½ÃÀ庸°í¼­
»óǰÄÚµå
1569750

¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çü, Àç·á °ø±Þ¿ø, »ý»ê ¹æ¹ý, ¿ëµµ, Áö¿ªº° ºÐ¼®

Sustainable Battery Materials Market Forecasts to 2030 - Global Analysis By Type, Material Source, Production Method, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀåÀº 2024³â¿¡ 482¾ï 8,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ Áß CAGRÀº 8.2%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 743¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á´Â ¹èÅ͸®¿¡ »ç¿ëµÇ´Â ÀÚ¿ø Áß È¯°æ ģȭÀûÀ̰í Àç»ý °¡´ÉÇÏ¸ç ¶óÀÌÇÁ »çÀÌŬÀ» ÅëÇØ »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâÀÌ Àû½À´Ï´Ù. ÀÌ·¯ÇÑ ¹°ÁúÀº À¯ÇÑÇϰí À¯ÇØÇÑ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÌ°í ¿À¿°°ú Æó±â¹°À» ÃÖ¼ÒÈ­Çϰí ÀçȰ¿ë°ú Àç»ç¿ëÀ» ÃËÁøÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ¸ñÇ¥´Â Àå±âÀûÀΠȯ°æ°ú »çȸÀÇ Áö¼Ó°¡´É¼ºÀ» Áö¿øÇϸ鼭 ¹èÅ͸® ¼º´ÉÀ» Çâ»ó½ÃŰ´Â °ÍÀÔ´Ï´Ù.

ž翡³ÊÁö»ê¾÷Çùȸ¿¡ µû¸£¸é ¹Ì±¹ÀÇ Å¾籤¹ßÀü»ê¾÷ÀÇ 2023³â 1ºÐ±â ÃÑ ¼³ºñ ¿ë·®Àº ¾à 6.1±â°¡¿ÍÆ® Á÷·ùÀÔ´Ï´Ù.

Àü±âÀÚµ¿Â÷(EV) ¼ö¿ä Áõ°¡

Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±ÞÀÌ ÁøÇàµÊ¿¡ µû¶ó Á¦Á¶¾÷ü´Â ±âÁ¸ ¹èÅ͸® Àç·á¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ Àç·á¸¦ ã°í ȯ°æ ºÎÇϸ¦ ÁÙÀ̰í È¿À²À» ³ôÀÌ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ º¯È­´Â ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄ̰ú °°Àº Áö¼Ó °¡´ÉÇÑ ¹æ½ÄÀ¸·Î Á¶´ÞµÇ´Â Àç·á¿Í °íü ¹èÅ͸® ¹× ÀçȰ¿ë ¹èÅ͸®¿Í °°Àº Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ³ôÀÔ´Ï´Ù. ±× °á°ú, ÀÌ·¯ÇÑ Àç·áÀÇ ¿¬±¸°³¹ß ¹× »ý»ê¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí, ½ÃÀå È®´ë¿¡ ¹ÚÂ÷°¡ °¡ÇØÁö¸é¼­, º¸´Ù ȯ°æÄ£È­ÀûÀÎ ÀÚµ¿Â÷ ±â¼ú¿¡ ´ëÇÑ Æø³ÐÀº ÃßÁø¿¡ °øÇåÇÏ°Ô µË´Ï´Ù.

