½ÃÀ庸°í¼­
»óǰÄÚµå
1503381

Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çü, Á¦Á¶ ¹æ¹ý, ±â´É¼º, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Polyhydroxyalkanoate Market Forecasts to 2030 - Global Analysis By Type, Production Method, Functionality, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀåÀº 2024³â¿¡ 9,568¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGR 16.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 2¾ï 35¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.

Polyhydroxyalkanoate(PHA)´Â ´Ù¾çÇÑ ¹Ì»ý¹°¿¡ ÀÇÇØ ÀúÀå ¹°Áú·Î ÇÕ¼ºµÇ´Â »ýºÐÇØ¼º °íºÐÀÚÀ̸ç, Æú¸®¿¡½ºÅ׸£ÀÇ ÀÏÁ¾À¸·Î ¼¼Æ÷³» °ú¸³À¸·Î ÃàÀû µÉ ¼ö ÀÖ½À´Ï´Ù. Æú¸®¿¡½ºÅ׸£ÀÇ µ¿·á¿¡ ¼ÓÇÏ¸ç ¼¼Æ÷³» °ú¸³À¸·Î ÃàÀû µÉ ¼ö ÀÖ½À´Ï´Ù. PHA´Â ¼³ÅÁ°ú ÁöÁú°ú °°Àº Àç»ýÇÑ ÀÚ¿ø¿¡¼­ »ý»êµÇ¸ç ź¼Ò ¹× ¿¡³ÊÁö ºñÃà·®À¸·Î ÀÛ¿ëÇϸç PHA´Â ±¸¼º¿¡ µû¶ó Ã뼺¿¡¼­ ź¼º±îÁö ´Ù¾çÇÑ Æ¯¼ºÀ» ³ªÅ¸³»¸ç, PHA´Â ´Ù¾çÇÑ È¯°æ¿¡¼­ »ýºÐÇØ ¼ºÀÌ Æò°¡µÇ¾ú½À´Ï´Ù, ´Ù¾çÇÑ È¯°æ¿¡¼­ÀÇ »ýºÐÇØ¼ºÀ¸·Î Æò°¡¹Þ°í ÀÖ½À´Ï´Ù.

À¯¿£È¯°æ°èȹÀÇ ÇÃ¶ó½ºÆ½ Æó±â¹°¿¡ °üÇÑ ÃÖ±Ù º¸°í¼­¿¡ µû¸£¸é Æ÷ÀåÀç´Â Àü ¼¼°è¿¡¼­ ¹ß»ýÇÏ´Â ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ 42%¸¦ Â÷ÁöÇÕ´Ï´Ù.

ÇÃ¶ó½ºÆ½ ¿À¿°¿¡ ´ëÇÑ ÀǽÄÀÇ Çâ»ó¿Í ±ÔÁ¦ °­È­

¼ÒºñÀÚ¿Í Á¤ºÎ°¡ ȯ°æ Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó Æ÷Àå, ³ó¾÷ ¹× »ýÀÇÇÐ ºÐ¾ß¿¡¼­ PHA¿Í °°Àº »ýºÐÇØ¼º ´ëü ¹°Áú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, PHA´Â ´Ù¾çÇÑ È¯°æ¿¡¼­ ÀÚ¿¬ÀûÀ¸·Î ºÐÇØµÇ±â ¶§¹®¿¡ ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ ÃàÀûÀ» ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ȯ°æ ģȭÀû ÀÎ Àç·áÀÇ »ç¿ëÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ Á¶Ä¡´Â »ê¾÷°è°¡ PHA¸¦ äÅÃÇϵµ·Ï Àå·ÁÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÏ°íº¸´Ù Áö¼Ó°¡´ÉÇÑ °üÇà°ú Á¦Ç°À¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

½ºÄÉÀϾ÷ÀÇ ¹®Á¦

Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) »ý»êÀÇ ½ºÄÉÀϾ÷ °úÁ¦¿¡´Â ½ÇÇè½Ç ±Ô¸ð¿¡¼­ »ó¾÷Àû ±Ô¸ð·Î ÀüȯÇÒ ¶§ ÀϰüµÈ ǰÁú°ú ºñ¿ë È¿À²¼ºÀ» À¯ÁöÇØ¾ß ÇÏ´Â ¹®Á¦°¡ Æ÷ÇԵ˴ϴÙ. ¹ßÈ¿ Á¶°Ç ÃÖÀûÈ­, ³ôÀº Æú¸®¸Ó ¼öÀ² ´Þ¼º, ÀçÇö¼º È®º¸ µîÀÇ ¹®Á¦´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº »ý»ê ºñ¿ëÀ» ³ôÀÌ°í »ó¾÷È­ ÀÏÁ¤À» Áö¿¬½ÃÄÑ PHA°¡ ±âÁ¸ ÇÃ¶ó½ºÆ½¿¡ ºñÇØ °æÀï·ÂÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ Æ÷ÀåÀ¸·ÎÀÇ Àüȯ

