![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1530659
¼¼°èÀÇ ½º¸¶Æ® ³ó¾÷ ¼Ö·ç¼Ç ½ÃÀå Àü¸Á(-2030³â) : ¼Ö·ç¼Ç À¯Çüº°, ³ó¾÷ À¯Çüº°, ³óÀå ±Ô¸ðº°, ¹èÄ¡ ¸ðµåº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Smart Agriculture Solution Market Forecasts to 2030 - Global Analysis By Solution Type (Hardware, Software, Service), Agriculture Type, Farm Size, Deployment Mode, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ½º¸¶Æ® ³ó¾÷ ¼Ö·ç¼Ç ¼¼°è ½ÃÀåÀº 2024³â 156¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 8.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 261¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½º¸¶Æ® ³ó¾÷ ¼Ö·ç¼ÇÀº ±âÁ¸ ³ó¾÷ °üÇà¿¡ ±â¼úÀ» ÅëÇÕÇÏ¿© È¿À²¼º, »ý»ê¼º, Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÀÛ¹°, Åä¾ç »óÅÂ, °¡ÃàÀÇ °Ç° »óÅÂ, ±â»ó ÆÐÅÏÀ» ¸ð´ÏÅ͸µÇϱâ À§ÇÑ IoT ¼¾¼, µå·Ð, AI, µ¥ÀÌÅÍ ºÐ¼® µî ´Ù¾çÇÑ ±â¼úÀ» Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ ÅëÂû·Â°ú ÀÚµ¿ÈµÈ ÀÇ»ç°áÁ¤ ±â´ÉÀ» Á¦°øÇÔÀ¸·Î½á ½º¸¶Æ® ³ó¾÷Àº ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈÇϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̸ç ÀÛ¹° ¼öÈ®·®À» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀº ³óºÎµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» ³»¸®°í º¯ÈÇÏ´Â ³ó¾÷ Á¶°Ç¿¡ È¿°úÀûÀ¸·Î ÀûÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.
÷´Ü ±â¼ú µµÀÔ Áõ°¡
ÀÌ ½ÃÀå¿¡¼´Â ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁýÀ» À§ÇÑ IoT ¼¾¼, ¿¹Ãø ºÐ¼®À» À§ÇÑ AI ¾Ë°í¸®Áò, Á¤¹Ð ³ó¾÷À» À§ÇÑ µå·Ð ±â¼ú µîÀÇ Çõ½ÅÀ¸·Î ÷´Ü ±â¼ú äÅÃÀÌ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ³óºÎµéÀº ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈÇϰí, ÀÛ¹°ÀÇ °Ç° »óŸ¦ ¿ø°ÝÀ¸·Î ¸ð´ÏÅ͸µÇϸç, °ü°³ ¹× ÇØÃæ ¹æÁ¦ µîÀÇ ÀÛ¾÷À» ÀÚµ¿ÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±â±â¿Í Ŭ¶ó¿ìµå Ç÷§ÆûÀÇ ÅëÇÕÀº ÀÇ»ç°áÁ¤À» °ÈÇϰí, Áö¼Ó °¡´ÉÇÑ °üÇàÀ» ÃËÁøÇϸç, ³ó¾÷ »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á/p>
IoT ±â±â¿Í Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ µ¥ÀÌÅÍ º¸¾ÈÀÌ ¾÷°èÀÇ ÁÖ¿ä À̽´·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¼¾¼ ³×Æ®¿öÅ©ÀÇ Ãë¾à¼º, ³óÀÛ¹° ¼öÈ®·® ¹× ±â»ó ÆÐÅϰú °°Àº ¹Î°¨ÇÑ µ¥ÀÌÅ͸¦ À§Çè¿¡ ºü¶ß¸± ¼ö ÀÖ´Â µ¥ÀÌÅÍ À¯Ãâ °¡´É¼º, °·ÂÇÑ ¾ÏÈ£È ÇÁ·ÎÅäÄÝÀÇ Çʿ伺 µîÀÌ ¹®Á¦Á¡À¸·Î ÁöÀûµÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍÀÇ ¾ÈÀüÇÑ Àü¼Û°ú ÀúÀåÀ» º¸ÀåÇÏ´Â °ÍÀº ¹«´Ü ¾×¼¼½º ¹× »çÀ̹ö °ø°ÝÀÇ À§ÇèÀ» ÁÙÀ̰í, ³óºÎµéÀÇ ºñÁî´Ï½º ÅëÂû·ÂÀ» º¸È£Çϸç, ÷´Ü ³ó¾÷ ±â¼ú¿¡ ´ëÇÑ ½Å·Ú¸¦ À¯ÁöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
½Ä·® ¼ö¿ä Áõ°¡
