½ÃÀ庸°í¼­
»óǰÄÚµå
1503432

Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç°º°, Àü¾Ðº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Cryo-electron Microscope Market Forecasts to 2030 - Global Analysis By Product (Instruments, Software and Services), Voltage (120 KV, 200 KV and 300 KV), Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀåÀº 2024³â¿¡ 13¾ï 5,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGR 10.7%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 24¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

±ØÀú¿ÂÀüÀÚÇö¹Ì°æ(Cryo-Em)Àº ±¸Á¶ »ý¹°Çп¡¼­ »ç¿ëµÇ´Â °­·ÂÇÑ Åø·Î, ´Ü¹éÁú, ¹ÙÀÌ·¯½º ¹× ±âŸ »ýü °íºÐÀÚ¸¦ °ÅÀÇ ¿øÀÚ ¼öÁØÀÇ ÇØ»óµµ·Î ½Ã°¢È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ½Ã·á¸¦ ±ØÀú¿Â¿¡¼­ ºü¸£°Ô µ¿°á½ÃÄÑ ¿°»öÀ̳ª °íÁ¤ ¾øÀ̵µ ½Ã·áÀÇ ÀÚ¿¬ ±¸Á¶¸¦ À¯ÁöÇÒ ¼ö ÀÖ´Â ±â¼úÀÔ´Ï´Ù. ±ØÀú¿ÂÀüÀÚÇö¹Ì°æÀº ÀüÀÚºöÀ» ÀÌ¿ëÇØ ½Ã·á¸¦ À̹ÌÁöÈ­ÇÑ ÈÄ Ã·´Ü °è»ê ±â¹ýÀ» ÅëÇØ »ó¼¼ÇÑ 3D ¸ðµ¨·Î À籸¼ºÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº °áÁ¤È­°¡ ¾î·Á¿î º¹ÀâÇÑ ºÐÀÚ ±¸Á¶¸¦ ¿¬±¸ÇÒ ¶§ ƯÈ÷ À¯¿ëÇϸç, ±× ±â´É°ú ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù.

±¸Á¶ »ý¹°Çп¡ ´ëÇÑ ¼ö¿ä Áõ°¡

±¸Á¶ »ý¹°Çп¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Àú¿Â ÀüÀÚ Çö¹Ì°æ(Cryo-EM) ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ±¸Á¶ »ý¹°ÇÐÀº »ýü ºÐÀÚÀÇ ±â´É°ú »óÈ£ ÀÛ¿ëÀ» ÀÌÇØÇϱâ À§ÇØ ±× ±¸Á¶¸¦ »ó¼¼ÇÏ°Ô ½Ã°¢È­ÇØ¾ß ÇÕ´Ï´Ù. ±ØÀú¿Â ÀüÀÚ Çö¹Ì°æÀº ÀÌ·¯ÇÑ ±¸Á¶¸¦ °ÅÀÇ ¿øÀÚ ¼öÁØÀÇ ÇØ»óµµ·Î °üÂûÇÒ ¼ö ÀÖÀ¸¸ç, ½Å¾à °³¹ß, Áúº´ ¿¬±¸ ¹× »ý¸í°øÇÐ ºÐ¾ßÀÇ È¹±âÀûÀÎ ¹ßÀüÀ» ÃËÁøÇÕ´Ï´Ù. º¹ÀâÇÑ »ýü ºÐÀÚ¸¦ ºÐÇØÇÏ´Â Àú¿Â ÀüÀÚ Çö¹Ì°æÀÇ Á¤È®¼º°ú È¿À²¼ºÀº ŸÀÇ ÃßÁ¾À» ºÒÇãÇϸç, Çö´ë ±¸Á¶ »ý¹°Çп¡ ÇʼöÀûÀÎ Åø·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

