![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1551227
¼¼°èÀÇ ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸нÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¿ëµµº° ¹× Áö¿ªº° ºÐ¼®Ammonia Cracking Catalysts Market Forecasts to 2030 - Global Analysis By Type (Platinum Metal Group -based Catalysts and Nickel -based Catalysts), Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸м¼°è ½ÃÀåÀº 2024³â 1,483¸¸ ´Þ·¯¿¡ À̸£°í, 2030³â¿¡´Â 1¾ï 5,401¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 47.7%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Ŵ ¾Ï¸ð´Ï¾Æ(NH3)¸¦ Áú¼Ò(N2)¿Í ¼ö¼Ò(H2) °¡½º·Î ºÐÇØÇÏ´Â µ¥ »ç¿ëµÇ´Â ¹°ÁúÀÔ´Ï´Ù. ¾Ï¸ð´Ï¾Æ ºÐÇØ·Î ¾Ë·ÁÁø ÀÌ °øÁ¤Àº ¼ö¼Ò »ý»ê¿¡ Àû¿ëÇϰųª ¾Ï¸ð´Ï¾Æ°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î ÀÌ·¯ÇÑ Ã˸Ŵ ´ÏÄÌ, ö, ÄÚ¹ßÆ® µîÀÇ ±Ý¼ÓÀ» ±â¹ÝÀ¸·Î Çϸç, ¾Ë·ç¹Ì³ª³ª Á¦¿Ã¶óÀÌÆ®¿Í °°Àº °íÇ¥¸éÀû ¹°Áú¿¡ ÁöÁöÇÏ¿© È¿À²À» ³ôÀÔ´Ï´Ù. Ã˸ÅÀÇ ¼±ÅÃÀº ¹ÝÀÀÀÇ È°¼º, ¼±Åüº ¹× ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. È¿°úÀûÀÎ Ã˸Ŵ ¹ÝÀÀ¿¡ ÇÊ¿äÇÑ ¿¡³ÊÁö¸¦ °¨¼Ò½ÃÄÑ ¿¬·áÀüÁö, »ê¾÷ °øÁ¤ ¹× ûÁ¤ ¿¡³ÊÁö ¿î¹Ýü·Î¼ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.
¹Ì±¹ Á¤ºÎ ¿¡³ÊÁöÁ¤º¸±¹(EIA)¿¡ µû¸£¸é, ¹Ì±¹¿¡¼´Â ¿¬°£ 1,000¸¸ Åæ ÀÌ»óÀÇ ¼ö¼Ò°¡ »ý»êµÇ°í ÀÖ½À´Ï´Ù.
±×¸° Å×Å©³î·¯Áö µµÀÔ È®´ë
±×¸° Å×Å©³î·¯ÁöÀÇ Ã¤ÅÃÀÌ È®´ëµÇ¸é¼ ¼ö¼Ò °æÁ¦¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ´Â ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸ÅÀÇ °³¹ßÀÌ Å©°Ô ÁøÀüµÇ°í ÀÖ½À´Ï´Ù. ¼ö¼Ò ÇÔ·®ÀÌ ³ôÀº ÈÇÕ¹°ÀÎ ¾Ï¸ð´Ï¾Æ´Â ÀúÀå ¹× ¿î¼ÛÀÌ È¿À²ÀûÀ̱⠶§¹®¿¡ ¼ö¼Ò ¿î¹Ýü·Î¼ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Ŵ ¿¬·áÀüÁö ¹× ±âŸ ¿ëµµ·Î ¾Ï¸ð´Ï¾Æ¿¡¼ ¼ö¼Ò¸¦ ÃßÃâÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. º¸´Ù ģȯ°æÀûÀÎ ±â¼úÀ» Ãß±¸ÇÏ´Â ¿òÁ÷ÀÓÀº È¿À²À» ³ôÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Ã˸ŠÀç·á¿Í ¼³°èÀÇ Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ßÀÚµéÀº ´õ ³·Àº ¿Âµµ¿¡¼ ÀÛµ¿Çϰí, ¹ÝÀÀ ¼Óµµ¸¦ ³ôÀ̰í, µ¶¼ºÀÌ Àû°í, ´õ dzºÎÇÑ Àç·á¸¦ »ç¿ëÇÏ¿© ´õ Áö¼Ó °¡´ÉÇÑ Ã˸Ÿ¦ °³¹ßÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.