¼¼°è Àα¸ Áõ°¡¿Í ½Ä·® ¼ö¿ä Áõ°¡´Â ½ÃÀå Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº IoT, AI ¹× µ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ³ó¾÷ ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈÇÏ°í »ý»ê¼ºÀ» ³ôÀ̸ç Áö¼Ó °¡´ÉÇÑ °üÇàÀ» º¸ÀåÇÕ´Ï´Ù. ÁÖ¿ä ¼Ö·ç¼ÇÀ¸·Î´Â Á¤¹Ð ³ó¾÷, ½º¸¶Æ® °ü°³ ½Ã½ºÅÛ, ÀÛ¹° ¸ð´ÏÅ͸µ µµ±¸ µîÀÌ ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ³óºÎµéÀÌ µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í ÀÚ¿øÀ» Àý¾àÇÏ¸ç ¼öÈ®·®À» ´Ã¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ¿ÏÈÇÏ¸é¼ ¹Ì·¡ÀÇ ½Ä·® ¼ö¿ä¸¦ È¿À²ÀûÀ¸·Î ÃæÁ·½Ã۱â À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
±â¼úÀû Àü¹® Áö½Ä ºÎÁ·
³ó°¡ ¹× ±âŸ ±â¾÷ÀÇ ±â¼ú Áö½Ä ºÎÁ·Àº ½ÃÀå¿¡¼ Å« ¹®Á¦ÀÔ´Ï´Ù. ÷´Ü ±â¼úÀ» µµÀÔÇÏ·Á¸é Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °ÝÂ÷´Â ½º¸¶Æ® ³ó¹ýÀ» µµÀÔÇÏ°í ³ó¾÷ ÀÚ¿øÀ» È¿À²ÀûÀ¸·Î Ȱ¿ëÇÏ´Â µ¥ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦¸¦ ÇØ°áÇϱâ À§Çؼ´Â Á¾ÇÕÀûÀÎ ±³À° ÇÁ·Î±×·¥°ú ±â¼ú Áö½ÄÀÌ ¾ø´Â »ç¿ëÀÚµµ ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇϰí, ³ó¾÷ÀÇ µðÁöÅÐ ¸®ÅÍ·¯½Ã¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â Áö¿øÀû »ýŰ踦 Á¶¼ºÇØ¾ß ÇÕ´Ï´Ù.
Äڷγª19 ÆÒµ¥¹ÍÀº ºÀ¼â ¹× »çȸÀû °Å¸®µÎ±â Á¶Ä¡·Î ÀÎÇØ ³óÀåÀ» ¿ø°ÝÀ¸·Î ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇØ¾ß ÇÒ Çʿ伺¿¡ ÈûÀÔ¾î ½º¸¶Æ® ³ó¾÷ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» Å©°Ô °¡¼ÓÈÇßÀ¸¸ç, IoT ¼¾¼, AI ±â¹Ý ºÐ¼®, Á¤¹Ð ³ó¾÷ µµ±¸¿Í °°Àº ±â¼úÀº »ý»ê¼º°ú È¿À²¼ºÀ» À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. µÇ¾ú½À´Ï´Ù. ³óºÎµéÀÌ ½Ä·® ¾Èº¸¸¦ º¸ÀåÇϱâ À§ÇØ Åº·ÂÀûÀÎ ±â¼ú ´ëÀÀ Á¢±Ù ¹æ½ÄÀ» Ãß±¸ÇÔ¿¡ µû¶ó ½ÃÀå¿¡¼ µðÁöÅÐ ³ó¾÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Ãà ¸ð´ÏÅ͸µ ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Ãà ¸ð´ÏÅ͸µÀÌ ÃÖ´ëÄ¡¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °Ç° »óÅÂ, À§Ä¡, Çൿ°ú °°Àº Áß¿äÇÑ ¸Å°³º¯¼ö¸¦ ½Ç½Ã°£À¸·Î ÃßÀûÇÕ´Ï´Ù. »ç·á °ø±Þ ÆÐÅϰú °Ç° ÁöÇ¥¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ³ó°¡´Â ¹ø½Ä Áֱ⸦ ÃÖÀûÈÇϰí Áúº´À» Á¶±â¿¡ ¹ß°ßÇÏ¿© Àü¹ÝÀûÀÎ °ü¸® È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ´õ ³ªÀº µ¿¹° °ü¸®¸¦ º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀÚ¿ø ³¶ºñ¸¦ ÃÖ¼ÒÈÇÏ°í ¼öÈ®·®À» ±Ø´ëÈÇÏ¿© Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» ½ÇõÇÏ´Â µ¥¿¡µµ ±â¿©ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ç·á °ü¸® ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»ç·á °ü¸® ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI ¾Ë°í¸®ÁòÀº ÀÌ µ¥ÀÌÅ͸¦ ºÐ¼®ÇÏ¿© Á¤È®ÇÑ »ç·á °ø±Þ ÀÏÁ¤°ú »ç·á Á¶Á¤À» ±ÇÀåÇÏ¿© µ¿¹°ÀÇ °Ç°°ú »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿ »ç·á °ø±Þ±â¿Í Á¤¹Ð »ç·á °ø±Þ ±â¼úÀº ÀÚ¿ø »ç¿ëÀÇ È¿À²¼ºÀ» ´õ¿í º¸ÀåÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¾ÇÕÀûÀÎ Á¢±Ù ¹æ½ÄÀº ³óÀåÀÇ ¼öÀͼºÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Æó±â¹°°ú ȯ°æ ¿µÇâÀ» ÁÙÀÓÀ¸·Î½á Áö¼Ó °¡´ÉÇÑ °üÇàÀ» ÃËÁøÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³óºÎµéÀº ºòµ¥ÀÌÅÍ ºÐ¼®°ú AI¸¦ Ȱ¿ëÇÏ¿© ÀÛ¹° Àç¹è, °ü°³ ¹× ÇØÃæ °ü¸®¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®°í ÀÖ½À´Ï´Ù. ¹° »ç¿ë·®À» ÁÙÀ̰í, ȯ°æ ¿µÇâÀ» ÃÖ¼ÒÈÇϸç, Åä¾ç °Ç°À» °³¼±ÇÏ´Â ½º¸¶Æ® ±â¼ú·Î ÀÎÇØ Áö¼Ó °¡´ÉÇÑ ³ó¾÷¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ³óÀå ±Ô¸ð È®´ë, »ý»ê¼º Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä, µðÁöÅÐ ³ó¾÷À» Áö¿øÇϱâ À§ÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºêÀ¸·Î ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÈÇй°Áú »ç¿ë °¨¼Ò¿Í Åä¾ç °Ç° ¸ð´ÏÅ͸µÀº Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» ÃËÁøÇÏ°í ¼¼°è ȯ°æ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Çâ»óµÈ ¿¬°á¼º°ú ½Ç½Ã°£ µ¥ÀÌÅÍ´Â ³óºÎµéÀÌ º¸´Ù È¿À²ÀûÀ¸·Î ½ÃÀå¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇØÁÖ°í, ´õ ³ªÀº °¡°Ý Çù»ó°ú ½ÃÀå ÅëÇÕÀ» ÃËÁøÇÕ´Ï´Ù. ³ó¾÷ÀÇ ±Þ¼ÓÇÑ ¼ºÀå, ÀÚµ¿È ¹× ½º¸¶Æ® °ü°³ ½Ã½ºÅÛÀº ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈÇϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Smart Agriculture Solution Market is accounted for $15.6 billion in 2024 and is expected to reach $26.1 billion by 2030 growing at a CAGR of 8.9% during the forecast period. Smart Agriculture Solutions integrate technology into traditional agricultural practices to enhance efficiency, productivity, and sustainability. These solutions encompass a range of technologies such as IoT sensors, drones, AI, and data analytics to monitor crops, soil conditions, livestock health, and weather patterns. By providing real-time insights and automated decision-making capabilities, smart agriculture optimizes resource allocation, reduces environmental impact, and improves crop yields. This transformative approach helps farmers make informed decisions and adapt to changing agricultural conditions more effectively.
Rising adoption of advanced technologies
The market is witnessing a surge in advanced technology adoption, driven by innovations such as IoT sensors for real-time data collection, AI algorithms for predictive analytics, and drone technology for precision farming. These technologies enable farmers to optimize resource usage, monitor crop health remotely, and automate tasks like irrigation and pest control. Integration of smart devices with cloud platforms enhances decision-making, fostering sustainable practices and improving agricultural productivity.