Á¦ÇÑµÈ ÀçȰ¿ë ÀÎÇÁ¶ó

Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·áÀÇ ÀçȰ¿ë ÀÎÇÁ¶ó°¡ Á¦ÇÑµÇ¾î »ç¿ëµÈ ¹èÅ͸®¸¦ °ü¸®ÇÏ´Â µ¥ ¾î·Á¿òÀÌ ÀÖ½À´Ï´Ù. ÀçȰ¿ëÀ» À§ÇÑ ½Ã¼³À̳ª ±â¼úÀÌ ºÒÃæºÐÇϱ⠶§¹®¿¡ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌ µîÀÇ ±ÍÁßÇÑ Àç·áÀÇ È¸¼ö°¡ ºñÈ¿À²ÀûÀ¸·Î µÇ¾î, ºñ¿ë°ú ȯ°æ¿¡ ´ëÇÑ ¿µÇâÀÌ Áõ´ëÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÀÎÇÁ¶ó ºÎÁ·Àº ¹èÅ͸® ±â¼ú ÅõÀÚ¸¦ ¾ïÁ¦Çϰí ÀçȰ¿ë Àç·áÀÇ Àü¹ÝÀûÀÎ °ø±ÞÀ» Á¦ÇÑÇϱ⠶§¹®¿¡ ½ÃÀå ¼ºÀåÀ» ¾ïÁ¦ÇÏ°í ¹èÅ͸® ºÎ¹®ÀǺ¸´Ù Áö¼Ó °¡´ÉÇÑ ¼øÈ¯ °æÁ¦¿¡ ÁøÀüÀ» ¹æÇØÇÕ´Ï´Ù.

½ÅÀç»ý¿¡³ÊÁö ºÐ¾ßÀÇ ¼ºÀå

ž籤À̳ª dz·Â°ú °°Àº Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÀÌ¿ëÀÌ È®´ëµÇ´Â °¡¿îµ¥, º¯µ¿ÇÏ´Â Àü·Â °ø±Þ¿¡ ´ëÀÀÇϱâ À§ÇÑ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿äÀÇ ±ÞÁõÀº ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄ̰ú °°Àº Áö¼Ó°¡´ÉÇÑ Àç·á·Î ¸¸µé¾îÁø ÷´Ü ¹èÅ͸®ÀÇ Çʿ伺À» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀÇ ½ÅÈï ½ÃÀåÀº È¿À²¼º Çâ»ó°ú ȯ°æ ¿µÇâÀÇ ÃÖ¼ÒÈ­¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¹èÅ͸® Àç·áÀÇ Ã¥ÀÓÀÖ´Â Á¶´ÞÀ» È®º¸ÇÏ·Á´Â ¼¼°èÀÇ ¿òÁ÷ÀÓÀÌ Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç ºÐ¾ßÀÇ È®´ë¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.

³ôÀº »ý»ê ºñ¿ë

Áö¼Ó°¡´ÉÇÑ ¹èÅ͸® Àç·áÀÇ »ý»ê ºñ¿ëÀÌ ³ôÀº °ÍÀº ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌ µîÀÇ Èñ¼Ò ¿ø¼Ò³ª Ư¼ö ¿ø¼ÒÀÇ ÃßÃâÀ̳ª °¡°ø¿¡ ºñ¿ëÀÌ µé±â ¶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ÇÊ¿äÇÑ °í±Þ ±â¼úÀÌ ºñ¿ë »ó½ÂÀÇ ¿øÀÎÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº »ý»ê ºñ¿ëÀº Áö¼Ó °¡´ÉÇÑ ¹èÅ͸®¸¦ ±âÁ¸ ´ëüǰ¿¡ ºñÇØ °æÀï·ÂÀ» ÀúÇϽÃŰ°í ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú º¸±ÞÀÌ ¹æÇØµÇ¾î º¸´Ù ģȯ°æ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀÌ Áö¿¬µË´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19´Â °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô ¸¸µé°í, »ý»êÀ» ´ÊÃß°í, ¿ø·á ºñ¿ëÀ» »ó½Â½ÃÄÑ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀº ³ì»ö±â¼ú ÅõÀÚ °¨¼Ò·Î À̾îÁ® Áö¼Ó°¡´ÉÇÑ ½Å¼ÒÀç °³¹ßÀ» Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª Á¤ºÎ¿Í ±â¾÷ÀÌ ºÎÈï °èȹ¿¡¼­ ź·Â¼º°ú Áö¼Ó°¡´É¼ºÀ» ¼±È£Ç߱⠶§¹®¿¡ º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ ÃßÁøµµ °¡¼ÓÈ­µÇ¾ú½À´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö¿Í ³ì»ö±â¼ú¿¡ ´ëÇÑ ÁÖ¸ñÀº Áö¼Ó°¡´ÉÇÑ ¹èÅ͸® Àç·á¿¡ ´ëÇÑ Àå±âÀûÀÎ ¼ö¿ä¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀçȰ¿ë Àç·á ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