Ã˸ŠÀç·áÀÇ ³ôÀº ºñ¿ë
Ã˸ŠÀç·áÀÇ ³ôÀº ºñ¿ëÀº Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò »ý»ê¿¡ ÇʼöÀûÀÎ ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸ÅÀÇ °³¹ß ¹× Àû¿ë¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ¾Ï¸ð´Ï¾Æ¸¦ Áú¼Ò¿Í ¼ö¼Ò·Î ºÐÇØÇÏ´Â µ¥ ÇʼöÀûÀÎ ÀÌ Ã˸Ŵ ¹é±Ý, ·Îµã, ·çÅ×´½°ú °°Àº Èñ±ÍÇÏ°í °ªºñ½Ñ ±Ý¼Ó¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·áÀÇ Èñ¼Ò¼º°ú ºñ¿ëÀ¸·Î ÀÎÇØ Ã˸ÅÀÇ ÃÑ ºñ¿ëÀÌ »ó½ÂÇÏ¿© ´ë±Ô¸ð µµÀÔÀÌ °æÁ¦ÀûÀ¸·Î ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. ÀÌ ¹®Á¦´Â ÀÌ·¯ÇÑ ±Ý¼ÓÀÌ Á¶´Þ ºñ¿ëÀÌ ³ôÀ» »Ó¸¸ ¾Æ´Ï¶ó Ã˸мº´ÉÀ» ÃÖÀûÈÇϱâ À§ÇØ º¹ÀâÇÑ °¡°ø ±â¼úÀÌ ÇÊ¿äÇÏ´Ù´Â »ç½Ç·Î ÀÎÇØ ´õ¿í ¾Çȵǰí ÀÖ½À´Ï´Ù.
¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÏ¸é¼ ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸ÅÀÇ °³¹ßÀÌ Å©°Ô ÁøÀüµÇ°í ÀÖ½À´Ï´Ù. ¾Ï¸ð´Ï¾Æ ºÐÇØ´Â ¾Ï¸ð´Ï¾Æ(NH3)¸¦ Áú¼Ò(N2)¿Í ¼ö¼Ò(H2)·Î ºÐÇØÇÏ¿© ¼ö¼Ò¸¦ ûÁ¤ ¿¬·á ¶Ç´Â ¿¡³ÊÁö ¿î¹Ýü·Î »ç¿ëÇÕ´Ï´Ù. ¼ö¼Ò ÀÎÇÁ¶ó°¡ È®´ëµÊ¿¡ µû¶ó °í¼øµµ ¼ö¼Ò¸¦ »ý»êÇϱâ À§ÇÑ È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸ſ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â Ã˸ŠÀç·á ¹× ¼³°èÀÇ Çõ½ÅÀ» ÃËÁøÇÏ¿© Ã˸ÅÀÇ ¼º´É°ú ¼ö¸íÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. »õ·Î¿î ¼ÒÀç¿Í °³¼±µÈ ±¸Á¶¸¦ ÅëÇÕÇÑ Ã·´Ü Ã˸Ŵ Àú¿Â¿¡¼ º¸´Ù È¿À²ÀûÀÎ ¾Ï¸ð´Ï¾Æ ºÐÇØ¸¦ ÃËÁøÇÏ¿© ¿¡³ÊÁö ¼Òºñ¿Í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù.
±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠°úÁ¦
¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Š»ê¾÷Àº ¼ºÀå°ú ¹ßÀüÀ» °¡·Î¸·´Â ½É°¢ÇÑ ±ÔÁ¦¿Í ÄÄÇöóÀ̾𽺠¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦´Â ¹èÃâ°¡½º¸¦ ÃÖ¼ÒÈÇÏ¸é¼ ¾Ï¸ð´Ï¾Æ¸¦ ¼ö¼Ò¿Í Áú¼Ò·Î ºÐÇØÇÏ´Â ³ôÀº È¿À²À» ´Þ¼ºÇÏ´Â Ã˸Ÿ¦ ¿ä±¸ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Á¾Á¾ ±¤¹üÀ§ÇÑ Å×½ºÆ® ¹× ÀÎÁõ ÇÁ·Î¼¼½º¸¦ Æ÷ÇÔÇϱ⠶§¹®¿¡ Á¦Á¶¾÷ü¿¡ ¸¹Àº ºñ¿ë°ú ½Ã°£ÀÌ ¼Ò¿äµË´Ï´Ù. ±×·¯³ª Ã˸Ŵ ´Ù¾çÇÑ Á¶°Ç¿¡¼ »ç¿ëÀÚ¿Í È¯°æ¿¡ ´ëÇÑ À§Çè ¾øÀÌ ¾ÈÁ¤ÀûÀ¸·Î ÀÛµ¿ÇØ¾ß Çϱ⠶§¹®¿¡ ¾ÈÀü Ç¥ÁØÀ» ÁؼöÇÏ´Â °ÍÀº ´õ¿í º¹ÀâÇØÁý´Ï´Ù.