À¯Áöº¸¼ö ¹× ¿î¿µ ºñ¿ë

Àú¿ÂÀüÀÚÇö¹Ì°æ(Cryo-EM) ½ÃÀåÀº ³ôÀº À¯Áöº¸¼ö ¹× ¿î¿µ ºñ¿ë¿¡ ÀÇÇØ Å©°Ô Á¦Çѵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë¿¡´Â Á¤±âÀûÀÎ ±³Á¤ÀÇ Çʿ伺, ¾×ü Áú¼Ò¿Í °°Àº °í°¡ÀÇ ¼Ò¸ðǰ, ¼÷·ÃµÈ ±â¼úÀÚ°¡ ÇÊ¿äÇÑ Àü¹® À¯Áöº¸¼ö ¼­ºñ½º µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ Çö¹Ì°æÀº ÅëÁ¦µÈ ȯ°æÀ» ÇÊ¿ä·Î Çϱ⠶§¹®¿¡ Àåºñ ¹× À¯Æ¿¸®Æ¼ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀåºñÀÇ º¹À⼺À¸·Î ÀÎÇØ ¿î¿µÀÚÀÇ Áö¼ÓÀûÀÎ ±³À°ÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¿î¿µºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû ºÎ´ãÀº ¼Ò±Ô¸ð ¿¬±¸ ±â°üÀ̳ª ¿¬±¸¼¾ÅͰ¡ Àú¿Â ÀüÀÚ Çö¹Ì°æ ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ÁÖÀúÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù.

»õ·Î¿î ¿ëµµ·ÎÀÇ È®Àå

Àú¿ÂÀüÀÚÇö¹Ì°æ(CryoEM) ½ÃÀåÀº »õ·Î¿î ¿ëµµ·ÎÀÇ È®ÀåÀº Å« ±âȸÀÔ´Ï´Ù. ±ØÀú¿ÂÀüÀÚÇö¹Ì°æÀº ±¸Á¶ »ý¹°ÇÐ, Àç·á °úÇÐ, ³ª³ë±â¼ú µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. »ýü ºÐÀÚ ¹× º¹ÀâÇÑ ¹°ÁúÀ» ¿øÀÚ ¼öÁØ¿¡ °¡±î¿î ÇØ»óµµ·Î °íÇØ»óµµ 3Â÷¿ø À̹ÌÁö¸¦ Á¦°øÇÒ ¼ö ÀÖ´Â Àú¿Â ÀüÀÚ Çö¹Ì°æÀº ½Å¾à °³¹ß, ¹ÙÀÌ·¯½ºÇÐ ¿¬±¸ ¹× ½Å±Ô ³ª³ë¹°Áú ¿¬±¸°³¹ß¿¡ ¸Å¿ì À¯¿ëÇÏ°Ô È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÄ£ º¹ÀâÇÑ °úÇÐÀû Àǹ®¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â Àú¿Â ÀüÀÚ Çö¹Ì°æÀÇ ´Ù¿ëµµ¼ºÀº ±× ÀÀ¿ë °¡´É¼ºÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

