![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1511368
¼¼°èÀÇ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(-2030³â)Network Slicing Market Forecasts to 2030 - Global Analysis By Component (Standard, Step and Other Types), Application (Telecom operators, Network Function Virtualization and Other Applications), End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀåÀº 2024³â¿¡ 11¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)Àº 48.0%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 118¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº Åë½ÅÀÇ °³³äÀ¸·Î, ´ÜÀÏ ¹°¸®Àû ³×Æ®¿öÅ©¸¦ ½½¶óÀ̽º¶ó°í ÇÏ´Â ¿©·¯ °¡»ó ³×Æ®¿öÅ©·Î ºÐÇÒÇÒ ¼ö ÀÖ½À´Ï´Ù. °¢ ½½¶óÀ̽º´Â ´ë¿ªÆø, Áö¿¬, º¸¾È, ½Å·Ú¼º µî ƯÁ¤ ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï »ç¿ëÀÚ ÁöÁ¤µÇ¸ç ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ¹× ¼ºñ½º¿¡ ¸Â°Ô Á¶Á¤µË´Ï´Ù. ÀÌ ±â¼úÀ» ÅëÇØ ³×Æ®¿öÅ© ¸®¼Ò½º¸¦ È¿À²ÀûÀ¸·Î °øÀ¯ÇÒ ¼ö ÀÖ´Â µ¿½Ã¿¡ µ¶¸³ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ºÐ¸®µÈ Àü¿ë °¡»ó ³×Æ®¿öÅ©¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ÀÚÀ² ÁÖÇà Â÷·®¿¡¼ ½º¸¶Æ® ½ÃƼ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÌ¿ë »ç·Ê°¡ Á¸ÀçÇÏ´Â 5G¿Í °°Àº ½Å±â¼ú¿¡ ¸Å¿ì Áß¿äÇϸç ÃÖÀûÀ¸·Î ±â´ÉÇϱâ À§Çؼ´Â º°µµÀÇ ³×Æ®¿öÅ© Ư¼ºÀÌ ÇÊ¿äÇÕ´Ï´Ù.
GSMA¿¡ µû¸£¸é ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ´Ù¸¥ Àο¡ÀÌºí·¯ ¹× ±â´É°ú °áÇÕÇÏ¿© 2025³â±îÁö 3,000¾ï ´Þ·¯¿¡ ÇØ´çÇÏ´Â ¼öÀÍ ±âȸ¸¦ ó¸®ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ETNO(À¯·´ÀÇ Åë½Å ³×Æ®¿öÅ© »ç¾÷ÀÚ Çùȸ)ÀÇ Á¶»ç¿¡ µû¸£¸é IoT ÇコÄɾîÀÇ È°¼º ¿¬°á ¼ö´Â ÇØ¸¶´Ù Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 2016³â¿¡´Â 87¸¸ Á¢¼ÓÀ̾úÁö¸¸ 2025³â¿¡´Â 1,034¸¸ Á¢¼Ó¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
IoT¿Í M2M Åë½Å
³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡¼ »ç¹°ÀÎÅͳݰú ±â°è°£ Åë½ÅÀº ¼ö¿ä¿Í Çõ½ÅÀ» ÃËÁøÇÏ´Â ¿äÀÎÀ¸·Î Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼¾¼¿¡¼ ½º¸¶Æ® °¡Àü¿¡ À̸£´Â ±¤¹üÀ§ÇÑ IoT µð¹ÙÀ̽º´Â ³·Àº Áö¿¬, ³ôÀº ½Å·Ú¼º, È®Àå °¡´ÉÇÑ ¿¬°á¼º°ú °°Àº ƯÁ¤ ³×Æ®¿öÅ© Ư¼ºÀ» ÇÊ¿ä·Î ÇÏÁö¸¸, ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ÀÌ·¯ÇÑ ¿ä±¸¿¡ ¸Â´Â °¡»ó ³×Æ®¿öÅ©¸¦ ±¸ÃàÇÔÀ¸·Î½á È¿À²ÀûÀÔ´Ï´Ù. ¿¡ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç¶÷À» ÅëÇÏÁö ¾Ê°í µð¹ÙÀ̽º °£ÀÇ µ¥ÀÌÅÍ ±³È¯À» ÀÚµ¿ÈÇÏ´Â M2M Åë½ÅÀº »ê¾÷ ÀÚµ¿È ¹× ½º¸¶Æ® ½ÃƼ µî ´Ù¾çÇÑ ¿ëµµ¿¡ Àü¿ë ¸®¼Ò½º¿Í ÃÖÀûÈµÈ ¼º´ÉÀ» È®º¸ÇÔÀ¸·Î½á ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù.
