½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1530775

½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, ÀÚµ¿È­ À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Laboratory Automation Market Forecasts to 2030 - Global Analysis By Product Type, Automation Type, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀåÀº 2024³â¿¡ 59¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 7.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 93¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

½ÇÇè½Ç ÀÚµ¿È­´Â ÃÖ¼ÒÇÑÀÇ Àη °³ÀÔÀ¸·Î ½ÇÇè½Ç ÀÛ¾÷À» ¼öÇàÇϱâ À§ÇØ ±â¼ú°ú ½Ã½ºÅÛÀ» »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÚµ¿È­ ±â±â, Àåºñ, ¼ÒÇÁÆ®¿þ¾î°¡ Æ÷ÇÔµÇ¾î »ùÇà Ãë±Þ, ºÐ¼®, µ¥ÀÌÅÍ ¼öÁý ¹× º¸°í¿Í °°Àº ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÀÚµ¿È­´Â ½ÇÇè½Ç ÀÛ¾÷ÀÇ Á¤È®¼º, È¿À²¼º ¹× ÀÏ°ü¼ºÀ» Çâ»ó½ÃÅ°°í ÀÎÀû ¿À·ù °¡´É¼ºÀ» ÁÙÀÔ´Ï´Ù.

°í󸮷® ½ºÅ©¸®´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

°í󸮷® ½ºÅ©¸®´×(HTS)Àº ´ë·®ÀÇ »ùÇÃÀ» ½Å¼ÓÇÏ°Ô ºÐ¼®ÇÏ°í È¿À²¼ºÀ» ³ôÀÌ¸ç ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ Á¡Á¡ ´õ ¸¹Àº ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ½Å¼ÓÇÑ ½Å¾à °³¹ß, À¯ÀüÀÚ ¿¬±¸ ¹× È­ÇÐ ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÏ¿© Á¦¾à ¹× »ý¸í °øÇп¡ Å« ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ÷´Ü ·Îº¿ °øÇÐ, µ¥ÀÌÅÍ ºÐ¼® Åø ¹× ½Ã½ºÅÛ ¼ÒÇüÈ­¸¦ ÅëÇÕÇÏ¿© ³ôÀº Á¤È®µµ¿Í ¹Ýº¹¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¿¬±¸½ÇÀÌ ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ°í »ý»ê¼ºÀ» Çâ»ó½ÃÅ°·Á´Â ³ë·Â¿¡ µû¶ó µµÀÔÀÌ °è¼Ó È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¼÷·Ã°øÀÇ ºÎÁ·

½ÃÀå¿¡¼­ ¼÷·ÃµÈ ÀηÂÀÇ ºÎÁ·Àº ÷´Ü ÀåºñÀÇ ºÎÀûÀýÇÑ Ãë±Þ, È¿À²¼º ÀúÇÏ, ¿À·ù Áõ°¡ µî ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú °ÝÂ÷´Â ÷´Ü ±â¼úÀÇ ÃÖÀû È°¿ëÀ» ¹æÇØÇÏ°í, °£¼ÒÈ­µÈ ¿öÅ©Ç÷οì¿Í Á¤È®ÇÑ µ¥ÀÌÅÍ ºÐ¼®ÀÇ °¡´É¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹ÇÏ°í ½ÇÇè½Ç ȯ°æ¿¡¼­ ÀÚµ¿È­ÀÇ ÀÌÁ¡À» ±Ø´ëÈ­Çϱâ À§Çؼ­´Â ¼÷·ÃµÈ Àü¹®°¡¸¦ ¾ç¼ºÇÏ°í À¯ÁöÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¾ö°ÝÇÑ ±ÔÁ¦ Áؼö

½ÇÇè½Ç ÀÚµ¿È­¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö´Â Áø´Ü °Ë»ç ¹× ¿¬±¸ÀÇ Á¤È®¼º, ½Å·Ú¼º ¹× ¾ÈÀü¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ½ÇÇè½ÇÀº Ç°Áú°ü¸®, ±â±â °ËÁõ ¹× µ¥ÀÌÅÍ ¹«°á¼ºÀ» ´Ù·ç´Â Ç¥ÁØÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ±ÔÁ¦ Áؼö¿¡´Â ȯÀÚ »ùÇÃÀÇ ÀûÀýÇÑ Ãë±Þ, ±â¹Ð¼º º¸Àå ¹× Á¾ÇÕÀûÀÎ ±â·Ï °ü¸®µµ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇϸé À§ÇèÀ» ÁÙÀÌ°í ÀÏ°üµÈ °á°ú¸¦ º¸ÀåÇϸç ÀÚµ¿È­ ½Ã½ºÅÛ¿¡ ´ëÇÑ ½Å·Ú¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á