PHA´Â Àç»ýÇÑ ÀÚ¿ø¿¡¼­ ÃßÃâÇÑ »ýºÐÇØ¼º Æú¸®¸Ó·Î, ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÇÃ¶ó½ºÆ½ Æó±â¹°À» ÃÖ¼ÒÈ­ÇØ¾ß ÇÑ´Ù´Â ¼ÒºñÀÚ ¹× ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó PHA°¡ Æ÷ÀåÀç ¿ëµµ·Î °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. À¯ÇØÇÑ ÀÜ·ù¹° ¾øÀÌ ÀÚ¿¬ ºÐÇØµÇ´Â PHA´Â Áö¼Ó°¡´É¼º Áõ¸íÀ» °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ¸Å·ÂÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´ÉÇÑ Æ÷Àå¿¡ ´ëÇÑ Ãß¼¼´Â PHA¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃŰ°í ½ÃÀå ¼ºÀå°ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

³ôÀº »ý»ê ºñ¿ë

Æú¸® ÇÏÀÌµå ·Ï½Ã ¾ËÄ«³ë ¿¡ÀÌÆ®ÀÇ ³ôÀº »ý»ê ºñ¿ëÀº Ư¼ö ¹ßÈ¿ °øÁ¤ÀÇ Çʿ伺, ±âÁú ºñ¿ë(¿¹ : ¼³ÅÁ ¹× ½Ä¹°¼º ±â¸§), Á¤Á¦¸¦À§ÇÑ ´Ù¿î ½ºÆ®¸² ó¸® µî ¿©·¯ °¡Áö ¿äÀο¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ PHA °¡°ÝÀº ±âÁ¸ ÇÃ¶ó½ºÆ½º¸´Ù ³ôÀ¸¸ç ½ÃÀå¿¡¼­ÀÇ °æÀïÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ƯÈ÷ Æ÷Àå°ú °°Àº °¡°Ý¿¡ ¹Î°¨ÇÑ »ê¾÷¿¡¼­ º¸±ÞÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. óÀ½¿¡´Â Æó¼â¿Í ±ÔÁ¦·Î ÀÎÇØ °ø±Þ¸Á°ú »ý»ê¿¡ È¥¶õÀÌ ¹ß»ýÇßÁö¸¸, ÆÒµ¥¹Í ÀÌÈÄ Áö¼Ó°¡´ÉÇÑ »ýºÐÇØ¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 PHA¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. Æ÷Àå ¹× ÀÇ·á ºÐ¾ß¿¡¼­ ģȯ°æ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀº PHA »ý»ê¿¡ ´ëÇÑ ±â¼ú Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÏ¿© Ãʱâ ÁÂÀý¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀÇ ¹Ì·¡°¡ À¯¸ÁÇÏ´Ù´Â °ÍÀ» º¸¿©ÁÖ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß »ý¹°ÇÐÀû ¹ßÈ¿ ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Polyhydroxyalkanoate´Â Cupriavidus necator ¹× Ralstonia eutropha¿Í °°Àº ¹ÚÅ׸®¾Æ¿¡ ÀÇÇÑ »ý¹°ÇÐÀû ¹ßÈ¿¸¦ ÅëÇØ »ý»êµÇ´Â »ýºÐÇØ¼º °íºÐÀÚ ¹°ÁúÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹Ì»ý¹°Àº ¼¼Æ÷ ³»¿¡¼­ ´ç°ú ÁöÁú°ú °°Àº Àç»ýÇÑ Åº¼Ò¿øÀ» PHA·Î ÀüȯÇÏ¿© ź¼Ò¿Í ¿¡³ÊÁö ÀúÀå¼Ò·Î ÀüȯÇϸç, PHAÀÇ »ýü ÀûÇÕ¼º°ú Áö¼Ó°¡´É¼ºÀº ÀÇ·á±â±â¿¡¼­ ģȯ°æ Æ÷Àå¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ëµµ¿¡ À¯¸ÁÇÑ ¿ëµµ°¡ ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Æ÷Àå ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ºü¸¥ CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â Æ÷Àå ºÐ¾ßÀÔ´Ï´Ù. Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®´Â »ýºÐÇØ¼º °íºÐÀÚ ¹°Áú·Î, ȯ°æ ģȭÀûÀΠƯ¼ºÀ¸·Î ÀÎÇØ Æ÷ÀåÀç·Î ¸¹ÀÌ »ç¿ëµÇ°í ÀÖÀ¸¸ç, PHA Æ÷ÀåÀº ±âÁ¸ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó°¡´ÉÇÑ ´ë¾ÈÀ» Á¦°øÇϰí, ´Ù¾çÇÑ È¯°æ¿¡¼­ ÀÚ¿¬ÀûÀ¸·Î ºÐÇØµÇ¾î ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙ¿©ÁÝ´Ï´Ù. ½Äǰ ¿ë±âºÎÅÍ ÅðºñÈ­ °¡´ÉÇÑ ºÀÅõ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ Æ÷Àå ¿ëµµ·Î »ç¿ëµÇ°í ÀÖÀ¸¸ç, Àü ¼¼°è Æ÷Àå »ê¾÷ÀÇ Ä£È¯°æ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº Á¡À¯À²À» º¸ÀÌ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀåÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Áö¼Ó°¡´ÉÇÑ °üÇà¿¡ ´ëÇÑ Àνİú äÅÃÀÌ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ƯÈ÷ Æ÷Àå ¹× ³ó¾÷ ºÐ¾ß¿¡¼­ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ »ýºÐÇØ¼º ¼ÒÀç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À¼ÒÀ縦 Àå·ÁÇÏ´Â Á¤ºÎÀÇ ±¸»ó°ú ÇÃ¶ó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦´Â ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì¿¡¼­ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀåÀº Áö¼Ó°¡´ÉÇÑ »ýºÐÇØ¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ÀÌ·¯ÇÑ Ãß¼¼ÀÇ ÃÖÀü¼±¿¡ ÀÖÀ¸¸ç, Á¡Á¡ ´õ ¸¹Àº ±â¾÷ÀÌ PHA »ý»ê ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÇÃ¶ó½ºÆ½ Æó±â¹°À» ÁÙÀ̰í ģȯ°æ ´ë¾ÈÀ» Àå·ÁÇÏ´Â ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øÀº ½ÃÀå ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖÀ¸¸ç, PHA »ý»ê °øÁ¤ÀÇ Çõ½Å°ú Àü·«Àû Á¦ÈÞ´Â ºÏ¹Ì ½ÃÀå È®´ë¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå : À¯Çüº°