¸®¼Ò½º °ü¸®
ÀÌ ¿µ¿ªÀÇ ÁÖ¿ä Á¦¾àÀº ´ë¿ªÆø, ÄÄÇ»ÆÃ Àü·Â, ³×Æ®¿öÅ© ¿ë·® µîÀÇ ÀÚ¿ø ÇÒ´çÀ» ¿©·¯ ½½¶óÀ̽º°£¿¡ µ¿½Ã¿¡ È¿°úÀûÀ¸·Î °ü¸®ÇÏ°í ±ÕÇüÀ» ¸ÂÃß´Â ¹®Á¦ÀÔ´Ï´Ù. ¼ºñ½º ǰÁú(QoS) ¿ä±¸ »çÇ×ÀÌ ´Ù¸¥ ´Ù¾çÇÑ ½½¶óÀ̽º°¡ µ¿ÀÏÇÑ ¹°¸®Àû ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿¡ °øÁ¸Çϸé Á¡Á¡ ´õ º¹ÀâÇØÁý´Ï´Ù. °øÁ¤ÇÑ ÇÒ´ç È®º¸, ¸®¼Ò½º °æÀï ¹æÁö, ½Ç½Ã°£ ¼ö¿ä¿¡ µû¸¥ ¸®¼Ò½º ÇÒ´ç µ¿Àû Á¶Á¤ µîÀÇ ¹®Á¦´Â ³×Æ®¿öÅ© ½½¶óÀ̽ºÀÇ ¼º´É°ú ½Å·Ú¼ºÀ» À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
°¡»óÈ ¹× Ŭ¶ó¿ìµå ¼ºñ½º
°¡»óÈ¿Í Å¬¶ó¿ìµå ¼ºñ½º´Â ³×Æ®¿öÅ© ¸®¼Ò½ºÀÇ È¿À²ÀûÀ̰í À¯¿¬ÇÑ ¹èÆ÷¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. °¡»óȸ¦ ÅëÇØ ³×Æ®¿öÅ©´Â ¹°¸®Àû ÀÎÇÁ¶ó¿¡¼ Ãß»óÈµÇ¾î ´ÜÀÏ ¹°¸®Àû ³×Æ®¿öÅ©¿¡ ¿©·¯ °¡»ó ³×Æ®¿öÅ©(½½¶óÀ̽º)¸¦ ½±°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¼ºñ½º´Â È®Àå °¡´ÉÇÑ ÄÄÇ»ÆÃ ¹× ½ºÅ丮Áö ¸®¼Ò½º¸¦ ÁÖ¹®ÇüÀ¸·Î Á¦°øÇÔÀ¸·Î½á °¡»óȸ¦ º¸¿ÏÇÏ°í µ¿Àû ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ¿ä±¸ »çÇ×À» Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. °¡»óÈ¿Í Å¬¶ó¿ìµå ¼ºñ½º¸¦ °áÇÕÇÏ¿© Åë½Å Á¦°ø¾÷ü´Â IoT ¿ëµµÀÇ ÀúÁö¿¬ ¹× ºñµð¿À ½ºÆ®¸®¹ÖÀÇ °í´ë¿ªÆøÀ» Æ÷ÇÔÇÏ¿© ƯÁ¤ »ç¿ëÀÚ ¿ä±¸¿¡ ¸Â°Ô ¸ÂÃãȵǰí ÃÖÀûÈµÈ ³×Æ®¿öÅ© ½½¶óÀ̽º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºñ¿ë ¹× ROI ºÒÈ®½Ç¼º