½ÇÇè½Ç ÀÚµ¿È­¿¡¼­ µ¥ÀÌÅÍ º¸¾È ¹®Á¦´Â ȯÀÚ Á¤º¸ ¹× µ¶Á¡ ¿¬±¸¸¦ Æ÷ÇÔÇÑ ±â¹Ð µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½ºÀÇ À§ÇèÀ» ¼ö¹ÝÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¿¡´Â ÀáÀçÀûÀÎ µ¥ÀÌÅÍ À¯Ãâ, »çÀ̹ö °ø°Ý, ¿¬°áµÈ ÀåºñÀÇ Ãë¾à¼º µîÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ À§ÇèÀ» ÁÙÀ̱â À§Çؼ­´Â ±ÔÁ¦ Áؼö¿Í Á¢±Ù ÅëÁ¦ ¼ö´ÜÀ» È®º¸ÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È­ ½Ã½ºÅÛ ÅëÇÕÀº Á¤º¸ À¯ÃâÀ» ¹æÁöÇÏ°í ±â¹Ð¼ºÀ» À¯ÁöÇϱâ À§ÇØ µ¥ÀÌÅÍÀÇ ¾ÈÀüÇÑ Ãë±Þ°ú º¸°üÀ» °í·ÁÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ °Ë»ç½ÇÀº °Ë»ç ¼ö¿ä Áõ°¡¿Í ÀÎÀû Á¢ÃËÀ» ÃÖ¼ÒÈ­ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇϸ鼭 ½ÇÇè½Ç ÀÚµ¿È­ µµÀÔÀÌ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ÀÚµ¿È­´Â È¿À²¼ºÀ» °³¼±ÇÏ°í, ³³±â¸¦ ´ÜÃàÇÏ°í, ÀÏ°üµÈ °á°ú¸¦ º¸ÀåÇß½À´Ï´Ù. Áø´Ü¿¡¼­ ¹é½Å °³¹ß¿¡ À̸£±â±îÁö °Ë»çÀÇ ±ÞÁõÀº ´ë·®ÀÇ »ùÇÃÀ» ó¸®ÇÏ°í ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» À¯ÁöÇÏ´Â µ¥ÀÖ¾î ÀÚµ¿È­ ½Ã½ºÅÛÀÇ Á߿伺À» °­Á¶ÇÏ¿© ½ÇÇè½Ç ÀÚµ¿È­ ±â¼ú¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î À̾îÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °í󸮷® ½ºÅ©¸®´× ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°í󸮷® ½ºÅ©¸®´×Àº ¿¹Ãø ±â°£ Áß ÃÖ´ë ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÏÀ̽º·çDz ½ºÅ©¸®´×Àº ½Å¾à°³¹ß, À¯ÀüüÇÐ, »ýÈ­ÇÐ ºÐ¼®À» °¡¼ÓÈ­Çϱâ À§ÇØ ÀÚµ¿È­µÈ ·Îº¿ ½Ã½ºÅÛÀ» È°¿ëÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý°ú ºÐ¼®À» °£¼ÒÈ­ÇÔÀ¸·Î½á ¿¬±¸ ½Ã°£°ú ºñ¿ëÀ» Å©°Ô Àý°¨ÇÏ°í ÀáÀçÀûÀÎ ½Å¾à Èĺ¸¹°ÁúÀ» ´õ »¡¸® ã¾Æ³¾ ¼ö ÀÖ½À´Ï´Ù. ÷´Ü ¼ÒÇÁÆ®¿þ¾î ¹× µ¥ÀÌÅÍ °ü¸® Åø¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½ÃÄÑ Çö´ëÀÇ ½ÇÇè½Ç ȯ°æ¿¡¼­ ¸Å¿ì Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇÏ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Á¦¾à ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß Á¦¾à ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÚµ¿È­´Â °í󸮷® ½ºÅ©¸®´× ¹× »ùÇà ºÐ¼®°ú °°Àº ÀÛ¾÷¿¡¼­ Á¤È®¼º, È¿À²¼º ¹× ¹Ýº¹¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ±â¼úÀº ¿¬±¸ ÀÏÁ¤À» ´ÜÃàÇÏ°í ÀÎÀû ¿À·ù¸¦ ÁÙÀÌ¸ç ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾à »ê¾÷¿¡¼­ ½ÇÇè½Ç ÀÚµ¿È­´Â ´ë·®ÀÇ µ¥ÀÌÅÍ¿Í º¹ÀâÇÑ ¿öÅ©Ç÷ο츦 ó¸®ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, ±Ã±ØÀûÀ¸·Î Çõ½ÅÀûÀÎ ÀǾàÇ° °³¹ß ¹× ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀü¿¡ ±â¿©ÇÕ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ¿¬±¸ ¹× ÀÓ»ó ½ÇÇè½Ç¿¡¼­ ³ôÀº 󸮷® ½ºÅ©¸®´×, Á¤È®¼º ¹× ÀçÇö¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·Îº¿ °øÇÐ, ÀΰøÁö´É, µ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀº ¿öÅ©Ç÷οìÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀÌ°í ÀÎÀû ¿À·ù¿Í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Çõ½Å¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÇコÄɾî ÀÎÇÁ¶ó°¡ Àß ±¸ÃàµÇ¾î ÀÖÀ¸¸ç, ÀÚµ¿È­ ½Ã½ºÅÛ µµÀÔÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÇ·á ÀÎÇÁ¶ó ¹× ¿¬±¸ ±â°ü¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÇÇè½Ç ¿öÅ©Ç÷ο츦 °³¼±ÇÏ°í ÀÎÀû ¿À·ù¸¦ ÁÙÀÌ¸ç ´ë·®ÀÇ »ùÇÃÀ» È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ÀÖ´Â ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ¿¬±¸°³¹ßÀ» ÃËÁøÇÏ´Â Á¤ºÎ Áö¿ø Á¤Ã¥°ú Á¤Ã¥Àº ÀÌ Áö¿ªÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌÁî ¼­ºñ½º