  • ´Ü¼â ±æÀÌ PHA(scl-PHA)
  • Á߼⠱æÀÌ PHA(mcl-PHA)
  • Àå¼â ±æÀÌ PHA(lcl-PHA)
  • »ýÇÕ¼º °æ·Î PHA
  • °øÁßÇÕü PHA
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå : Á¦Á¶ ¹æ¹ýº°

  • »ý¹°ÇÐÀû ¹ßÈ¿
  • È¥ÇÕ ¹è¾ç ¹ßÈ¿
  • À¯ÀüÀÚº¯Çü »ý¹°(GMO)
  • »ê¾÷ ±Ô¸ð È®´ë
  • ±âŸ Á¦Á¶ ¹æ¹ý

Á¦7Àå ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå : ±â´É¼ºº°

  • ¿­°¡¼Ò¼º PHA
  • ¿¤¶ó½ºÅä¸Ó PHA
  • ºí·»µå PHA
  • º¹ÇÕ PHA

Á¦8Àå ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå : ¿ëµµº°

  • ÆÐŰÁö
  • ÀÇÇÐ
  • È­Àåǰ
  • ³ó¾÷
  • ÀÚµ¿Â÷
  • ¼¶À¯
  • ±âŸ ¾ÖÇø®ÄÉÀ̼Ç

Á¦9Àå ¼¼°èÀÇ Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Mitsubishi Chemical Corporation
  • Kaneka Corporation
  • Danimer Scientific
  • Tianan Biologic Material Corporation
  • Newlight Technologies
  • Yield10 Bioscience
  • Shenzhen Ecomann Biotechnology Corporation
  • Full Cycle Bioplastics
  • Bio-on
  • Biomer
  • Tianjin GreenBio Materials Corporation
  • Biome Bioplastics
  • Tepha Inc.
  • PHB Industrial S.A.
KSA 24.07.04