Data security concerns
Data security presents substantial industry issues as a result of the integration of IoT devices and cloud-based systems. Issues include vulnerabilities in sensor networks, potential data breaches compromising sensitive farm data (like crop yields and weather patterns), and the need for robust encryption protocols. Ensuring secure data transmission and storage is crucial to mitigate risks of unauthorized access and cyber-attacks, safeguarding farmers' operational insights and maintaining trust in advanced agricultural technologies.
Growing demand for food
The increasing global population and rising food demand are driving innovations in the market. These technologies leverage IoT, AI, and data analytics to optimize farming processes, enhance productivity, and ensure sustainable practices. Key solutions include precision farming, smart irrigation systems, and crop monitoring tools, which enable farmers to make data-driven decisions, conserve resources, and increase yields. This sector's growth is crucial for meeting future food demands efficiently while mitigating environmental impact.
Lack of technical expertise
The lack of technical knowledge among farmers and other players is a major problem in the market. Implementing advanced technologies requires specialized knowledge. This gap hinders the adoption of smart farming practices and efficient use of agricultural resources. Addressing this challenge involves providing comprehensive training programs and user-friendly solutions tailored to the needs of non-technical users, fostering a supportive ecosystem that enhances digital literacy in agriculture.
The COVID-19 pandemic significantly accelerated the adoption of smart agriculture solutions, driven by the need for remote monitoring and management of farms amidst lockdowns and social distancing measures. Technologies like IoT sensors, AI-driven analytics, and precision agriculture tools became crucial for maintaining productivity and efficiency. The market saw increased investment in digital farming solutions as farmers sought resilient, technology-enabled approaches to ensure food security.
The livestock monitoring segment is expected to be the largest during the forecast period
The livestock monitoring is expected to be the largest during the forecast period. These systems track vital parameters like health status, location, and behavior in real-time. By leveraging data on feeding patterns and health indicators, farmers can optimize breeding cycles, detect illnesses early, and improve overall management efficiency. Such innovations not only ensure better animal care but also contribute to sustainable farming practices by minimizing resource wastage and maximizing yield.
The feeding management segment is expected to have the highest CAGR during the forecast period
The feeding management segment is expected to have the highest CAGR during the forecast period. AI algorithms analyze this data to recommend precise feeding schedules and dietary adjustments, enhancing animal health and productivity. Automated feeders and precision feeding techniques further ensure efficiency in resource utilization. This holistic approach not only improves farm profitability but also promotes sustainable practices by reducing waste and environmental impact.
North America is projected to hold the largest market share during the forecast period. Farmers are leveraging big data analytics and AI to make informed decisions about planting, irrigation and pest management. There's a growing emphasis on sustainable farming practices, driven by smart technologies that reduce water usage, minimize environmental impact, and improve soil health. The market is witnessing growth due to increasing farm sizes, demand for higher productivity, and government initiatives supporting digital agriculture.
Asia Pacific is projected to hold the highest CAGR over the forecast period. Reduced chemical usage and soil health monitoring promote sustainable farming practices, aligning with global environmental goals. Improved connectivity and real-time data enable farmers to access markets more efficiently, facilitating better price negotiation and market integration. Rapid growth in agriculture, automation and smart irrigation systems optimize resource utilization and minimize environmental impact.
Key players in the market
Some of the key players in Smart Agriculture Solution market include Deere & Company, Trimble Inc., AGCO Corporation, AG Leader Technology, TeeJet Technologies, Topcon Positioning Systems, Inc., Hexagon Agriculture, Yara International ASA, CropX Technologies Ltd., Kubota Corporation, Prospera Technologies, Granular, Inc., TopFlight Technologies, Autonomous Tractor Corporation, PrecisionHawk Inc., Mavrx Inc. and Farmobile.
In July 2023, Deere & Company announced the acquisition of Smart Apply, Inc. The company planned to leverage Smart Apply's precision spraying to assist growers in addressing the challenges associated with input costs, labor, regulatory requirements, and environmental goals.
In April 2023, AGCO Corporation announced a strategic collaboration with Hexagon, for the expansion of AGCO's factory-fit and aftermarket guidance offerings. The new guidance system was planned to be commercialized as Fuse Guide on Valtra and Massey Ferguson tractors.