º» ¸®Æ÷Æ®¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ¾Æ·¡ÀÇ ¹«·á Ä¿½ºÅ͸¶ÀÌÁî ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡ÀÇ ½ÃÀå Ã߻ꡤ¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÇÁ·¹Áð½º, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ÀÇ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç° ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : Á¦Ç° À¯Çüº°

  • ÀÚµ¿ Çö¹Ì°æ ½Ã½ºÅÛ
  • ÀÚµ¿ »ùÇà º¸°ü ½Ã½ºÅÛ
  • ÀÚµ¿ ¾×ü Çڵ鷯
  • ÀÚµ¿ Ç÷¹ÀÌÆ® Çڵ鷯
  • ÀÚµ¿ ¿Âµµ Á¦¾î ½Ã½ºÅÛ
  • ÀÚµ¿ ºÐ¼®±â
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : ÀÚµ¿È­ À¯Çüº°

  • ºÐ¼®Àü ÀÚµ¿È­
  • ºÐ¼® ÀÚµ¿È­
  • ºÐ¼®ÈÄ ÀÚµ¿È­

Á¦7Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : ±â¼úº°

  • ·Îº¿ ½Ã½ºÅÛ
  • High Throughput Screening
  • ÅëÇÕ Ç÷§Æû
  • ¾×ü ó¸® ½Ã½ºÅÛ
  • µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ
  • ±âŸ Å×Å©³î·¯Áö

Á¦8Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • È­ÇÐ ½ÃÇè
  • ½ÄÇ° ¹× À½·á °Ë»ç
  • ȯ°æ ½ÃÇè
  • ÀÓ»ó Áø´Ü
  • ¹Ì»ý¹°ÇÐ
  • À¯ÀüüÇаú ´Ü¹éÁúüÇÐ
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀǾàÇ°
  • ¿¬±¸¼Ò
  • º´¿ø
  • ¿¬±¸±â°ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ½ÇÇè½Ç ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîƼ³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Thermo Fisher Scientific Inc.
  • Beckman Coulter, Inc.
  • Agilent Technologies, Inc.
  • PerkinElmer, Inc.
  • Danaher Corporation
  • Hamilton Company
  • Tecan Group Ltd.
  • Nikon Instruments Inc.
  • LabWare, Inc.
  • Bruker Corporation
  • JPK Instruments AG
  • Mettler-Toledo International Inc.
  • Hettich Lab Technology
  • Molecular Devices, LLC
  • Labcyte Inc.
KSA 24.08.22