±â¼úÀû º¹À⼺

±ØÀú¿ÂÀüÀÚÇö¹Ì°æ(Cryo-EM) ½ÃÀåÀÇ ±â¼úÀû º¹À⼺ÀÇ À§ÇùÀº ÀÌ·¯ÇÑ ÀåºñÀÇ º¹ÀâÇÑ ¼³°è¿Í Á¤±³ÇÑ ÀÛµ¿À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ±ØÀú¿Â ÀüÀÚ Çö¹Ì°æ ½Ã½ºÅÛÀº ¼³Ä¡, Á¤ºñ ¹× ÀÛµ¿¿¡ ÷´Ü Áö½ÄÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ °íµµ·Î Àü¹®È­µÈ ÀηÂÀ¸·Î Á¦Çѵ˴ϴÙ. ¶ÇÇÑ ±ØÀú¿Â ±â¼ú, ÀüÀÚ±¤ÇÐ ±â¼ú ¹× À̹Ì¡ ±â¼úÀ» ÅëÇÕÇÏ·Á¸é ¿©·¯ °úÇÐ ºÐ¾ßÀÇ Ã·´Ü Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ³ôÀº ºñ¿ë°ú Á¤±âÀûÀÎ ±³Á¤ÀÇ Çʿ伺Àº Á¢±Ù¼ºÀ» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé¾î ÀÚ¿øÀÌ ºÎÁ·ÇÑ ½ÇÇè½Ç¿¡¼­ º¸±Þ¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº ¿¬±¸ ¹× Áø´Ü ¿ëµµ¿¡¼­ ±ØÀú¿Â ÀüÀÚ Çö¹Ì°æ(Cryo-Em) ¼ö¿ä¿Í äÅÃÀ» °¡¼ÓÈ­ÇÏ¿© ±ØÀú¿Â ÀüÀÚ Çö¹Ì°æ(Cryo-Em) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °³¹ßÀÌ ½Ã±ÞÇ߱⠶§¹®¿¡ Àú¿ÂÀüÀÚÇö¹Ì°æ°ú °°Àº ÷´Ü À̹Ì¡ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çß½À´Ï´Ù. ¸¹Àº ¿¬±¸±â°ü°ú Á¦¾àȸ»çµéÀÌ Àú¿ÂÀüÀÚÇö¹Ì°æ ½Ã¼³À» È®ÀåÇÏ¿© ¹ÙÀÌ·¯½º¿Í ´Ü¹éÁúÀÇ ±¸Á¶ ºÐ¼®À» ½Å¼ÓÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖµµ·Ï Çß½À´Ï´Ù. ±× °á°ú, Æó¼â·Î ÀÎÇÑ °ø±Þ¸Á°ú Á¦Á¶ÀÇ È¥¶õ¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº ¼ºÀåÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÇÙÀÚ±â°ø¸í(NMR) Çö¹Ì°æ ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå¿¡¼­ ÇÙÀÚ±â°ø¸í(NMR) Çö¹Ì°æÀÇ ¼ºÀåÀº »ýü ºÐÀÚ¿¡ ´ëÇÑ °íÇØ»óµµ ±¸Á¶ Á¤º¸¸¦ Á¦°øÇÏ´Â °íÀ¯ÇÑ ´É·Â¿¡ ±âÀÎÇϸç, NMRÀº ¿øÀÚ ¼öÁØÀÇ µ¿Àû °úÁ¤°ú ºÐÀÚ °£ »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ÀλçÀÌÆ®À» Á¦°øÇÔÀ¸·Î½á Àú¿ÂÀüÀÚÇö¹Ì°æÀ» º¸¿ÏÇÕ´Ï´Ù. º¸¿ÏÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ ¿¬±¸ÀÚµéÀº º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ°Ô µÇ¾î ÅëÇÕ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚ±âÀå °­µµ Çâ»ó ¹× °¨µµ °³¼±°ú °°Àº NMR ±â¼úÀÇ ¹ßÀüÀº Àú¿ÂÀüÀÚÇö¹Ì°æ ¿öÅ©Ç÷οì¿ÍÀÇ È£È¯¼ºÀ» Çâ»ó½ÃÄÑ ±× äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ³ª³ë±â¼ú ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àú¿Â ÀüÀÚ Çö¹Ì°æ(Cryo-Em) ½ÃÀåÀÇ ³ª³ë ±â¼ú È®´ë´Â Ź¿ùÇÑ ÇØ»óµµ·Î ³ª³ë ½ºÄÉÀÏ ±¸Á¶¸¦ ½Ã°¢È­ÇÒ ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ ´É·Â¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀÌ ³ª³ë°úÇÐÀÇ ¿µ¿ªÀ» ´õ ±íÀÌ ÆÄ°íµé¸é¼­ ±ØÀú¿ÂÀüÀÚÇö¹Ì°æ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±ØÀú¿Â¿¡¼­ »ý¹°ÇÐÀû »ùÇÃÀ» ¿¬±¸ÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ºÐÀÚ ±¸Á¶¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®À» Á¦°øÇÏ¿© ½Å¾à °³¹ß ¹× Àç·á °úÇп¡ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ³ª³ë ¹°ÁúÀÇ ÇÕ¼º ¹× Ư¼º Æò°¡ÀÇ ¹ßÀüÀ» À§Çؼ­´Â Àú¿Â ÀüÀÚ Çö¹Ì°æ°ú °°Àº °íÇØ»óµµ À̹Ì¡ ÅøÀÌ ÇÊ¿äÇÕ´Ï´Ù. ³ª³ë±â¼ú°ú Àú¿ÂÀüÀÚÇö¹Ì°æÀÇ ÀÌ·¯ÇÑ ½Ã³ÊÁö È¿°ú´Â ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ°í ´Ù¾çÇÑ °úÇÐ ºÐ¾ßÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª :

ºÏ¹Ì´Â ¿©·¯ °¡Áö ¿äÀÎÀ¸·Î ÀÎÇØ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå¿¡¼­ Å« ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡´Â ÁÖ¿ä Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ÀÌ Á¸ÀçÇϸç, ½Å¾à °³¹ß ¹× ¾à¹° °³¹ßÀ» À§ÇÑ Ã·´Ü À̹Ì¡ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹ÌÀÇ Çмú¿¬±¸ ±â°üµéÀº ±¸Á¶ »ý¹°ÇÐ ¿¬±¸¸¦ À§ÇØ Àú¿Â ÀüÀÚ Çö¹Ì°æÀ» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖÀ¸¸ç, ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ÀÎÇÁ¶ó, ±â¼ú ¹ßÀü, ¾çÈ£ÇÑ ±ÔÁ¦ ȯ°æµµ Àú¿Â ÀüÀÚ Çö¹Ì°æ ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾÷°è ±â¾÷°ú ¿¬±¸ ±â°üÀÇ Çù¾÷Àº Çõ½ÅÀ» ÃËÁøÇÏ°í ½ÃÀå ħÅõ¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿©·¯ °¡Áö ¿äÀÎÀ¸·Î ÀÎÇØ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ °úÇÐ ºÐ¾ß¿¡¼­ÀÇ ¿¬±¸°³¹ß Ȱµ¿¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â Àú¿Â ÀüÀÚ Çö¹Ì°æ°ú °°Àº ÷´Ü À̹Ì¡ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷¿¡¼­ ½Å¾à °³¹ß ¹× ±¸Á¶ »ý¹°ÇÐ ¿¬±¸¸¦ À§ÇØ Àú¿Â ÀüÀÚ Çö¹Ì°æ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª¿¡¼­ »ç¾÷À» È®ÀåÇÏ´Â ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç¿Í °úÇÐ ¿¬±¸¸¦ ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀº ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : Á¦Ç°º°

  • ±â±â
    • ¹ÝÀÚµ¿ ±â±â
    • ¿ÏÀü ÀÚµ¿È­ ±â±â
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : Àü¾Ðº°

  • 120KV
  • 200KV
  • 300KV

Á¦7Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : ±â¼úº°

  • ÁÖ»çÇü ÀüÀÚÇö¹Ì°æ(SEM)
  • Åõ°úÇü ÀüÀÚÇö¹Ì°æ(TEM)
  • ÇÙÀÚ±â°ø¸í(NMR) Çö¹Ì°æ
  • ´ÜÀÔÀÚ ºÐ¼®
  • Å©¶óÀÌ¿À ÀüÀÚ Åä¸ð±×·¡ÇÇ
  • ÀüÀÚ °áÁ¤ÇÐ
    • ±¸Á¶ ±â´É ¿¬±¸
    • ¹«±â °áÁ¤ ¿¬±¸