³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡¼´Â ¿©·¯ ¿äÀεé·ÎºÎÅÍ ºñ¿ë°ú ROI ºÒÈ®½Ç¼ºÀÌ Å« À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ÀÎÇÁ¶ó¸¦ µµÀÔÇÏ´Â µ¥ ÇÊ¿äÇÑ ¼±Çà ÅõÀÚ´Â ¾öû³¯ ¼ö ÀÖÀ¸¸ç, ºñ¿ëÀº ¹èÆ÷ÀÇ º¹À⼺°ú ±Ô¸ð¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. ºÒÈ®½Ç¼ºÀº ÀÌ·¯ÇÑ Ãʱ⠺ñ¿ëÀ» Á¤È®ÇÏ°Ô ¿¹ÃøÇÏ°í ¿¹»ó ¸®ÅϰúÀÇ ¹«°á¼ºÀ» º¸ÀåÇÏ´Â ¾î·Á¿òÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀÇ ÅõÀÚ ¼öÀÍ·ü(ROI)Àº ½ÃÀå ¼ö¿ä, ±â¼ú Áøº¸, ±ÔÁ¦ º¯°æ µîÀÇ ¿äÀο¡ ¿µÇâÀ» ¹ÞÀ¸¸ç, ¸ðµÎ ½Ã°£ÀÌ Áö³²¿¡ µû¶ó º¯µ¿µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ º¯µ¿¼ºÀ¸·Î ÀÎÇØ ÀÌÇØ°ü°èÀÚ°¡ ¿¹»ó ¼öÀͼºÀ» ¿¹ÃøÇÏ°í ¿¹»ó ±âÇÑ ³»¿¡ ´Þ¼ºÇϱⰡ ¾î·Æ½À´Ï´Ù.
COVID - 19ÀÇ À¯ÇàÀº ¿©·¯¸é¿¡¼ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¿ø°Ý ±Ù¹«, e - ·¯´× ¹× ¿ø°Ý ÀÇ·á ¿ä±¸ Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ °ß°íÇϰí À¯¿¬ÇÑ ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä°¡ °¡¼ÓÈµÇ°í ½½¶óÀÌ½Ì ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ÃËÁøµÇ¾ú½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ¼ö¿ä¿¡ µû¶ó ÀÚ¿øÀ» µ¿ÀûÀ¸·Î ÇÒ´çÇÒ ¼ö Àִ ź·ÂÀûÀÎ ³×Æ®¿öÅ©ÀÇ Á߿伺ÀÌ °Á¶µÇ¾î ÇÙ½É ±â¼ú·Î¼ÀÇ ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀÇ Ã¤¿ëÀÌ ÃËÁøµÇ¾ú½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¿Â¶óÀΠȰµ¿ÀÌ ±ÞÁõÇÏ¸é¼ ¿øÈ°ÇÑ ¿¬°á¼ºÀ» º¸ÀåÇϱâ À§Çؼ´Â ½Å·Ú¼ºÀÌ ³ô°í Áö¿¬ÀÌ ÀûÀº ³×Æ®¿öÅ©°¡ ÇÊ¿äÇÏ´Ù´Â °ÍÀÌ °Á¶µÇ¾î ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀåÀÇ ¼¼°è ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Åë½Å »ç¾÷ÀÚ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸ÁÀÔ´Ï´Ù.