According to Stratistics MRC, the Global Laboratory Automation Market is accounted for $5.9 billion in 2024 and is expected to reach $9.3 billion by 2030 growing at a CAGR of 7.8% during the forecast period. Laboratory automation is the use of technology and systems to perform laboratory tasks with minimal human intervention. It involves automated instruments, devices, and software to streamline processes like sample handling, analysis, data collection, and reporting. This automation enhances accuracy, efficiency, and consistency in laboratory operations, reducing the potential for human error.

Market Dynamics:

Driver:

Rising demand for high throughput screening

High throughput screening (HTS) is increasingly in demand due to its ability to quickly analyze large volumes of samples, enhancing efficiency and reducing costs. It enables rapid drug discovery, genetic research, and chemical analysis, offering significant benefits in pharmaceuticals and biotechnology. The integration of advanced robotics, data analysis tools, and miniaturization in systems allows for high precision and reproducibility. As laboratories seek to optimize workflows and increase productivity, the adoption continues to grow.

Restraint:

Lack of skilled personnel

The lack of skilled personnel in the market poses significant challenges, including improper handling of sophisticated equipment, reduced efficiency, and increased errors. This skills gap hinders optimal utilization of advanced technologies, limiting the potential for streamlined workflows and accurate data interpretation. Training and retention of skilled professionals are crucial to overcoming these challenges and maximizing the benefits of automation in laboratory settings.

Opportunity:

Stringent regulatory compliance

Stringent regulatory compliance in laboratory automation ensures accuracy, reliability, and safety in diagnostic testing and research. Laboratories must adhere to standards covering quality management, equipment validation, and data integrity. Compliance with regulations also involves proper handling of patient samples, ensuring confidentiality, and maintaining comprehensive records. Adhering to these standards helps mitigate risks, ensures consistent results, and fosters trust in automated systems.

Threat:

Data security concerns

Data security concerns in laboratory automation involve the risk of unauthorized access to sensitive data, including patient information and proprietary research. These challenges include potential data breaches, cyber-attacks, and vulnerabilities in connected devices. Ensuring compliance with regulations and access control measures are essential to mitigate these risks. Additionally, the integration of automated systems must consider the secure handling and storage of data to prevent information leakage and maintain confidentiality.

Covid-19 Impact:

The COVID-19 pandemic accelerated the adoption of laboratory automation, as labs faced increased testing demands and the need to minimize human contact. Automation improved efficiency, reduced turnaround times, and ensured consistent results, critical during the health crisis. The surge in testing, from diagnostics to vaccine development, highlighted the importance of automated systems in handling high volumes of samples and maintaining safety protocols, leading to significant investments in laboratory automation technologies.

The high-throughput screening segment is expected to be the largest during the forecast period

The high-throughput screening is expected to be the largest during the forecast period. t employs automated robotic systems to expedite drug discovery, genomics, and biochemical analysis. By streamlining data collection and analysis, it significantly reduces the time and cost of research, enabling faster identification of potential drug candidates. The integration of with advanced software and data management tools enhances accuracy and efficiency, making it a crucial technology in modern laboratory settings.

The pharmaceuticals segment is expected to have the highest CAGR during the forecast period

The pharmaceuticals segment is expected to have the highest CAGR during the forecast period. Automation improves accuracy, efficiency, and reproducibility in tasks such as high-throughput screening and sample analysis. This technology accelerates research timelines, reduces human error, and lowers costs. In the pharmaceutical industry, laboratory automation is crucial for handling large data volumes and complex workflows, ultimately contributing to innovative drug development and personalized medicine advancements.

Region with largest share:

North America is projected to hold the largest market share during the forecast period driven by the growing need for high-throughput screening, precision, and reproducibility in research and clinical laboratories. Advances in robotics, artificial intelligence, and data analytics enhance workflow efficiency and accuracy, reducing human error and operational costs. The region's strong focus on innovation, coupled with a well-established healthcare infrastructure, supports the adoption of automated systems.