Á¦8Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : ¿ëµµº°

  • ³ª³ëÅ×Å©³î·¯Áö
  • ¹ÝµµÃ¼
  • »ý¸í°úÇÐ
  • Àç·á°úÇÐ
  • »ý¹° °úÇÐ
  • Áúº´ Áø´Ü°ú º´¸®ÇÐ
  • µ¶¼ºÇÐ ¿¬±¸
  • ÀüÀÓ»ó ¹× ÀÓ»ó ¿¬±¸
  • ¾ÏÁ¶»ç
  • ¼¼Æ÷ ¹× À¯ÀüÀÚ Ä¡·á
  • ¹é½Å

Á¦9Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ÀÓ»ó½ÃÇè¼öʱâ°ü(CRO)
  • ¿¬±¸¼Ò¡¤±â°ü
  • ¹ýÀÇÇÐ ¹× Áø´Ü ·¦
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ Àú¿ÂÀüÀÚÇö¹Ì°æ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • ÀμöÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • AstraZeneca PLC
  • Carl Zeiss AG
  • Charles River Laboratories International, Inc.
  • Delmic B.V.
  • Electron Microscopy Sciences
  • Gatan, Inc.
  • Hitachi High-Tech Corporation
  • Intertek Group PLC
  • Jena Bioscience GmbH
  • Jeol Ltd.
  • Judges Scientific PLC
  • Leica Microsystems by Danaher Corporation
  • NanoImaging Services, Inc.
  • Spectris PLC
  • SPT Labtech Ltd.
  • Thermo Fisher Scientific Inc.
KSA 24.07.04

According to Stratistics MRC, the Global Cryo-electron Microscope Market is accounted for $1.35 billion in 2024 and is expected to reach $2.48 billion by 2030 growing at a CAGR of 10.7% during the forecast period. A cryo-electron microscope (Cryo-EM) is a powerful tool used in structural biology to visualize proteins, viruses, and other biological macromolecules at near-atomic resolution. This technique involves rapidly freezing samples at cryogenic temperatures to preserve their natural structure without the need for staining or fixing. Cryo-EM uses electron beams to image the samples, which are then reconstructed into detailed 3D models through advanced computational methods. This method is particularly valuable for studying complex molecular structures that are difficult to crystallize, providing critical insights into their function and mechanisms.

Market Dynamics:

Driver:

Growing demand for structural biology

The growing demand for structural biology is significantly driving the cryo-electron microscope (cryo-EM) market. Structural biology requires detailed visualization of biomolecular structures to understand their functions and interactions. Cryo-EM allows scientists to observe these structures at near-atomic resolution, facilitating breakthroughs in drug discovery, disease research, and biotechnology. The precision and efficiency of cryo-EM in resolving complex biological molecules are unmatched, making it an indispensable tool in modern structural biology.

Restraint:

Maintenance and operational costs

The cryo-electron microscope (Cryo-EM) market is significantly restrained by high maintenance and operational costs. These costs include the need for regular calibration, expensive consumables like liquid nitrogen, and specialized maintenance services that require skilled technicians. Additionally, the microscopes demand a controlled environment, adding to the costs of facilities and utilities. The complexity of the equipment necessitates ongoing training for operators, further increasing operational expenses. These financial burdens can deter smaller institutions and research centers from adopting cryo-EM technology.

Opportunity:

Expansion into new application areas

The expansion into new application areas presents a significant opportunity for the cryo-electron microscope (cryo-EM) market. Cryo-EM is increasingly being utilized in diverse fields such as structural biology, materials science, and nanotechnology. Its ability to provide high-resolution, three-dimensional images of biomolecules and complex materials at near-atomic resolutions makes it invaluable for drug discovery, virology research, and the development of novel nanomaterials. The versatility of cryo-EM in addressing complex scientific questions across various domains underscores its expanding application potential.

