½ÃÀ庸°í¼­
»óǰÄÚµå
1530686

¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå Àü¸Á(-2030³â) : ÇÁ·Î¼¼¼­ À¯Çü, µð¹ÙÀ̽º À¯Çü, ¹èÆ÷, ¿ëµµ, Áö¿ªº° ºÐ¼®

Edge AI Hardware Market Forecasts to 2030 - Global Analysis By Processor Type (CPUs, GPUs, DSPs, NPUs, ASICs, FPGAs and Other Processor Types), Device Type, Deployment, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¿§Áö AI Çϵå¿þ¾î ½ÃÀåÀº 2024³â 256¾ï 1,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 18.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 558¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿§Áö AI Çϵå¿þ¾î´Â Áß¾Ó ÁýÁß½Ä Å¬¶ó¿ìµå ¼­¹ö¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í µ¥ÀÌÅÍ ¼Ò½º(¿§Áö) ±Ùó ¶Ç´Â ·ÎÄÿ¡¼­ ÀΰøÁö´É(AI) ÀÛ¾÷À» ¼öÇàÇϵµ·Ï ¼³°èµÈ Ư¼ö ÄÄÇ»ÆÃ ÀåÄ¡¸¦ ¸»ÇÕ´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î´Â ÀÎÅͳݿ¡ »ó½Ã ¿¬°áÇÏÁö ¾Ê°íµµ ¼¾¼­ ¹× ±âŸ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖ¾î ¼Óµµ, ÇÁ¶óÀ̹ö½Ã, ´ë¿ªÆø Á¦¾àÀÌ Áß¿äÇÑ ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù.

CNN BusinessÀÇ ±â»ç¿¡ µû¸£¸é, Çѱ¹ Á¤ºÎ´Â ÃÖ÷´Ü ¹ÝµµÃ¼ Ĩ¿¡¼­ ¼¼°è ÃÖ°íÀÇ ÁöÀ§¸¦ À¯ÁöÇϱâ À§ÇÑ ³ë·ÂÀÇ ÀÏȯÀ¸·Î 2027³â±îÁö ÀΰøÁö´É¿¡ 69¾ï 4,000¸¸ ´Þ·¯¸¦ ÅõÀÚÇÒ °ÍÀ̶ó°í ÇÕ´Ï´Ù.

½Ç½Ã°£ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¿§Áö AI Çϵå¿þ¾î´Â µð¹ÙÀ̽º°¡ ·ÎÄÿ¡¼­ º¹ÀâÇÑ °è»êÀ» ¼öÇàÇÏ¿© ´ë±â ½Ã°£À» ÁÙÀÌ°í µ¥ÀÌÅÍ ÀλçÀÌÆ®¿¡ ´ëÇÑ ½Å¼ÓÇÑ ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÚÀ²ÁÖÇàÂ÷, Á¦Á¶, ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼­´Â ¾÷¹« È¿À²¼º°ú ¾ÈÀü¼ºÀ» À§ÇØ Áï°¢ÀûÀÎ ºÐ¼®ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î¸¦ µµÀÔÇÏ¸é ±â¾÷Àº ´õ ºü¸¥ ÅëÂû·Â, Çâ»óµÈ ¿î¿µ ¹Îø¼º, Çâ»óµÈ ÀÀ´ä¼ºÀ» ÅëÇØ Áß¿äÇÑ ¿ëµµÀÇ ½Ç½Ã°£ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

È®À强 ¹®Á¦

È®À强 ¹®Á¦

¿§Áö AI Çϵå¿þ¾îÀÇ È®À强 ¹®Á¦´Â ´Ù¾çÇÑ È¯°æ¿¡ ºÐ»êµÈ ½Ã½ºÅÛÀ» ¹èÆ÷ÇÏ°í °ü¸®ÇÏ´Â º¹À⼺¿¡¼­ ºñ·ÔµË´Ï´Ù. ÀÌÁ¾ µð¹ÙÀ̽ºÀÇ ÅëÇÕ, ¿øÈ°ÇÑ »óÈ£¿î¿ë¼º º¸Àå, ¾÷µ¥ÀÌÆ® ¹× À¯Áöº¸¼ö ¿ø°Ý °ü¸® µîÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ ¾ç°ú ÁøÈ­ÇÏ´Â ¿ëµµ ¿ä±¸»çÇ׿¡ ´ëÀÀÇϱâ À§ÇØ ¿§Áö AI ¼Ö·ç¼ÇÀ» È®ÀåÇÏ·Á¸é °ß°íÇÑ ÀÎÇÁ¶ó¿Í ¼÷·ÃµÈ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀº µµÀÔ ºñ¿ë°ú º¹À⼺À» Áõ°¡½Ã۰í, È®À强À» Á¦ÇÑÇϸç, º¸±ÞÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.

