÀå ±Ô¸ð¸¦ Å©°Ô È®´ëÇß½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Çö¹Ì°æ ¸ðµ¨¸µ ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¹Ì¼¼ ¸ðµ¨¸µ ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Çö¹Ì°æ ¸ðµ¨¸µÀº ¿øÀÚ ¼öÁØ¿¡¼ ºÐÀÚ ±¸Á¶¿Í »óÈ£ ÀÛ¿ëÀ» ½Ã¹Ä·¹À̼ÇÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ºÐÀÚÀÇ ¿¡³ÊÁö, ±¸Á¶, °Åµ¿ µîÀÇ Æ¯¼ºÀ» ¿¬±¸Çϱâ À§ÇØ ºÐÀÚ ¿ªÇÐ ¹× ¾çÀÚ ¿ªÇаú °°Àº °è»ê ±â¼úÀ» »ç¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹Ì¼¼ÇÑ ¼¼ºÎ »çÇ×À» ºÐ¼®ÇÔÀ¸·Î½á ¿¬±¸ÀÚµéÀº »ýü ½Ã½ºÅÛ ¹× Àç·á¿¡¼ ºÐÀÚÀÇ »óÈ£ ÀÛ¿ëÀ» ¿¹ÃøÇÒ ¼ö ÀÖÀ¸¸ç, ½Å¾à °³¹ß, Àç·á °úÇÐ ¹× º¹ÀâÇÑ »ýÈÇÐÀû °úÁ¤À» ±âÃÊÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ½Å¾à °³¹ß ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Å¾à ¹× ÀǾàǰ °³¹ß ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ CAGR ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÐÀÚ ¸ðµ¨¸µÀº »õ·Î¿î ÀǾàǰ ÈÇÕ¹°À» ¼³°èÇϰí ÃÖÀûÈÇϱâ À§ÇØ °è»ê ±â¹ýÀ» Ȱ¿ëÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¿¬±¸ÀÚµéÀº ºÐÀÚ°¡ »ý¹°ÇÐÀû Ç¥Àû°ú »óÈ£ ÀÛ¿ëÇÏ´Â ¹æ½ÄÀ» ¿¹ÃøÇϰí, È¿´ÉÀ» Æò°¡Çϰí, ¿øÇÏ´Â Ä¡·á È¿°ú¸¦ ¾ò±â À§ÇØ ±× Ư¼ºÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº ÀáÀçÀûÀÎ ½Å¾à Èĺ¸¹°ÁúÀÇ ½Äº°À» °¡¼ÓÈÇϰí, ½Å¾à °³¹ß °úÁ¤À» °£¼ÒÈÇϸç, º¸´Ù ¾ÈÀüÇϰí È¿°úÀûÀÎ Ä¡·á¹ý °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀº Á¦¾à ¹× »ý¸í°øÇÐ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í °è»ê ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡´Â ¿¬±¸ ¿ª·® È®´ë¿Í ÀÇ·áºñ ÁöÃâ Áõ°¡·Î ÀÎÇØ ÁÖ¿ä ±â¿© ±¹°¡·Î ºÎ»óÇß½À´Ï´Ù. ÀÌ Áö¿ªÀº ¼÷·ÃµÈ ³ëµ¿·Â°ú °úÇÐ ¿¬±¸¿Í Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎ Áö¿ø Á¤Ã¥ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çаè¿Í »ê¾÷°èÀÇ Çù¾÷Àº ±â¼ú ¹ßÀü°ú ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹ÌÀÇ ºÐÀÚ ¸ðµ¨¸µ ½ÃÀåÀº Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷ÀÇ °·ÂÇÑ Á¸Àç°¨À¸·Î ÀÎÇØ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ±¤¹üÀ§ÇÑ R&D Ȱµ¿, ÇコÄÉ¾î ºÐ¾ßÀÇ ¸·´ëÇÑ Àڱݰú ÷´Ü ±â¼ú ÀÎÇÁ¶óÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿Í °°Àº ÁÖ¿ä ±¹°¡´Â ºÐÀÚ ¸ðµ¨¸µ Çõ½ÅÀÇ ÁÖ¿ä °ÅÁ¡À̸ç, ½Å¾à °³¹ß, Àç·á °úÇÐ ¹× ±âŸ ¿¬±¸ ºÐ¾ß¿¡¼ °è»ê ±â¼úÀÇ Ã¤Å÷üÀÌ ³ô½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº ¿¬±¸ ±â°ü°ú ¾÷°è ±â¾÷ÀÇ Çù¾÷¿¡ ÀÇÇØ ´õ¿í Áö¿øµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ºÏ¹ÌÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ½ÃÀå È®ÀåÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Molecular Modelling Market is accounted for $0.26 billion in 2024 and is expected to reach $0.97 billion by 2030 growing at a CAGR of 16.2% during the forecast period. Molecular modelling refers to computational techniques used to study the structure, properties, and behaviour of molecules. It involves computer simulations and mathematical models to predict molecular interactions and dynamics at atomic levels. Molecular modelling plays a crucial role in advancing scientific research by providing insights into molecular structures that are often inaccessible to direct experimental observation alone.