ÀçȰ¿ë Àç·á ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» È®º¸ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀçȰ¿ë Àç·á´Â ó³à ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÔÀ¸·Î½á Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® »ý»ê¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀçȰ¿ëµÈ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌÀ» »ç¿ëÇÏ¸é »ý»ê ºñ¿ëÀ» Àý°¨Çϰí õ¿¬ ÀÚ¿øÀ» Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ã¤±¼°ú °¡°ø¿¡ µû¸¥ ȯ°æ ½ÇÀûµµ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀçȰ¿ë Àç·á¸¦ µµÀÔÇÏ¸é ¼øÈ¯ °æÁ¦¸¦ Áö¿øÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹èÅ͸® ±â¼úÀÇ Áö¼Ó°¡´É¼ºÀ» ³ô¿© Àå±âÀûÀ¸·Î º¸´Ù ģȯ°æÀûÀÌ°í °æÁ¦ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.

±×¸° Á¦Á¶ ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµÈ´Ù.

±×¸° Á¦Á¶ ºÎ¹®Àº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áö¼Ó°¡´ÉÇÑ ¹èÅ͸® Àç·áÀÇ ±×¸° Á¦Á¶ ¹æ¹ýÀº ¿¡³ÊÁö È¿À²ÀûÀÎ °øÁ¤°ú Æó±â¹° ÃÖ¼ÒÈ­¸¦ ÅëÇØ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. Á¦Á¶ °øÁ¤À» ÃÖÀûÈ­ÇÏ°í ¿øÀç·áÀÇ À±¸®Àû Á¶´ÞÀ» È®º¸ÇÔÀ¸·Î½á, ±×¸° Á¦Á¶´Â Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ°í ¹èÅ͸® Á¦Á¶ÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â °ÍÀ» ¸ñÇ¥·Î, º¸´Ù ģȯ°æ ¿¡³ÊÁö ÀúÀå »ê¾÷À̶ó´Â Àüü ¸ñÇ¥¸¦ Áö¿øÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¾Æ½Ã¾ÆÅÂÆò¾çÀº Àü±âÀÚµ¿Â÷(EV), ½ÅÀç»ý¿¡³ÊÁö ÀúÀå, ³ì»ö±â¼úÀ» ÃßÁøÇÏ´Â Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ¿¹Ãø±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀÌ ÁÖ¿ä ±â¾÷ÀÌ¸ç ¼±ÁøÀûÀÎ ¹èÅ͸® ±â¼ú°ú Áö¼Ó °¡´ÉÇÑ ½Çõ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ȯ°æ ģȭÀû ÀÎ Àç·á Á¶´Þ ¹× °³¹ß, ÀçȰ¿ë ÇÁ·Î¼¼½º °³¼±, Áß¿äÇÑ ¿øÀç·á ÀÇÁ¸µµ °¨¼Ò¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â ȯ°æ ÀÇ½Ä Áõ°¡¿Í ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Áö¼Ó°¡´É¼ºÀ» Áö¿øÇÏ´Â ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ ¿öÅ©¿¡ ÀÇÇØ µÞ¹ÞħµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ºÏ¹Ì´Â Àü±âÀÚµ¿Â÷(EV) µµÀÔ ±ÞÁõ, ½ÅÀç»ý¿¡³ÊÁö ÀúÀåÀÇ Áøº¸, ³ì»ö±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ °­·ÂÇÑ Áö¿øÀ¸·Î ¿¹Ãø±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â Àå·Á±Ý, ¿¬±¸°³¹ß ÀÚ±Ý, º¸´Ù ¾ö°ÝÇÑ È¯°æ±ÔÁ¦¸¦ ¿øµ¿·ÂÀ¸·Î ÇÏ¿© ģȯ°æ ¹èÅ͸® Àç·áÀÇ °³¹ß°ú ½Ç¿ëÈ­¸¦ À§ÇÑ ³ë·ÂÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â Áß¿äÇÑ ±¤¹°ÀÇ ±¹³» ä±¼, Çõ½ÅÀûÀÎ ÀçȰ¿ë ¹æ¹ý ¹× ´ëü Àç·áÀÇ Áøº¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ Áö¿ªÀº ¶ÇÇÑ Åº¼Ò ¹ßÀÚ±¹ÀÇ °¨¼Ò¿Í °ø±Þ¸ÁÀÇ Áö¼Ó°¡´É¼º °­È­¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ Á¤ÀÇ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå : À¯Çüº°