Region with highest CAGR:

Asia Pacific is projected to hold the highest CAGR over the forecast period. Growing investments in healthcare infrastructure and research institutions are boosting the demand for automated solutions to improve laboratory workflows, reduce human error, and handle large volumes of samples efficiently. Supportive government policies and regulations promoting technological innovations and R&D are contributing to the growth of the laboratory automation market in the region.

Key players in the market

Some of the key players in Laboratory Automation market include Thermo Fisher Scientific Inc., Beckman Coulter, Inc., Agilent Technologies, Inc., PerkinElmer, Inc., Danaher Corporation, Hamilton Company, Tecan Group Ltd., Nikon Instruments Inc., LabWare, Inc., Bruker Corporation, JPK Instruments AG, Mettler-Toledo International Inc., Hettich Lab Technology, Molecular Devices, LLC and Labcyte Inc.

Key Developments:

In April 2024, Beckman Coulter Life Sciences launched the QbD1200+ Total Organic Carbon (TOC) Analyzer. Offering simplified validation and reporting on encrypted data, it is designed to support 21 CFR Part 11 requirements and major global pharmacopeia regulations.

In April 2024, Agilent Technologies Inc. announced the launch of the Advanced Dilution System, the ADS 2, a new automation workflow solution that will increase productivity, lower cost of ownership, and improve the overall efficiency within the laboratory.

Product Types Covered:

  • Automated Microscopy Systems
  • Automated Sample Storage Systems
  • Automated Liquid Handlers
  • Automated Plate Handlers
  • Automated Temperature Control Systems
  • Automated Analyzers
  • Other Product Types

Automation Types Covered:

  • Pre-Analytical Automation
  • Analytical Automation
  • Post-Analytical Automation

Technologies Covered:

  • Robotic Systems
  • High-Throughput Screening
  • Integration Platforms
  • Liquid Handling Systems
  • Data Management Systems
  • Other Technologies

Applications Covered:

  • Chemical Testing
  • Food and Beverage Testing
  • Environmental Testing
  • Clinical Diagnostics
  • Microbiology
  • Genomics and Proteomics
  • Other Applications

End Users Covered:

  • Pharmaceuticals
  • Research Laboratories
  • Hospitals
  • Research Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 Application Analysis
  • 3.9 End User Analysis
  • 3.10 Emerging Markets
  • 3.11 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Laboratory Automation Market, By Product Type

  • 5.1 Introduction
  • 5.2 Automated Microscopy Systems
  • 5.3 Automated Sample Storage Systems
  • 5.4 Automated Liquid Handlers
  • 5.5 Automated Plate Handlers
  • 5.6 Automated Temperature Control Systems
  • 5.7 Automated Analyzers
  • 5.8 Other Product Types

6 Global Laboratory Automation Market, By Automation Type

  • 6.1 Introduction
  • 6.2 Pre-Analytical Automation
  • 6.3 Analytical Automation
  • 6.4 Post-Analytical Automation

7 Global Laboratory Automation Market, By Technology

  • 7.1 Introduction
  • 7.2 Robotic Systems
  • 7.3 High-Throughput Screening
  • 7.4 Integration Platforms
  • 7.5 Liquid Handling Systems
  • 7.6 Data Management Systems
  • 7.7 Other Technologies

8 Global Laboratory Automation Market, By Application

  • 8.1 Introduction
  • 8.2 Chemical Testing
  • 8.3 Food and Beverage Testing
  • 8.4 Environmental Testing
  • 8.5 Clinical Diagnostics
  • 8.6 Microbiology
  • 8.7 Genomics and Proteomics
  • 8.8 Other Applications

9 Global Laboratory Automation Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceuticals
  • 9.3 Research Laboratories
  • 9.4 Hospitals
  • 9.5 Research Institutions
  • 9.6 Other End Users

10 Global Laboratory Automation Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Thermo Fisher Scientific Inc.
  • 12.2 Beckman Coulter, Inc.
  • 12.3 Agilent Technologies, Inc.
  • 12.4 PerkinElmer, Inc.
  • 12.5 Danaher Corporation
  • 12.6 Hamilton Company
  • 12.7 Tecan Group Ltd.
  • 12.8 Nikon Instruments Inc.
  • 12.9 LabWare, Inc.
  • 12.10 Bruker Corporation
  • 12.11 JPK Instruments AG
  • 12.12 Mettler-Toledo International Inc.
  • 12.13 Hettich Lab Technology
  • 12.14 Molecular Devices, LLC
  • 12.15 Labcyte Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