IoT µð¹ÙÀ̽ºÀÇ ±ÞÁõ

¿§Áö AI Çϵå¿þ¾î´Â ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, Áö¿¬½Ã°£°ú ´ë¿ªÆø ¿ä±¸»çÇ×À» ÁÙÀÌ°í ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ±â´ÉÀ» °­È­ÇÕ´Ï´Ù. ÀÌ ±â´ÉÀº ½º¸¶Æ®½ÃƼ, »ê¾÷ ÀÚµ¿È­, ÇコÄÉ¾î µî ½Å¼ÓÇÑ µ¥ÀÌÅÍ ºÐ¼®ÀÌ ¾÷¹« È¿À²¼º°ú Áï°¢ÀûÀÎ ´ëÀÀÀ» À§ÇØ ÇÊ¿äÇÑ ¿ëµµ¿¡¼­ ¸Å¿ì Áß¿äÇϸç, IoT µµÀÔÀÌ È®´ëµÊ¿¡ µû¶ó ¿§Áö AI Çϵå¿þ¾î°¡ Á¦°øÇÏ´Â È¿À²ÀûÀÌ°í ºÐ»êµÈ ó¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÅëÇÕÀÇ º¹À⼺

¿§Áö AI Çϵå¿þ¾î ÅëÇÕÀÇ º¹À⼺Àº ´Ù¾çÇÑ Çϵå¿þ¾î Ç÷§Æû, ¼ÒÇÁÆ®¿þ¾î ÇÁ·¹ÀÓ¿öÅ©, ±âÁ¸ IT ÀÎÇÁ¶ó¿ÍÀÇ È£È¯¼º ¹®Á¦·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº µµÀÔ ºñ¿ë Áõ°¡, Àü¹®ÀûÀÎ ±â¼ú Àü¹® Áö½ÄÀÇ Çʿ伺, ¼Ö·ç¼Ç Ãâ½Ã ½Ã°£ ¿¬Àå °¡´É¼ºÀ¸·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄݰú »óÈ£¿î¿ë¼º Ç¥ÁØÀÇ ºÎÀç´Â ÅëÇÕ ÀÛ¾÷À» ´õ¿í º¹ÀâÇÏ°Ô ¸¸µé°í ¼­·Î ´Ù¸¥ ¿§Áö ÄÄÇ»ÆÃ ȯ°æ °£ÀÇ È®À强°ú »óÈ£¿î¿ë¼ºÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