  • ¸®Æ¬ À̿ ¹èÅ͸® Àç·á
    • ¸®Æ¬ ÄÚ¹ßÆ® »êÈ­¹°(LCO)
    • Àλêö ¸®Æ¬(LFP)
    • ¸®Æ¬ ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC)
    • ¸®Æ¬ ´ÏÄÌ ÄÚ¹ßÆ® ¾Ë·ç¹Ì´½ »êÈ­¹°(NCA)
  • °íü ¹èÅ͸® Àç·á
    • °íü ÀüÇØÁú
    • ¼¼¶ó¹Í Àç·á
  • ³ªÆ®·ý À̿ ¹èÅ͸® Àç·á
  • ¾Æ¿¬°è ¹èÅ͸® Àç·á
  • À¯±â ¹èÅ͸® Àç·á
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå : Àç·á °ø±Þ¿øº°

  • ä±¼ Àç·á
  • ÀçȰ¿ë Àç·á

Á¦7Àå ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå : »ý»ê ¹æ¹ýº°

  • ±×¸° Á¦Á¶
  • ºÎ°¡ Á¦Á¶
  • »ý¹°ÇÐÀû ÇÕ¼º
  • È­ÇÐÇÕ¼º
    • ¼Öº¸ ¼­¸Ö ÇÕ¼º
    • ¼ö¿­ ÇÕ¼º
    • Àü±âÈ­ÇÐ ÇÕ¼º
  • ±âŸ »ý»ê¹æ¹ý

Á¦8Àå ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå : ¿ëµµº°

  • Àü±âÀÚµ¿Â÷(EV)
  • °¡Àü
  • ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(ESS)
  • »ê¾÷±â°è
  • ÀÇ·á±â±â
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ Áö¼Ó °¡´ÉÇÑ ¹èÅ͸® Àç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Tesla Inc.
  • CATL(Contemporary Amperex Technology Co. Limited)
  • LG Energy Solution
  • Panasonic Corporation
  • BYD Company
  • Samsung SDI
  • BASF SE
  • Johnson Matthey PLC
  • Brookfield Renewable Partners
  • AESC(Automotive Energy Supply Corporation)
  • Northvolt
  • Umicore
  • Albemarle Corporation
  • SQM(Sociedad Quimica y Minera de Chile)
  • Livent Corporation
  • Lithium Americas Corporation
  • Talon Metals Corporation
  • MP Materials Corporation
  • Ganfeng Lithium Corporation
  • Green Li-ion
JHS 24.10.24

According to Stratistics MRC, the Global Sustainable Battery Materials Market is accounted for $48.28 billion in 2024 and is expected to reach $74.34 billion by 2030 growing at a CAGR of 8.2% during the forecast period. Sustainable battery materials refer to resources used in batteries that are environmentally friendly, renewable, and have a lower ecological impact throughout their lifecycle. These materials aim to reduce dependence on finite and harmful resources, minimize pollution and waste, and promote recycling and reuse. The goal is to enhance battery performance while supporting long-term environmental and social sustainability.

According to the Solar Energy Industries Association, the United States solar industry installed a total capacity of around 6.1 gigawatts-direct current in the first quarter of 2023.

Market Dynamics:

Driver:

Rising demand for electric vehicles (EVs)

As EV adoption increases, manufacturers seek sustainable alternatives to traditional battery materials, focusing on reducing environmental impact and improving efficiency. This shift boosts the demand for materials like lithium, cobalt, and nickel sourced through sustainable practices, as well as for innovative solutions such as solid-state and recycled batteries. Consequently, investments in research & development, and production of these materials rise, fueling market expansion and contributing to the broader push for greener automotive technologies.