Äڷγª19´Â ÁÖ·Î °ø±Þ¸Á°ú »ý»ê °øÁ¤ÀÇ È¥¶õÀ» ÅëÇØ ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Š»ê¾÷¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Àü ¼¼°èÀûÀÎ ºÀ¼â¿Í Á¦ÇÑÀ¸·Î ÀÎÇØ ¸¹Àº ½Ã¼³ÀÌ °¡µ¿ Áß´Ü ¹× °¡µ¿ ´É·Â °¨¼Ò¿¡ Á÷¸éÇÏ¿© ¿øÀÚÀç È®º¸ ¹× Ã˸ŠÁ¦Á¶¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Äڷγª19·Î ÀÎÇØ ¹°·ù¸ÁÀÌ ±äÀåµÇ¾î Áß¿äÇÑ ºÎǰ°ú ¿ÏÁ¦Ç°ÀÇ ¹è¼ÛÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¥¶õÀº ºñ¿ë Áõ°¡¿Í ¸®µå ŸÀÓ ¿¬ÀåÀ¸·Î À̾îÁ³À» »Ó¸¸ ¾Æ´Ï¶ó Ã˸бâ¼ú ¿¬±¸ ¹× °³¹ß ³ë·Â¿¡µµ ÁöÀåÀ» ÃÊ·¡Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ´ÏÄÌ(Ni) ±â¹Ý Ã˸ŠºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ´ÏÄÌ(Ni) ±â¹Ý Ã˸ŠºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ» Çü¼ºÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´ÏÄÌ(Ni) ±â¹Ý Ã˸Ŵ ¼ö¼Ò »ý»ê¿¡ ¸Å¿ì Áß¿äÇÑ ¾Ï¸ð´Ï¾Æ ºÐÇØ ±â¼úÀÇ ¹ßÀü¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã˸Ŵ ³ôÀº Ȱ¼º°ú ¹ÝÀÀ Á¶°Ç¿¡¼ÀÇ ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¾Ï¸ð´Ï¾Æ ºÐÇØ´Â ¾Ï¸ð´Ï¾Æ(NH3)¸¦ Áú¼Ò(N2)¿Í ¼ö¼Ò(H2)·Î ºÐÇØÇÏ´Â °ÍÀ¸·Î, ûÁ¤ ¼ö¼Ò ¿¬·á »ý»ê¿¡ ÇʼöÀûÀÔ´Ï´Ù. ´ÏÄÌ Ã˸Ŵ ´Ù¸¥ ±Ý¼Ó¿¡ ºñÇØ Ȱ¼º, ºñ¿ë ¹× ³»±¸¼ºÀÇ ±ÕÇüÀÌ Àß ¸Â±â ¶§¹®¿¡ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. ´ÏÄÌ Ã˸ÅÀÇ ¼º´ÉÀº ´Ù¸¥ ¿ø¼Ò¿ÍÀÇ ÇÕ±ÝÈ, ´ãü Àç·áÀÇ ÃÖÀûÈ µî ´Ù¾çÇÑ ¹æ¹ýÀ¸·Î °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿¬·áÀüÁö ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¬·áÀüÁö ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯¸ÁÇÑ ¼ö¼Ò ¿î¹ÝüÀÎ ¾Ï¸ð´Ï¾Æ´Â ÀÌ·¯ÇÑ Ã˸Ÿ¦ »ç¿ëÇÏ¿© È¿À²ÀûÀ¸·Î ¼ö¼Ò¿Í Áú¼Ò·Î ºÐÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾Ï¸ð´Ï¾Æ¿¡¼ »ý¼ºµÈ ¼ö¼Ò´Â °íÈ¿À², Àú¹èÃâ ¿¬·áÀüÁö¿¡ Àü·ÂÀ» °ø±ÞÇϱ⠶§¹®¿¡ ÀÌ °øÁ¤Àº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÃÖ±Ù ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸ÅÀÇ °³¼±Àº È¿À²°ú ¼ö¸í Çâ»ó¿¡ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ¿¬±¸ °³¹ßÀÚµéÀº ¹ÝÀÀ ¼Óµµ¸¦ ³ôÀÌ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇØ »õ·Î¿î Àç·á¸¦ °³¹ßÇϰí Ã˸б¸Á¶¸¦ ÃÖÀûÈÇϰí ÀÖ½À´Ï´Ù. Çõ½Å ±â¼ú¿¡´Â ´õ ³ªÀº ¼º´É°ú ÀÛµ¿ Á¶°Ç¿¡¼ ´õ ³ªÀº ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ´Â °í±Þ ÇÕ±Ý ¹× ³ª³ë ±¸Á¶ Àç·á°¡ Æ÷ÇԵ˴ϴÙ.