Threat:

Technical complexity

The technical complexity threat in the cryo-electron microscope (cryo-EM) market arises from the intricate design and sophisticated operation of these instruments. Cryo-EM systems require advanced knowledge for setup, maintenance, and operation, limiting their use to highly specialized personnel. Additionally, the integration of cryogenics, electron optics, and imaging technology demands significant expertise in multiple scientific domains. The high cost and need for regular calibration further complicate accessibility, posing challenges for widespread adoption in less-resourced laboratories.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the cryo-electron microscope (Cryo-EM) market by accelerating its demand and adoption in research and diagnostic applications. The urgent need to understand the SARS-CoV-2 virus structure and develop vaccines prompted increased investment in advanced imaging technologies like Cryo-EM. Many research institutions and pharmaceutical companies expanded their cryo-EM facilities to facilitate rapid virus and protein structure analysis. Consequently, the market experienced growth despite disruptions in supply chains and manufacturing due to lockdowns.

The nuclear magnetic resonance (NMR) microscopy segment is expected to be the largest during the forecast period

The growth of nuclear magnetic resonance (NMR) microscopy within the cryo-electron microscope market stems from its unique ability to provide high-resolution structural information about biological molecules in their native states. NMR complements cryo-EM by offering insights into dynamic processes and molecular interactions at the atomic level. This synergy enables researchers to gain a comprehensive understanding of complex biological systems, driving demand for integrated solutions. Additionally, advancements in NMR technology, such as higher magnetic field strengths and improved sensitivity, enhance its compatibility with cryo-EM workflows, further fueling its adoption.

The Nanotechnology segment is expected to have the highest CAGR during the forecast period

Nanotechnology's expansion in the cryo-electron microscope (Cryo-EM) market is fueled by its unparalleled ability to visualize nanoscale structures with exceptional resolution. As researchers delve deeper into the realm of nanoscience, the demand for cryo-EM technology has surged. Its capability to study biological samples at cryogenic temperatures provides invaluable insights into molecular structures, aiding drug discovery and material science. Moreover, advancements in nanomaterial synthesis and characterization necessitate high-resolution imaging tools like Cryo-EM. This synergy between nanotechnology and cryo-EM is propelling the market's growth and fostering innovation in various scientific disciplines.

Region with largest share:

The North American region has experienced significant growth in the cryo-electron microscope market due to several factors. There's a strong presence of leading pharmaceutical and biotechnology companies in the region, driving demand for advanced imaging technologies for drug discovery and development. Additionally, academic and research institutions in North America have been actively adopting cryo-EM for structural biology studies, further boosting market growth. The region's robust infrastructure, technological advancements, and favorable regulatory environment also contribute to the expansion of the cryo-EM market. Moreover, collaborations between industry players and research organizations foster innovation and accelerate market penetration.

Region with highest CAGR:

The Asia-Pacific region has witnessed significant growth in the Cryo-electron Microscope market due to several factors. Increased investment in research and development activities across various scientific disciplines has propelled the demand for advanced imaging technologies like cryo-electron microscopy. Rising adoption of cryo-EM techniques in pharmaceutical and biotechnology industries for drug discovery and structural biology studies has further stimulated market growth. Additionally, the presence of key market players expanding their operations in the region, coupled with government initiatives promoting scientific research, has fueled market expansion.

Key players in the market

Some of the key players in Cryo-electron Microscope market include AstraZeneca PLC, Carl Zeiss AG, Charles River Laboratories International, Inc., Delmic B.V., Electron Microscopy Sciences, Gatan, Inc., Hitachi High-Tech Corporation, Intertek Group PLC, Jena Bioscience GmbH, Jeol Ltd., Judges Scientific PLC, Leica Microsystems by Danaher Corporation, NanoImaging Services, Inc., Spectris PLC, SPT Labtech Ltd. and Thermo Fisher Scientific Inc.