Äڷγª19 ÆÒµ¥¹ÍÀº ¿ø°Ý ±Ù¹«, ÀÇ·á ¸ð´ÏÅ͸µ, ºñ´ë¸é ¾÷¹«¿¡¼­ ºÐ»êÇü µ¥ÀÌÅÍ Ã³¸®ÀÇ Çʿ伺À» ºÎ°¢½ÃŰ¸é¼­ ¿§Áö AI Çϵå¿þ¾îÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. Á¶Á÷µéÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» º¸ÀåÇϰí Áß¾Ó ÁýÁᫎ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» ã¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­´Â ƯÈ÷ Àü ¼¼°èÀûÀ¸·Î È¥¶õÀÌ ¹ß»ýÇßÀ» ¶§ ¾ÈÀü, È¿À²¼º, ¿¬¼Ó¼ºÀ» ¿ì¼±½ÃÇÏ´Â ºÎ¹®¿¡¼­ ¿§Áö AI Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¸¦ À̲ø¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼­¹ö ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼­¹ö ºÎ¹®Àº À¯¸®ÇÑ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î¿¡¼­ ¿§Áö ¼­¹ö´Â µ¥ÀÌÅÍ ¼Ò½º¿¡ °¡±î¿î ³×Æ®¿öÅ© ÁÖº¯ºÎ¿¡ ¹èÄ¡µÇ´Â Ư¼ö ÄÄÇ»ÆÃ ÀåÄ¡¸¦ ¸»ÇÕ´Ï´Ù. ¿¡Áö ¼­¹ö´Â AI ¾Ë°í¸®ÁòÀÇ ·ÎÄà 󸮸¦ ¿ëÀÌÇÏ°Ô Çϰí, µ¥ÀÌÅÍ ¼Ò½º¿¡ ´õ °¡±î¿î °÷¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ´ë±â ½Ã°£°ú ´ë¿ªÆø ¼Òºñ¸¦ ÁÙÀÔ´Ï´Ù. ¿¡Áö ¼­¹ö´Â IoT ¹èÆ÷ ¹× ÀÚÀ² ½Ã½ºÅÛ°ú °°ÀÌ ½Ç½Ã°£ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ¿ëµµ¿¡ ¸Å¿ì Áß¿äÇϸç, º¸´Ù ºü¸¥ ÀÇ»ç °áÁ¤À» °¡´ÉÇÏ°Ô Çϰí Àüü ½Ã½ºÅÛÀÇ È¿À²¼º°ú ÀÀ´ä¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½º¸¶Æ®½ÃƼ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½º¸¶Æ®½ÃƼ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿§Áö AI Çϵå¿þ¾î´Â ³×Æ®¿öÅ© ¿§Áö¿¡¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ¹× ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ½º¸¶Æ®½ÃƼ¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â µµ½Ã ÀÎÇÁ¶óÀÇ È¿À²ÀûÀÎ °ü¸®¸¦ ÃËÁøÇÕ´Ï´Ù. µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÔÀ¸·Î½á ¿§Áö AI Çϵå¿þ¾î´Â ´ë±â ½Ã°£À» ÁÙÀ̰í, ÀÚ¿ø ¹èºÐÀ» °³¼±Çϰí, °ø°ø ¾ÈÀüÀ» °­È­Çϰí, ¼­ºñ½º Á¦°øÀ» ÃÖÀûÈ­ÇÔÀ¸·Î½á ½º¸¶Æ®½ÃƼ ±¸»óÀÇ ¹ßÀü°ú Áö¼Ó°¡´É¼ºÀ» Áö¿øÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾ÆÅÂÁö¿ªÀº IoT ±â±âÀÇ º¸±Þ, 5G ÀÎÇÁ¶óÀÇ ¹ßÀü, Á¦Á¶, ÇコÄɾî, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ AI ±â¹Ý ¿ëµµÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ¿§Áö AI ¼Ö·ç¼ÇÀÇ Çõ½Å°ú ¹èÆ÷¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ªµ¿ÀûÀÎ »ê¾÷ ȯ°æ°ú µðÁöÅÐ ÀüȯÀ» ÃËÁøÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ƯÈ÷ IoT, ÀÚÀ² ½Ã½ºÅÛ, ½º¸¶Æ® Á¦Á¶ µîÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀå È®´ë¸¦ À̲ô´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ½º¸¶Æ® ½ÃƼ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ÀÚÀ² ÁÖÇà Â÷·®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ê¾÷ ÀÚµ¿È­ ¹× ÇコÄÉ¾î ºÐ¾ßÀÇ Ä¿³ØÆ¼µå µð¹ÙÀ̽º º¸±Þ µîÀÌ ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ¿©ÀüÈ÷ ¿§Áö AI Çϵå¿þ¾î ±â¼úÀÇ ¹ßÀü°ú äÅÃÀ» ÃËÁøÇÏ´Â ¸Å¿ì Áß¿äÇÑ Áö¿ªÀÔ´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå : ÇÁ·Î¼¼¼­ À¯Çüº°

  • CPU(Áß¾Ó Ã³¸®ÀåÄ¡)
  • GPU(±×·¡ÇȽº ÇÁ·Î¼¼½Ì À¯´Ö)
  • DSP(µðÁöÅÐ ½ÅÈ£ ÇÁ·Î¼¼¼­)
  • NPU(´º·² ÇÁ·Î¼¼½Ì À¯´Ö)
  • ASIC(ÁÖ¹®Çü ÁýÀûȸ·Î)
  • FPGA(Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ)
  • ±âŸ ÇÁ·Î¼¼¼­ À¯Çü

Á¦6Àå ¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå : µð¹ÙÀ̽º À¯Çüº°

  • ¼­¹ö
  • °ÔÀÌÆ®¿þÀÌ
  • ÄÄÇ»ÆÃ µð¹ÙÀ̽º
  • Ä«¸Þ¶ó
  • ·Îº¿
  • µå·Ð
  • ±âŸ µð¹ÙÀ̽º À¯Çü