Restraint:

Limited recycling infrastructure

Limited recycling infrastructure for sustainable battery materials creates challenges in managing end-of-life batteries. Inadequate facilities and technologies for recycling lead to inefficiencies in recovering valuable materials like lithium, cobalt, and nickel, increasing costs and environmental impact. This lack of infrastructure also discourages investment in battery technologies and limits the overall supply of recycled materials, stifling market growth and hindering progress towards a more sustainable and circular economy in the battery sector.

Opportunity:

Growing renewable energy sector

With the growing use of renewable energy sources like solar and wind, there is a rising need for energy storage systems to handle fluctuating power supply. This surge in demand boosts the requirement for advanced batteries made from sustainable materials, including lithium, cobalt, and nickel. Developments in battery technology focus on improving efficiency and minimizing environmental impact, which further stimulates market growth. Moreover, the global drive to lower carbon emissions and ensure responsible sourcing of battery materials supports the expansion of the sustainable energy solutions sector.

Threat:

High production costs

High production costs in sustainable battery materials stem from the expensive extraction and processing of rare or specialized elements like lithium, cobalt, and nickel. Additionally, advanced technologies required for enhancing efficiency and sustainability contribute to elevated costs. These high production expenses can limit market growth by making sustainable batteries less competitive compared to traditional alternatives. This, in turn, hampers widespread adoption and slows the transition to greener energy solutions.

Covid-19 Impact

Covid-19 impacted the sustainable battery materials market by disrupting supply chains, delaying production, and increasing raw material costs. The pandemic led to reduced investment in green technologies and slowed the development of new sustainable materials. However, it also accelerated the push for cleaner energy solutions as governments and companies prioritized resilience and sustainability in their recovery plans. The focus on renewable energy and green technologies has strengthened long-term demand for sustainable battery materials.

The recycled materials segment is expected to be the largest during the forecast period

The recycled materials segment is predicted to secure the largest market share throughout the forecast period. Recycled materials play a crucial role in sustainable battery production by reducing reliance on virgin resources and minimizing environmental impact. Using recycled lithium, cobalt, and nickel helps lower production costs and conserve natural resources. It also reduces the environmental footprint of mining and processing. Incorporating recycled materials not only supports the circular economy but also enhances the sustainability of battery technologies, making them more eco-friendly and economically viable in the long term.

The green manufacturing segment is expected to have the highest CAGR during the forecast period

The green manufacturing segment is expected to grow at the highest CAGR. Green manufacturing production methods in sustainable battery materials focus on reducing environmental impact through energy-efficient processes and minimizing waste. By optimizing manufacturing processes and ensuring ethical sourcing of raw materials, green manufacturing aims to enhance sustainability and lower the carbon footprint of battery production, supporting the overall goal of a more eco-friendly energy storage industry.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period driven by increasing demand for electric vehicles (EVs), renewable energy storage, and government initiatives promoting green technologies. Countries like China, Japan, and South Korea are major players, investing heavily in advanced battery technologies and sustainable practices. The region is focusing on sourcing and developing eco-friendly materials, improving recycling processes, and reducing reliance on critical raw materials. This trend is bolstered by rising environmental awareness and stringent regulatory frameworks supporting sustainability in energy storage solutions.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period, owing to the surge in electric vehicle (EV) adoption, advancements in renewable energy storage, and robust governmental support for green technologies. The U.S. and Canada are leading efforts to develop and implement eco-friendly battery materials, driven by incentives, research funding, and stricter environmental regulations. This includes investments in domestic mining of critical minerals, innovative recycling methods, and advancements in alternative materials. The region is also focusing on reducing carbon footprints and enhancing supply chain sustainability.

Key players in the market

Some of the key players profiled in the Sustainable Battery Materials Market include Tesla Inc., CATL (Contemporary Amperex Technology Co. Limited), LG Energy Solution, Panasonic Corporation, BYD Company, Samsung SDI, BASF SE, Johnson Matthey PLC, Brookfield Renewable Partners, AESC (Automotive Energy Supply Corporation), Northvolt, Umicore, Albemarle Corporation, SQM (Sociedad Quimica y Minera de Chile), Livent Corporation, Lithium Americas Corporation, Talon Metals Corporation, MP Materials Corporation, Ganfeng Lithium Corporation and Green Li-ion.