Key Developments:

In June 2024, US lab equipment and services business Thermo Fisher Scientific has opened a new clinical and commercial ultra-cold facility in Bleiswijk, Netherlands. The new site specialises in ambient to cryogenic storage, clinical and commercial packaging, labelling and distribution, and clinical qualified person release services.

In April 2024, Total Quality Assurance (TQA) provider Intertek has entered a strategic partnership with software company Trace For Good to launch a software as a service (SaaS) platform to improve traceability and sustainability in textile and apparel supply chains. The platform's feature is said to include supply chain mapping and traceability at the product level, verification of claims and documents, supplier risk assessments, and support in eco-design and Life Cycle Assessment.

Products Covered:

  • Instruments
  • Software
  • Services

Voltages Covered:

  • 120 KV
  • 200 KV
  • 300 KV

Technologies Covered:

  • Scanning Electron Microscopy (SEM)
  • Transmission Electron Microscopy (TEM)
  • Nuclear Magnetic Resonance (NMR) Microscopy
  • Single Particle Analysis
  • Cryo-electron Tomography
  • Electron Crystallography

Applications Covered:

  • Nanotechnology
  • Semiconductor
  • Lifesciences
  • Material Science
  • Biological Science
  • Disease Diagnosis and Pathology
  • Toxicology Studies
  • Preclinical and Clinical Studies
  • Cancer Research
  • Cell and Gene Therapy
  • Vaccines

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Contract Research Organization
  • Research Laboratories & Institutes
  • Forensic & Diagnostic Laboratories
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Cryo-electron Microscope Market, By Product

  • 5.1 Introduction
  • 5.2 Instruments
    • 5.2.1 Semi Automated Instruments
    • 5.2.2 Fully Automated Instruments
  • 5.3 Software
  • 5.4 Services

6 Global Cryo-electron Microscope Market, By Voltage

  • 6.1 Introduction
  • 6.2 120 KV
  • 6.3 200 KV
  • 6.4 300 KV

7 Global Cryo-electron Microscope Market, By Technology

  • 7.1 Introduction
  • 7.2 Scanning Electron Microscopy (SEM)
  • 7.3 Transmission Electron Microscopy (TEM)
  • 7.4 Nuclear Magnetic Resonance (NMR) Microscopy
  • 7.5 Single Particle Analysis
  • 7.6 Cryo-electron Tomography
  • 7.7 Electron Crystallography
    • 7.7.1 Structure-Function Studies
    • 7.7.2 Inorganic Crystals Studies

8 Global Cryo-electron Microscope Market, By Application

  • 8.1 Introduction
  • 8.2 Nanotechnology
  • 8.3 Semiconductor
  • 8.4 Lifesciences
  • 8.5 Material Science
  • 8.6 Biological Science
  • 8.7 Disease Diagnosis and Pathology
  • 8.8 Toxicology Studies
  • 8.9 Preclinical and Clinical Studies
  • 8.10 Cancer Research
  • 8.11 Cell and Gene Therapy
  • 8.12 Vaccines

9 Global Cryo-electron Microscope Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Contract Research Organization
  • 9.4 Research Laboratories & Institutes
  • 9.5 Forensic & Diagnostic Laboratories
  • 9.6 Other End Users

10 Global Cryo-electron Microscope Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 AstraZeneca PLC
  • 12.2 Carl Zeiss AG
  • 12.3 Charles River Laboratories International, Inc.
  • 12.4 Delmic B.V.
  • 12.5 Electron Microscopy Sciences
  • 12.6 Gatan, Inc.
  • 12.7 Hitachi High-Tech Corporation
  • 12.8 Intertek Group PLC
  • 12.9 Jena Bioscience GmbH
  • 12.10 Jeol Ltd.
  • 12.11 Judges Scientific PLC
  • 12.12 Leica Microsystems by Danaher Corporation
  • 12.13 NanoImaging Services, Inc.
  • 12.14 Spectris PLC
  • 12.15 SPT Labtech Ltd.
  • 12.16 Thermo Fisher Scientific Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