Á¦7Àå ¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå : Àü°³ Çüź°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå ¿§Áö
  • Æ÷±× ÄÄÇ»ÆÃ

Á¦8Àå ¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå : ¿ëµµº°

  • ÀÚÀ²ÁÖÇàÂ÷
  • ÇコÄɾî
  • °¨½Ã ¹× º¸¾È
  • °¡Àü
  • ¼Ò¸Å
  • ½º¸¶Æ® ½ÃƼ
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ¿§Áö AI Çϵå¿þ¾î ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • NVIDIA
  • Intel
  • Qualcomm
  • Google
  • Synopsys
  • CEVA Inc.
  • Xilinx
  • Huawei
  • Samsung Electronics
  • NXP Semiconductors
  • Texas Instruments
  • Apple
  • Micron Technology
LSH 24.08.22

According to Stratistics MRC, the Global Edge AI Hardware Market is accounted for $25.61 billion in 2024 and is expected to reach $55.82 billion by 2030 growing at a CAGR of 18.7% during the forecast period. Edge AI hardware refers to specialized computing devices designed to perform artificial intelligence (AI) tasks locally, at or near the data source (the edge) rather than relying on centralized cloud servers. Edge AI hardware enables real-time processing of data from sensors and other sources without requiring constant internet connectivity, making it ideal for applications where speed, privacy, or bandwidth constraints are critical.

According to an article by CNN Business, the South Korean government will invest USD 6.94 billion in artificial intelligence by 2027 as part of efforts to retain a leading global position in cutting-edge semiconductor chips.

Market Dynamics:

Driver:

Increasing demand for real-time analytics

Edge AI hardware enables devices to perform complex computations locally, reducing latency and enabling quicker responses to data insights. Industries such as autonomous vehicles, manufacturing, and healthcare require instantaneous analytics for operational efficiency and safety. By deploying Edge AI hardware, organizations can achieve faster insights, improved operational agility, and enhanced responsiveness, thereby meeting the growing demand for real-time analytics in critical applications.

Restraint:

Scalability issues

Scalability issues in Edge AI hardware arise from complexities in deploying and managing distributed systems across diverse environments. Challenges include integrating heterogeneous devices, ensuring seamless interoperability, and managing updates and maintenance remotely. Furthermore, scaling edge AI solutions to accommodate growing data volumes and evolving application requirements requires robust infrastructure and skilled expertise. These factors increase deployment costs and complexity, limiting scalability and hindering widespread adoption.

Opportunity:

Proliferation of IoT devices

Edge AI hardware is essential for processing this data locally; reducing latency and bandwidth requirements while enhancing real-time decision-making capabilities. This capability is crucial in applications such as smart cities, industrial automation, and healthcare, where rapid data analysis is necessary for operational efficiency and responsiveness. As IoT deployments continue to expand, the demand for efficient, decentralized processing solutions provided by edge AI hardware is expected to rise significantly.

Threat:

Complexity in integration

Complexity in integrating Edge AI hardware arises due to diverse hardware platforms, software frameworks, and compatibility issues with existing IT infrastructures. This complexity hampers market growth by increasing deployment costs, requiring specialized technical expertise, and potentially extending time-to-market for solutions. Lack of standardized protocols and interoperability standards further complicates integration efforts, limiting scalability and interoperability across different edge computing environments.

Covid-19 Impact

The covid-19 pandemic accelerated the adoption of edge AI hardware by highlighting the need for decentralized data processing in remote work setups, healthcare monitoring, and contactless operations. Organizations sought solutions that could ensure real-time data analysis and minimize dependence on centralized infrastructure. This shift drove increased demand for edge AI hardware, particularly in sectors prioritizing safety, efficiency, and continuity during global disruptions.

The servers segment is expected to be the largest during the forecast period

The servers segment is estimated to have a lucrative growth. Edge servers in Edge AI hardware refer to specialized computing devices positioned at the periphery of networks, closer to data sources. They facilitate local processing of AI algorithms, reducing latency and bandwidth consumption by handling data closer to its origin. Edge servers are crucial for applications requiring real-time analytics, such as IoT deployments and autonomous systems, enabling faster decision-making and enhancing overall system efficiency and responsiveness.