According to the December 2021 report of the International Diabetes Federation (IDF), about 537 million adults of age 20-79 years were living with diabetes in 2021, and more than 90% of this population have Type 2 diabetes.
Expanding applications in material science
Expanding applications in material science drive the growth of the molecular modelling market by increasing demand for accurate simulations of molecular structures and behaviours. These models facilitate research and development across various industries, such as pharmaceuticals, chemicals, and nanotechnology, by predicting properties, interactions, and reactions of new materials before experimental testing. This predictive capability accelerates innovation, reduces costs, and enhances product efficiency and safety.
Complexity and interpretation challenges
Complexity in molecular modelling arises from the vast array of variables influencing molecular behaviour, such as intermolecular forces and quantum effects. This complexity complicates accurate simulations and interpretations. Additionally, diverse modeling approaches and varying accuracy levels pose interpretation challenges, impacting reliability and decision-making in drug discovery, material science, and other fields. Consequently, high costs associated with hardware and software development limit accessibility, hindering market growth.
Advancements in computational technologies
Advancements in computational technologies enhances simulation accuracy and speed, enabling complex molecular interactions to be studied with higher fidelity. High-performance computing allows for larger datasets and more intricate molecular structures to be analyzed, facilitating drug discovery, material science advancements, and personalized medicine. These technological strides are revolutionizing research in pharmaceuticals, biotechnology, and materials science, propelling the molecular modelling market forward with unprecedented capabilities.
Validation and accuracy concerns
Validation concerns in molecular modeling include the accuracy of force fields, solvation models, and computational algorithms, impacting the reliability of predicted molecular structures and interactions. Inaccuracies can misguide drug discovery efforts, leading to costly failures and delays in product development. Such concerns undermine confidence in computational approaches, discouraging market adoption of molecular modeling services and software solutions essential for pharmaceutical and material science industries.
Covid-19 Impact
The covid-19 pandemic has accelerated the growth of the molecular modelling market as pharmaceutical companies increasingly relied on computational techniques for drug discovery and vaccine development. The need to expedite research processes and minimize physical interactions propelled the adoption of virtual screening and molecular simulations. This surge in demand for computational tools has driven investment in the molecular modelling sector, fostering innovations and expanding its market size significantly during and beyond the pandemic.
The microscopic modelling segment is expected to be the largest during the forecast period
The microscopic modelling segment is estimated to have a lucrative growth. Microscopic modelling involves simulating molecular structures and interactions at the atomic level. It employs computational techniques like molecular dynamics and quantum mechanics to study properties such as energy, structure, and behaviour of molecules. By analyzing these microscopic details, researchers can predict how molecules interact in biological systems or materials, aiding drug discovery, materials science, and understanding complex biochemical processes at a fundamental level.
The drug discovery & development segment is expected to have the highest CAGR during the forecast period
The drug discovery & development segment is anticipated to witness the fastest CAGR growth during the forecast period. Molecular modeling utilizes computational methods to design and optimize new pharmaceutical compounds. It enables researchers to predict how molecules interact with biological targets, assess their efficacy, and optimize their properties for desired therapeutic effects. This approach accelerates the identification of potential drug candidates, streamlining the drug discovery process and facilitating the development of safer and more effective treatments.
In the Asia-Pacific region, the molecular modelling market is witnessing substantial growth due to increasing investments in pharmaceutical and biotechnology sectors, coupled with advancements in computational technologies. Countries like China, India, Japan, and South Korea are key contributors, driven by expanding research capabilities and rising healthcare expenditure. The region benefits from a skilled workforce and supportive government initiatives promoting scientific research and innovation. Furthermore, collaborations between academic institutions and industry players are fostering technological advancements and market expansion.
In North America, the molecular modelling market is robust and expanding rapidly, driven by a strong presence of pharmaceutical and biotechnology industries. The region benefits from extensive research and development activities, substantial funding in healthcare, and advanced technological infrastructure. Key countries such as the United States and Canada are leading hubs for molecular modelling innovations, with a high adoption rate of computational techniques in drug discovery, material science, and other research areas. The market growth is further supported by collaborations between research organizations, and industry players, ensuring continuous advancements and market expansion in North America.
Key players in the market
Some of the key players profiled in the Molecular Modelling Market include Thermo Fisher Scientific Inc., Dassault Systems, Schrodinger, Certara, Bio-Rad Laboratories, OpenEye Scientific Software, Chemical Computing Group, Cresset, Forge Therapeutics, Cadence Design Systems Inc., PerkinElmer Inc., Molecular Networks GmbH, Genedata AG, Bioinformatics Inc., Optibrium Limited and Rosa & Co. LLC.
In July 2022, Cadence Design Systems Inc. has entered into a definitive agreement to acquire privately held OpenEye Scientific Software, Inc., a leading provider of computational molecular modeling and simulation software being widely and increasingly used by pharmaceutical and biotechnology companies for drug discovery.
In March 2022, PerkinElmer, Inc., announced V21 of its ChemDraw(R) software featuring the ability to import, animate and share 3D chemical structures natively in the Microsoft(R) PowerPoint(R) application with one click. The key enhancement, to a tool used by millions of scientists around the world, helps chemists create more intelligent research reports quickly and easily -- improving information sharing and collaboration and supporting real-time decision making.