Åë½Å »ç¾÷ÀÚ´Â ¿©·¯ ¿äÀο¡ ÀÇÇØ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡¼ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀ» ÅëÇØ Åë½Å »ç¾÷Àڴ ƯÁ¤ °í°´ ¿ä±¸¿¡ ¸Â°Ô °øÅë ¹°¸®Àû ÀÎÇÁ¶ó¿¡ ¿©·¯ °¡»ó ³×Æ®¿öÅ©¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀ» ÅëÇØ ¿î¿µÀÚ´Â È®Àå ¸ð¹ÙÀÏ ±¤´ë¿ª, Ãʰí½Å·Ú ÀúÁö¿¬ Åë½Å(URLLC), ´ë±Ô¸ð ¸Ó½Å Åë½Å(mMTC)°ú °°Àº Â÷º°ÈµÈ ¼ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀ» Ȱ¿ëÇÔÀ¸·Î½á »ç¾÷ÀÚ´Â ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î ÇÒ´çÇϰí, ¼ºñ½º ǰÁúÀ» Çâ»ó½Ã۰í, Á¦Á¶, ÇコÄɾî, ½º¸¶Æ® ½ÃƼ µîÀÇ ºÐ¾ß¿¡¼ ´Ù¾çÇÑ °í°´ ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÚµ¿Â÷ ºÐ¾ß
ÀÚµ¿Â÷ ºÐ¾ß¿¡¼´Â ÷´Ü Ä¿³ØÆ¼ºñƼ¿Í ÀÚÀ²ÁÖÇà ±â¼úÀÌ ÀÚµ¿Â÷¿¡ ÅëÇÕµÇ¾î ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀ» ÅëÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¼ºñ½º Á¦°ø¾÷ü´Â ÀÚÀ² ÁÖÇà, V2X(Vehicle - to - Everything) Åë½Å, ÀÚµ¿Â÷ ¿£ÅÍÅ×ÀÎ¸ÕÆ® ½Ã½ºÅÛ µî ƯÁ¤ ÀÚµ¿Â÷ ¿ëµµ¿¡ ¸Â´Â Àü¿ë °¡»ó ³×Æ®¿öÅ©¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ³×Æ®¿öÅ©°¡ º¹ÀâÇØÁö°í ±¤´ë¿ª ¹× ÀúÁö¿¬ ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ³×Æ®¿öÅ© ¸®¼Ò½º¸¦ È¿À²ÀûÀ¸·Î °ü¸®Çϰí ÃÖÀûÈÇÏ´Â È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© ÀÚµ¿Â÷ ºÐ¾ßÀÇ Çõ½Å°ú º¸±ÞÀ» ÃËÁøÇÕ´Ï´Ù.
ºÏ¹Ì´Â ¸î °¡Áö Áß¿äÇÑ ¿ä¼Ò·Î ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀå¿¡¼ Å« ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ °íµµÀÇ Åë½Å ÀÎÇÁ¶ó¿Í 5G ±â¼úÀÇ º¸±ÞÀº »ç¾÷ÀÚ°¡ ´Ù¾çÇÑ ¿ëµµ¿¡ ¸Â°Ô ³×Æ®¿öÅ© ¸®¼Ò½º¸¦ Ä¿½ºÅ͸¶ÀÌ¡ ¹× ÃÖÀûÈÇÒ ¼ö ÀÖ´Â ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀÇ µµÀÔ¿¡ ÀûÇÕÇÑ Åä¾çÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Çâ»óµÈ ¸ð¹ÙÀÏ ±¤´ë¿ª ¼ºñ½º, IoT ¿¬°á, ÀÚÀ²ÁÖÇà Â÷·® ¹× »ê¾÷ ÀÚµ¿È¿Í °°Àº ÀúÁö¿¬ ¿ëµµ¿¡ ´ëÇÑ °ÇÑ ¼ö¿ä°¡ ÀÖÀ¸¸ç, ÀÌµé ¸ðµÎ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ±â´ÉÀ» ÅëÇØ Å« ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿©·¯ ¿äÀÎÀ¸·Î ÀÎÇØ ³×Æ®¿öÅ© ½½¶óÀÌ½Ì ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Åë½Å ÀÎÇÁ¶ó°¡ Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼ ±Þ¼ÓÈ÷ È®´ëµÇ°í Àֱ⠶§¹®¿¡ È¿À²ÀûÀÎ ³×Æ®¿öÅ© °ü¸®¿Í Ä¿½ºÅ͸¶ÀÌ¡¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ½½¶óÀ̽ÌÀº ƯÁ¤ ¿ëµµ ¿ä±¸»çÇ׿¡ µû¶ó ³×Æ®¿öÅ© ÀÚ¿øÀ» µ¿ÀûÀ¸·Î ÇÒ´çÇÏ´Â ´É·ÂÀ» Åë½Å »ç¾÷ÀÚ¿¡°Ô Á¦°øÇÏ¿© ³×Æ®¿öÅ© ÀüüÀÇ È¿À²¼º°ú »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãŵ´Ï´Ù. IoT, ÀÚÀ²ÁÖÇàÂ÷, °ÈµÈ ¸ð¹ÙÀÏ ±¤´ë¿ª µî ´Ù¾çÇÑ ¼ºñ½º¸¦ Áö¿øÇϱâ À§ÇØ ³×Æ®¿öÅ© ½½¶óÀ̽̿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â 5G ±â¼úÀÇ ÃâÇöÀ¸·Î ÀÌ Áö¿ª¿¡¼´Â ÀÌ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¿Í ¹èÆ÷°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Network Slicing Market is accounted for $1.12 billion in 2024 and is expected to reach $11.8 billion by 2030 growing at a CAGR of 48.0% during the forecast period. Network slicing is a concept in telecommunications that allows a single physical network to be partitioned into multiple virtual networks, known as slices. Each slice is customized to meet specific requirements such as bandwidth, latency, security, and reliability, tailored for different applications or services. This technology enables efficient sharing of network resources while providing isolated and dedicated virtual networks that operate independently. Network slicing is crucial for emerging technologies like 5G, where diverse use cases-from autonomous vehicles to smart cities-require distinct network characteristics to function optimally.
According to GSMA, network slicing, in combination with other enablers and capabilities, will aid operators in addressing a revenue opportunity worth USD 300 billion by 2025. According to an ETNO-European Telecommunications Network Operators' Association survey, the number of IoT healthcare active connections was expected to increase through the years. It was at 0.87 million connections in 2016 and is expected to reach 10.34 million by 2025.
IoT and M2M communication
In network slicing market, Internet of Things and machine-to-machine communication play crucial roles as the drivers of demand and innovation. IoT devices, ranging from sensors to smart appliances, require specific network characteristics such as low latency, high reliability, and scalable connectivity, which network slicing can efficiently provide by creating virtual networks tailored to these needs. M2M communication, which involves automated data exchange between devices without human intervention, benefits from network slicing by ensuring dedicated resources and optimized performance for various applications like industrial automation and smart cities.
Resource management
A key restraint in this domain is the challenge of effectively managing and balancing the allocation of resources such as bandwidth, computing power, and network capacity among multiple slices simultaneously. This becomes increasingly complex as diverse slices with varying quality of service (QoS) requirements coexist on the same physical network infrastructure. Issues such as ensuring fair allocation, preventing resource contention, and dynamically adjusting resource allocation based on real-time demand are critical to maintaining the performance and reliability of network slices.
Virtualization and cloud services
Virtualization and cloud services present significant opportunities in the network slicing market by enabling efficient and flexible deployment of network resources. Virtualization allows networks to be abstracted from physical infrastructure, facilitating the creation of multiple virtual networks (slices) on a single physical network. Cloud services complement virtualization by providing scalable computing and storage resources on-demand, which are essential for supporting dynamic network slicing requirements. Together, virtualization and cloud services empower telecommunications providers to offer customized and optimized network slices tailored to specific user needs, such as low latency for IoT applications or high bandwidth for video streaming.