According to Stratistics MRC, the Global Polyhydroxyalkanoate (PHA) Market is accounted for $95.68 million in 2024 and is expected to reach $200.35 million by 2030 growing at a CAGR of 16.8% during the forecast period. Polyhydroxyalkanoates (PHAs) are biodegradable polymers synthesized by various microorganisms as storage materials. They belong to the family of polyesters and can accumulate as intracellular granules. PHAs serve as reserves of carbon and energy, produced from renewable resources such as sugars or lipids. They exhibit a wide range of properties, from brittle to elastomeric, depending on their composition. PHAs are valued for their biocompatibility, biodegradability in various environments.

According to a recent report by the United Nations Environment Programme on plastic waste, packaging contributes to 42% of the total global plastic waste generated.

Market Dynamics:

Driver:

Increasing awareness and regulations regarding plastic pollution

As consumers and governments prioritize environmental sustainability, there's a growing demand for biodegradable alternatives like PHAs in packaging, agriculture, and biomedical applications. PHAs offer a sustainable solution as they degrade naturally in various environments, reducing plastic waste accumulation. Regulatory measures promoting the use of eco-friendly materials further stimulate market growth by encouraging industries to adopt PHAs, thereby supporting a shift towards more sustainable practices and products.

Restraint:

Scale-up issues

Scale-up issues in polyhydroxyalkanoate (PHA) production involve challenges in maintaining consistent quality and cost-effectiveness when transitioning from laboratory to commercial scales. Issues such as optimizing fermentation conditions, achieving high polymer yields, and ensuring reproducibility can hinder market growth. These challenges increase production costs and delay commercialization timelines, making PHAs less competitive compared to conventional plastics.

Opportunity:

Shift towards sustainable packaging

PHAs are biodegradable polymers derived from renewable resources, offering a sustainable solution to reduce environmental impact. With increasing consumer and regulatory pressures to minimize plastic waste, PHAs have gained traction in packaging applications. Their ability to degrade naturally without harmful residues makes them attractive to companies aiming to enhance their sustainability credentials. This trend towards sustainable packaging drives demand for PHAs, fostering market growth and innovation.

Threat:

High production costs

High production costs in polyhydroxyalkanoate stem from several factors, including the need for specialized fermentation processes, substrate costs (such as sugars or plant oils), and downstream processing for purification. These expenses contribute to PHA prices being higher than conventional plastics, limiting their competitiveness in the market. High costs deter widespread adoption, especially in price-sensitive industries like packaging.

Covid-19 Impact

The covid-19 pandemic has had a mixed impact on the polyhydroxyalkanoate (PHA) market. While initial disruptions in supply chains and production occurred due to lockdowns and restrictions, the increasing demand for sustainable and biodegradable materials post-pandemic has boosted interest in PHAs. This shift towards eco-friendly solutions in packaging and medical sectors has spurred innovation and investment in PHA production, indicating a promising future for the market despite early setbacks.

The biological fermentation segment is expected to be the largest during the forecast period

The biological fermentation segment is estimated to have a lucrative growth. polyhydroxyalkanoates are biodegradable polymers produced through biological fermentation by bacteria such as Cupriavidus necator and Ralstonia eutropha. These microbes convert renewable carbon sources like sugars or lipids into PHA within their cells as carbon and energy storage. PHA's biocompatibility and sustainability make it promising for diverse applications, from medical devices to eco-friendly packaging.

The packaging segment is expected to have the highest CAGR during the forecast period

The packaging segment is anticipated to witness the fastest CAGR growth during the forecast period. Polyhydroxyalkanoates are biodegradable polymers increasingly utilized in packaging due to their eco-friendly properties. PHA packaging offers a sustainable alternative to traditional plastics, reducing environmental impact by breaking down naturally in various environments. Its versatility in packaging applications spans from food containers to compostable bags, catering to the growing demand for environmentally responsible materials in the global packaging industry.

Region with largest share:

In the Asia-Pacific region, the polyhydroxyalkanoate (PHA) market is experiencing growth driven by increasing awareness and adoption of sustainable practices across various industries. Countries like China, Japan, and South Korea are investing in biodegradable materials to mitigate environmental impact, particularly in packaging and agriculture sectors. Government initiatives promoting bio-based materials and stringent regulations on plastic waste management further propel market expansion.