³ó¾÷ °üÇàÀÌ Á¡Á¡ ´õ ȯ°æÀû Áö¼Ó°¡´É¼ºÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó È¿À²ÀûÀ̰í Àú¹èÃâ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Ŵ ¾Ï¸ð´Ï¾Æ·ÎºÎÅÍ Ä£È¯°æ ¼ö¼Ò¸¦ »ý»êÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ÀÌ·¯ÇÑ º¯È¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ã˸Ŵ ¾Ï¸ð´Ï¾Æ ±â¹Ý ¼ö¼Ò »ý»êÀÇ È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ÀÌ Áö¿ª Àüü¿¡¼ ź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ±ú²ýÇÑ ºñ·á·Î Åä¾ç ºñ¿Áµµ¸¦ ³ôÀÌ´Â µî Áö¼Ó °¡´ÉÇÑ ³ó¾÷À» ½ÇõÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
À¯·´Àº ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯·´¿¡¼´Â Á¤ºÎ ±ÔÁ¦°¡ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇÔÀ¸·Î½á ¾Ï¸ð´Ï¾Æ ºÐÇØ Ã˸Š»ê¾÷À» Å©°Ô ¹ßÀü½Ã۰í ÀÖ½À´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ ¾ö°ÝÇÑ È¯°æ Á¤Ã¥Àº ûÁ¤ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí, À¯ÇØÇÑ ¹èÃâÀ» ÁÙÀÌ¸é¼ ¾Ï¸ð´Ï¾Æ ºÐÇØ È¿À²À» ³ôÀÌ´Â Ã˸Ÿ¦ °³¹ßÇϵµ·Ï ±â¾÷À» µ¶·ÁÇϰí ÀÖ½À´Ï´Ù. À¯·´ ±×¸°µô ¹× Fit for 55 ÆÐŰÁö¿Í °°Àº ±ÔÁ¦´Â ±âÈÄ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±Ý ¹× ¼¼Á¦ ÇýÅÃÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ ºÐ¾ßÀÇ ¿¬±¸ °³¹ß¿¡ Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Ammonia Cracking Catalysts Market is accounted for $14.83 million in 2024 and is expected to reach $154.01 million by 2030 growing at a CAGR of 47.7% during the forecast period. Ammonia cracking catalysts are materials used to facilitate the decomposition of ammonia (NH3) into nitrogen (N2) and hydrogen (H2) gases. This process, known as ammonia cracking, is crucial for applications in hydrogen production and for reducing ammonia's environmental impact. Typically, these catalysts are based on metals such as nickel, iron, or cobalt, supported on high-surface-area materials like alumina or zeolites to enhance their efficiency. The choice of catalyst affects the reaction's activity, selectivity, and stability. Effective catalysts lower the energy required for the reaction, enabling the production of hydrogen for fuel cells, industrial processes, and as a clean energy carrier.
According to the U.S. government's energy information administration (EIA), the country produces more than 10 million tonnes of hydrogen annually.
Rising adoption of green technologies
The growing adoption of green technologies is substantially advancing the development of ammonia cracking catalysts, which play a crucial role in the hydrogen economy. Ammonia, a compound with high hydrogen content, is increasingly being utilized as a hydrogen carrier due to its efficient storage and transport. To release hydrogen from ammonia for fuel cells or other applications, effective ammonia cracking catalysts are essential. The push for greener technologies has spurred innovations in catalyst materials and designs to improve efficiency and reduce environmental impact. Researchers are focusing on developing catalysts that operate at lower temperatures, enhance reaction rates, and are more sustainable by using less toxic or more abundant materials.
High cost of catalyst materials
The high cost of catalyst materials significantly impacts the development and application of ammonia cracking catalysts, crucial for sustainable hydrogen production. These catalysts, essential for breaking down ammonia into nitrogen and hydrogen, rely on rare and expensive metals such as platinum, rhodium, and ruthenium. The scarcity and cost of these materials drive up the overall expense of the catalysts, making large-scale adoption economically challenging. This issue is exacerbated by the fact that these metals are not only costly to procure but also require intricate processing techniques to optimize their catalytic performance.