Cost and ROI uncertainty
In network slicing market, cost and ROI uncertainty pose a significant threat due to several factors. The upfront investment required for implementing network slicing infrastructure can be substantial, with costs varying based on the complexity and scale of deployment. Uncertainty arises from the difficulty in accurately predicting these initial costs and ensuring they align with expected returns. Return on investment (ROI) in network slicing is influenced by factors such as market demand, technological advancements, and regulatory changes, all of which can fluctuate over time. This volatility makes it challenging for stakeholders to forecast and achieve expected profitability within projected timelines.
The COVID-19 pandemic significantly impacted the network slicing market in several ways. It accelerated the demand for robust and flexible network infrastructures to support increased remote working, e-learning, and telemedicine needs, driving investment in slicing technologies. It highlighted the importance of resilient networks capable of dynamically allocating resources based on varying demands, thereby boosting the adoption of network slicing as a key technology. Lastly, it underscored the necessity for reliable and low-latency networks to ensure seamless connectivity amid surges in online activities, further stimulating the growth of the network slicing market worldwide.
The telecom operators segment is expected to be the largest during the forecast period
Telecom operators are experiencing significant growth in the network slicing market due to several factors. Network slicing allows operators to create multiple virtual networks over a common physical infrastructure, tailored to specific customer needs. This flexibility enables operators to offer differentiated services such as enhanced mobile broadband, ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). By leveraging network slicing, operators can efficiently allocate resources, improve service quality, and meet diverse customer demands in sectors like manufacturing, healthcare, and smart cities.
The automotive segment is expected to have the highest CAGR during the forecast period
The automotive segment is experiencing significant growth in the network slicing market due to the increasing integration of advanced connectivity and autonomous technologies in vehicles. Network slicing allows automotive manufacturers and service providers to create dedicated virtual networks tailored to specific automotive applications, such as autonomous driving, vehicle-to-everything (V2X) communication, and in-car entertainment systems. As automotive networks become more complex and demand for high-bandwidth, low-latency services grows, network slicing offers a scalable solution to efficiently manage and optimize network resources, driving innovation and adoption in the automotive sector.
The North American region has experienced significant growth in the network slicing market due to several key factors. The region's advanced telecommunications infrastructure and widespread adoption of 5G technology have created fertile ground for implementing network slicing, which allows operators to customize and optimize network resources for various applications. Also, there is a strong demand for enhanced mobile broadband services, IoT connectivity, and low-latency applications such as autonomous vehicles and industrial automation, all of which benefit greatly from network slicing capabilities.
The Asia-Pacific region has seen significant growth in the network slicing market due to several factors. As telecommunications infrastructure continues to expand rapidly across countries like China, India, Japan, and South Korea, there is a growing demand for efficient network management and customization. Network slicing offers operators the ability to allocate network resources dynamically based on specific application requirements, enhancing overall network efficiency and the user experience. With the advent of 5G technology, which heavily relies on network slicing to support diverse services such as IoT, autonomous vehicles, and enhanced mobile broadband, the region has witnessed increased investments and deployments in this technology.
Key players in the market
Some of the key players in Network Slicing market include Affirmed Networks Inc., Amdocs, Inc., Argela Technologies, Aria Networks Ltd, BT Group PLC, Cisco Systems Inc., Ericsson Inc., Huawei Technologies Co. Ltd, Intel Corporation, Mavenir Inc., NEC Corporation, Nokia Corporation, NTT DOCOMO Inc., Samsung, VMware, Inc. and ZTE Corporation.
In June 2024, Cisco said that it would set up a cybersecurity center in Taiwan and work with the government to train more people to work in the sector. Democratically governed Taiwan, which Beijing views as its own territory, has repeatedly complained of cyberattacks coming from China, targeting government officials and departments as well.
In June 2024, Samsung Electronics unveiled the industry's first hybrid refrigerator using semiconductor elements and artificial intelligence (AI) to improve energy efficiency and performance. The new Bespoke AI Hybrid Refrigerator adopts a hybrid cooling method that combines Peltier modules, along with a traditional compressor, reports Yonhap news agency.