Key Developments:

In April 2024, Panasonic Energy announced plans to establish a new research and development (R&D) facility in Japan aimed at advancing battery production technologies. This initiative underscores Panasonic's commitment to strengthening its position in the rapidly evolving energy storage market, particularly in the electric vehicle (EV) and renewable energy sectors.

In April 2024, Green Li-ion launched its first commercial-scale installation to produce sustainable, battery-grade materials, the first of its kind in North America. The facility utilizes advanced technologies to enhance the efficiency and sustainability of battery material production. This includes cutting-edge recycling techniques and innovations in material processing.

Types Covered:

  • Lithium-Ion Battery Materials
  • Solid-State Battery Materials
  • Sodium-Ion Battery Materials
  • Zinc-Based Battery Materials
  • Organic Battery Materials
  • Other Types

Material Sources Covered:

  • Mined Materials
  • Recycled Materials

Production Methods Covered:

  • Green Manufacturing
  • Additive Manufacturing
  • Biological Synthesis
  • Chemical Synthesis
  • Other Production Methods

Applications Covered:

  • Electric Vehicles (EVs)
  • Consumer Electronics
  • Energy Storage Systems (ESS)
  • Industrial Machinery
  • Medical Devices
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Sustainable Battery Materials Market, By Type

  • 5.1 Introduction
  • 5.2 Lithium-Ion Battery Materials
    • 5.2.1 Lithium Cobalt Oxide (LCO)
    • 5.2.2 Lithium Iron Phosphate (LFP)
    • 5.2.3 Lithium Nickel Manganese Cobalt (NMC)
    • 5.2.4 Lithium Nickel Cobalt Aluminum Oxide (NCA)
  • 5.3 Solid-State Battery Materials
    • 5.3.1 Solid Electrolytes
    • 5.3.2 Ceramic Materials
  • 5.4 Sodium-Ion Battery Materials
  • 5.5 Zinc-Based Battery Materials
  • 5.6 Organic Battery Materials
  • 5.7 Other Types

6 Global Sustainable Battery Materials Market, By Material Source

  • 6.1 Introduction
  • 6.2 Mined Materials
  • 6.3 Recycled Materials

7 Global Sustainable Battery Materials Market, By Production Method

  • 7.1 Introduction
  • 7.2 Green Manufacturing
  • 7.3 Additive Manufacturing
  • 7.4 Biological Synthesis
  • 7.5 Chemical Synthesis
    • 7.5.1 Solvothermal Synthesis
    • 7.5.2 Hydrothermal Synthesis
    • 7.5.3 Electrochemical Synthesis
  • 7.6 Other Production Methods

8 Global Sustainable Battery Materials Market, By Application

  • 8.1 Introduction
  • 8.2 Electric Vehicles (EVs)
  • 8.3 Consumer Electronics
  • 8.4 Energy Storage Systems (ESS)
  • 8.5 Industrial Machinery
  • 8.6 Medical Devices
  • 8.7 Other Applications

9 Global Sustainable Battery Materials Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Tesla Inc.
  • 11.2 CATL (Contemporary Amperex Technology Co. Limited)
  • 11.3 LG Energy Solution
  • 11.4 Panasonic Corporation
  • 11.5 BYD Company
  • 11.6 Samsung SDI
  • 11.7 BASF SE
  • 11.8 Johnson Matthey PLC
  • 11.9 Brookfield Renewable Partners
  • 11.10 AESC (Automotive Energy Supply Corporation)
  • 11.11 Northvolt
  • 11.12 Umicore
  • 11.13 Albemarle Corporation
  • 11.14 SQM (Sociedad Quimica y Minera de Chile)
  • 11.15 Livent Corporation
  • 11.16 Lithium Americas Corporation
  • 11.17 Talon Metals Corporation
  • 11.18 MP Materials Corporation
  • 11.19 Ganfeng Lithium Corporation
  • 11.20 Green Li-ion
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