The smart cities segment is expected to have the highest CAGR during the forecast period

The smart cities segment is anticipated to witness the highest CAGR growth during the forecast period. Edge AI hardware plays a crucial role in smart cities by enabling real-time data processing and decision-making at the edge of the network. These devices facilitate efficient management of urban infrastructure. By processing data locally, Edge AI hardware reduces latency, improves resource allocation, enhances public safety, and optimizes service delivery, thereby supporting the development and sustainability of smart city initiatives.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period driven by the proliferation of IoT devices, advancements in 5G infrastructure, and increasing adoption of AI-driven applications across industries such as manufacturing, healthcare, and automotive. Countries like China, Japan, and South Korea are leading in technological innovation and deployment of edge AI solutions. The region's dynamic industrial landscape and government initiatives promoting digital transformation further bolster market expansion.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period driven by the region's technological advancements, particularly in IoT, autonomous systems, and smart manufacturing. Key factors propelling market expansion include increasing investments in smart city initiatives, rising demand for autonomous vehicles, and the proliferation of connected devices in industrial automation and healthcare sectors. North America remains a pivotal region for driving advancements and adoption of Edge AI hardware technologies.

Key players in the market

Some of the key players profiled in the Edge AI Hardware Market include NVIDIA, Intel, Qualcomm, Google, Synopsys, CEVA Inc., Xilinx, Huawei, Samsung Electronics, NXP Semiconductors, Texas Instruments, Apple and Micron Technology.

Key Developments:

In July 2024, Google launched distributed cloud edge hardware to run AI workloads in or outside its data centers. The Google Distributed Cloud (GDC) air-gapped appliance is mostly for highly regulated organizations that must keep data in-house. The hardware runs the Google Cloud infrastructure stack, data security services and Vertex AI platform. Vertex AI runs models that have been pretrained for various tasks.

In September 2022, NVIDIA introduced the NVIDIA IGX platform for high-precision edge AI, bringing advanced security and proactive safety to sensitive industries such as manufacturing, logistics and healthcare. NVIDIA IGX will help companies build the next generation of software-defined industrial and medical devices that can safely operate in the same environment as humans.

Processor Types Covered:

  • CPUs (Central Processing Units)
  • GPUs (Graphics Processing Units)
  • DSPs (Digital Signal Processors)
  • NPUs (Neural Processing Units)
  • ASICs (Application-Specific Integrated Circuits)
  • FPGAs (Field-Programmable Gate Arrays)
  • Other Processor Types

Device Types Covered:

  • Servers
  • Gateways
  • Computing Devices
  • Cameras
  • Robots
  • Drones
  • Other Device Types

Deployments Covered:

  • On-Premises
  • Cloud-Edge
  • Fog Computing

Applications Covered:

  • Autonomous Vehicles
  • Healthcare
  • Surveillance & Security
  • Consumer Electronics
  • Retail
  • Smart Cities
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Edge AI Hardware Market, By Processor Type

  • 5.1 Introduction
  • 5.2 CPUs (Central Processing Units)
  • 5.3 GPUs (Graphics Processing Units)
  • 5.4 DSPs (Digital Signal Processors)
  • 5.5 NPUs (Neural Processing Units)
  • 5.6 ASICs (Application-Specific Integrated Circuits)
  • 5.7 FPGAs (Field-Programmable Gate Arrays)
  • 5.8 Other Processor Types

6 Global Edge AI Hardware Market, By Device Type

  • 6.1 Introduction
  • 6.2 Servers
  • 6.3 Gateways
  • 6.4 Computing Devices
  • 6.5 Cameras
  • 6.6 Robots
  • 6.7 Drones
  • 6.8 Other Device Types

7 Global Edge AI Hardware Market, By Deployment

  • 7.1 Introduction
  • 7.2 On-Premises
  • 7.3 Cloud-Edge
  • 7.4 Fog Computing

8 Global Edge AI Hardware Market, By Application

  • 8.1 Introduction
  • 8.2 Autonomous Vehicles
  • 8.3 Healthcare
  • 8.4 Surveillance & Security
  • 8.5 Consumer Electronics
  • 8.6 Retail
  • 8.7 Smart Cities
  • 8.8 Other Applications

9 Global Edge AI Hardware Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 NVIDIA
  • 11.2 Intel
  • 11.3 Qualcomm
  • 11.4 Google
  • 11.5 Synopsys
  • 11.6 CEVA Inc.
  • 11.7 Xilinx
  • 11.8 Huawei
  • 11.9 Samsung Electronics
  • 11.10 NXP Semiconductors
  • 11.11 Texas Instruments
  • 11.12 Apple
  • 11.13 Micron Technology
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