Region with highest CAGR:

In North America, the Polyhydroxyalkanoate (PHA) market is witnessing robust growth driven by increasing consumer preference for sustainable and biodegradable materials. The United States and Canada are at the forefront of this trend, with a growing number of companies investing in PHA production technologies. Regulatory support for reducing plastic waste and promoting eco-friendly alternatives further boosts market demand. Innovation in PHA manufacturing processes and strategic collaborations are accelerating market expansion in North America.

Key players in the market

Some of the key players profiled in the Polyhydroxyalkanoate (PHA) Market include Mitsubishi Chemical Corporation, Kaneka Corporation, Danimer Scientific, Tianan Biologic Material Corporation, Newlight Technologies, Yield10 Bioscience, Shenzhen Ecomann Biotechnology Corporation, Full Cycle Bioplastics, Bio-on, Biomer, Tianjin GreenBio Materials Corporation, Biome Bioplastics, Tepha Inc., and PHB Industrial S.A.

Key Developments:

In May 2022, Danimer Scientific introduced a new range of Eco choice compostable dental flossers, utilizing their Nodax-based technology. This addition to their existing Placker portfolio significantly enhances the sustainability of their dental products, offering eco-friendly alternatives for consumers.

In January 2022, Kaneka Corporation successfully created biodegradable polymer-based straws, and they are set to be introduced in the DAISO 100-yen shops operated by Daiso Industries Co. Ltd. These eco-friendly straws will be made available in approximately 2,500 stores starting from mid-January.

Types Covered:

  • Short Chain Length PHA (scl-PHA)
  • Medium Chain Length PHA (mcl-PHA)
  • Long Chain Length PHA (lcl-PHA)
  • Biosynthesis Pathway PHA
  • Copolymer PHA
  • Other Types

Production Methods Covered:

  • Biological Fermentation
  • Mixed Culture Fermentation
  • Genetically Modified Organisms (GMOs)
  • Industrial Scale-Up
  • Other Production Methods

Functionalities Covered:

  • Thermoplastic PHA
  • Elastomeric PHA
  • Blend PHA
  • Composite PHA

Applications Covered:

  • Packaging
  • Medical
  • Cosmetics
  • Agriculture
  • Automotive
  • Textiles
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Polyhydroxyalkanoate (PHA) Market, By Type

  • 5.1 Introduction
  • 5.2 Short Chain Length PHA (scl-PHA)
  • 5.3 Medium Chain Length PHA (mcl-PHA)
  • 5.4 Long Chain Length PHA (lcl-PHA)
  • 5.5 Biosynthesis Pathway PHA
  • 5.6 Copolymer PHA
  • 5.7 Other Types

6 Global Polyhydroxyalkanoate (PHA) Market, By Production Method

  • 6.1 Introduction
  • 6.2 Biological Fermentation
  • 6.3 Mixed Culture Fermentation
  • 6.4 Genetically Modified Organisms (GMOs)
  • 6.5 Industrial Scale-Up
  • 6.6 Other Production Methods

7 Global Polyhydroxyalkanoate (PHA) Market, By Functionality

  • 7.1 Introduction
  • 7.2 Thermoplastic PHA
  • 7.3 Elastomeric PHA
  • 7.4 Blend PHA
  • 7.5 Composite PHA

8 Global Polyhydroxyalkanoate (PHA) Market, By Application

  • 8.1 Introduction
  • 8.2 Packaging
  • 8.3 Medical
  • 8.4 Cosmetics
  • 8.5 Agriculture
  • 8.6 Automotive
  • 8.7 Textiles
  • 8.8 Other Applications

9 Global Polyhydroxyalkanoate (PHA) Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Mitsubishi Chemical Corporation
  • 11.2 Kaneka Corporation
  • 11.3 Danimer Scientific
  • 11.4 Tianan Biologic Material Corporation
  • 11.5 Newlight Technologies
  • 11.6 Yield10 Bioscience
  • 11.7 Shenzhen Ecomann Biotechnology Corporation
  • 11.8 Full Cycle Bioplastics
  • 11.9 Bio-on
  • 11.10 Biomer
  • 11.11 Tianjin GreenBio Materials Corporation
  • 11.12 Biome Bioplastics
  • 11.13 Tepha Inc.
  • 11.14 PHB Industrial S.A.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