Increased investment in hydrogen infrastructure
Increased investment in hydrogen infrastructure is substantially advancing the development of ammonia cracking catalysts. Ammonia cracking involves breaking down ammonia (NH3) into nitrogen (N2) and hydrogen (H2), with the hydrogen being used as a clean fuel or energy carrier. As hydrogen infrastructure expands, there is a growing demand for efficient and reliable ammonia cracking catalysts to produce high-purity hydrogen. This investment is driving innovation in catalyst materials and designs, enhancing their performance and longevity. Advanced catalysts, often incorporating novel materials or improved structures, facilitate more efficient ammonia decomposition at lower temperatures, reducing energy consumption and operational costs.
Regulatory and compliance challenges
The ammonia cracking catalyst industry faces significant regulatory and compliance challenges that hinder its growth and development. Stringent environmental regulations require catalysts to achieve high efficiency in breaking down ammonia into hydrogen and nitrogen while minimizing emissions. These regulations often involve extensive testing and certification processes, which can be costly and time-consuming for manufacturers. However, compliance with safety standards adds another layer of complexity, as catalysts must operate reliably under various conditions without posing risks to users or the environment.
The COVID-19 pandemic significantly impacted the ammonia cracking catalysts industry, primarily through disruptions in supply chains and production processes. With global lockdowns and restrictions, many facilities faced shutdowns or reduced operational capacity, affecting the availability of raw materials and manufacturing of catalysts. The pandemic strained logistics networks, causing delays in the delivery of critical components and finished products. This disruption not only led to increased costs and extended lead times but also hampered ongoing research and development efforts in catalyst technology.
The Nickel (Ni)-based Catalysts segment is expected to be the largest during the forecast period
Nickel (Ni)-based Catalysts segment is expected to be the largest during the forecast period. Nickel (Ni)-based catalysts are playing a crucial role in advancing ammonia cracking technology, which is pivotal for hydrogen production. These catalysts are favored due to their high activity and stability under reaction conditions. Ammonia cracking involves breaking down ammonia (NH3) into nitrogen (N2) and hydrogen (H2), which is essential for generating clean hydrogen fuel. Nickel catalysts are particularly effective because they offer a favorable balance of activity, cost, and durability compared to other metals. Their performance can be enhanced through various methods, including alloying with other elements or optimizing support materials.
The Fuel Cells segment is expected to have the highest CAGR during the forecast period
Fuel Cells segment is expected to have the highest CAGR during the forecast period. Ammonia, a promising hydrogen carrier, can be efficiently decomposed into hydrogen and nitrogen using these catalysts. This process is vital because hydrogen, generated from ammonia, powers fuel cells with high efficiency and low emissions. Recent improvements in ammonia cracking catalysts focus on increasing their efficiency and longevity. Researchers are developing new materials and optimizing catalyst structures to boost the reaction rates and reduce energy consumption. Innovations include advanced alloys and nanostructured materials that offer better performance and stability under operating conditions.
As agricultural practices increasingly prioritize environmental sustainability, there is a heightened demand for efficient, low-emission solutions, Europe region commanded the largest market share during the projected period. Ammonia cracking catalysts play a crucial role in this transformation by enabling the production of green hydrogen from ammonia, a process vital for reducing reliance on fossil fuels and minimizing greenhouse gas emissions across the region. These catalysts help improve the efficiency of ammonia-based hydrogen production, which is integral to sustainable farming practices such as reducing carbon footprints and enhancing soil fertility with cleaner fertilizers throughout the region.
Europe region is poised to hold profitable growth over the extrapolated period. In Europe, government regulations are substantially advancing the ammonia cracking catalysts industry by fostering innovation and ensuring sustainability. The European Union's stringent environmental policies are driving the demand for cleaner technologies, pushing companies to develop catalysts that enhance ammonia cracking efficiency while reducing harmful emissions. Regulations such as the European Green Deal and the Fit for 55 package incentivize research and development in this sector by offering funding and tax benefits for projects that align with climate goals.
Key players in the market
Some of the key players in Ammonia Cracking Catalysts market include Albemarle Corporation, BASF SE, Clariant International Ltd, DOW Chemical Company, Ecolab Inc, Kraton Corporation, Orica Limited, Shell Global Solutions, Sumitomo Chemical Co., Ltd and Tosoh Corporation.
In May 2024, Lummus and Sumitomo Chemical Announce Collaboration Agreements for Circular and Polyolefins Technologies Agreements strengthen position in circular economy and expand offering in polyolefins.
In October 2023, DNV, an internationally recognized energy classification and registration society announced that demand for ammonia cracking solutions will increase over the next 5-10 years as hydrogen energy economy undergoes maturation.
In March 2023, Saudi Aramco, Saudi Arabia's large energy conglomerate signed an agreement with Linde engineering, a major European manufacturer of industrial gases, to develop new ammonia cracking technologies.