½ÃÀ庸°í¼­
»óǰÄÚµå
1569764

¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå Àü¸Á(-2030³â) : ¹èÅ͸® À¯Çü, À¯Çüº°, Àç·áº°, ÀüÇØÁúº°, ¹èÄ¡º°, ¿ëµµº°, Áö¿ªº° ºÐ¼®

Iron Flow Battery Market Forecasts to 2030 - Global Analysis By Battery Type (Hybrid Flow Battery and Redox Flow Battery), Type (Below 100 MW, 100 MW to 500 MW and Above 500 MW), Material, Electrolyte, Deployment, Application and by Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é 2024³â ¼¼°è ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀº 56¾ï 2,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 27.3%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 239¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¡³ÊÁö ÀúÀå ½ÃÀå¿¡¼­ ±âÁ¸ ¸®Æ¬ À̿ ¹èÅ͸®¸¦ ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ö ÇÃ·Î¿ì ¹èÅ͸®, Àϸí ö »êÈ­ ȯ¿ø ÇÃ·Î¿ì ¹èÅ͸®°¡ Á¡Á¡ ´õ ¸¹Àº °¡´É¼ºÀ» º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ã¶ È­ÇÕ¹°ÀÇ È¯¿ø ¹× »êÈ­¸¦ ¼ö¹ÝÇÏ´Â »êÈ­ ȯ¿ø ¹ÝÀÀÀ» ÅëÇØ ¾×ü ÀüÇØÁúÀ» »ç¿ëÇÏ¿© ÀüÀÚÀÇ Ãæ ¹æÀüÀ» ÃËÁøÇÏ´Â ±â¼úÀÔ´Ï´Ù. ¼Ò±ÝÀ̳ª ö°ú °°Àº ÀϹÝÀûÀÌ°í ¹«ÇØÇÑ ¹°ÁúÀ» »ç¿ëÇϱ⠶§¹®¿¡ ÀÌ ¹èÅ͸®´Â ¾ÈÀü¼ºÀÌ ³ô°í(¿­ ÆøÁÖ À§Çè ¾øÀ½), ȯ°æ À¯Áö ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù.

Chemical &Engineering News(C&EN)°¡ º¸µµÇÑ ±¹Á¦ ÇÃ·Î¿ì ¹èÅ͸® Æ÷·³¿¡ µû¸£¸é, ÇÃ·Î¿ì ¹èÅ͸®´Â 2030³â±îÁö ¸Å³â ¾à 61MWhÀÇ Àü·ÂÀ» ÀúÀåÇÒ ¼ö ÀÖÀ¸¸ç, »ý»êÀÚ¿¡°Ô ¿¬°£ 220¾ï ´Þ·¯ ÀÌ»óÀÇ ¸ÅÃâÀ» °¡Á®´Ù ÁÙ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

³ô¾ÆÁö´Â Àü·Â ¼ö¿ä

°¢±¹ÀÌ Áö¼Ó °¡´ÉÇÑ ¹æ½ÄÀ¸·Î ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, Àü ¼¼°è ¿¡³ÊÁö »óȲÀÌ ±Þº¯Çϰí ÀÖ½À´Ï´Ù. Á¤Àü ºóµµ°¡ ³ô¾ÆÁö°í Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀÌ ¿ä±¸µÊ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ö-ÇÃ·Î¿ì ¹èÅ͸®´Â ¸¼Àº ³¯À̳ª ¹Ù¶÷ÀÌ ¸¹ÀÌ ºÎ´Â ³¯ µî ¹ßÀü·®ÀÌ ¸¹Àº ³¯¿¡ »ý»êµÈ À׿© ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ¹ßÀü·®ÀÌ Àû°Å³ª ¼ö¿ä°¡ ¸¹Àº ³¯¿¡ ¹æÃâÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, öºÐ ¹èÅ͸®´Â ¿¡³ÊÁöÀÇ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ°í °¡º¯ Àç»ý °¡´É ¿¡³ÊÁö ¿øÀÇ °èÅë ÅëÇÕÀ» ÃËÁøÇÒ ¼ö Àֱ⠶§¹®¿¡ ÇöÀç ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ Áß¿äÇÑ ºÎºÐÀ¸·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

°ú´ÙÇÑ Ãʱâ ÀÚº» ºñ¿ë

öºÐ½Ä ¹èÅ͸®ÀÇ º¸±ÞÀ» °¡·Î¸·´Â °¡Àå Å« Àå¾Ö¹° Áß Çϳª´Â µµÀÔ¿¡ ÇÊ¿äÇÑ Ãʱâ ÀÚº» ÅõÀÚ°¡ ³ô´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °³¹ß, Á¦Á¶, ¼³Ä¡¿¡ ¸¹Àº ÀÚ±ÝÀÌ ÅõÀԵ˴ϴÙ. ºÎǰ, ÀÚÀç, ÀÎÇÁ¶ó ±¸Ãà ºñ¿ëµµ ¿©±â¿¡ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ãʱ⠺ñ¿ëÀº Áß¼Ò±â¾÷(SME)¿¡°Ô´Â ³Ê¹« Ä¿¼­ Àå±âÀûÀÎ ÀÌÁ¡ÀÌ ÀÖ´õ¶óµµ öºÐ ¹èÅ͸® ±â¼ú¿¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

³ô¾ÆÁö´Â Àç»ý °¡´É ¿¡³ÊÁö ¿øÀÇ ÅëÇÕ

ž籤, dz·Â µî Àç»ý ¿¡³ÊÁö·ÎÀÇ ÀüȯÀ¸·Î ÀÎÇØ È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. öºÐ ¹èÅ͸®´Â Àå±â°£ ¸¹Àº ¿¡³ÊÁö¸¦ ÀúÀåÇÒ ¼ö Àֱ⠶§¹®¿¡ Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ¼ö¿ä ¹× °ø±ÞÀÇ ±ÕÇüÀ» ¸ÂÃß´Â µ¥ ÀûÇÕÇϸç, ÀÌ·¯ÇÑ ¿ªÇÒ¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ Á¤ºÎ¿Í Á¶Á÷ÀÌ Àç»ý ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÔ¿¡ µû¶ó öºÐ ¹èÅ͸®´Â ¿¡³ÊÁö Àüȯ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î Á¡Á¡ ´õ ¸¹ÀÌ ÇÊ¿äÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.

±âÁ¸ ±â¼ú°úÀÇ Ä¡¿­ÇÑ °æÀï°ü°è

¸®Æ¬ À̿ ¹èÅ͸®¿Í ¹Ù³ªµã ·¹µ¶½º ÇÃ·Î¿ì ¹èÅ͸®´Â µÎ °¡Áö È®¸³ µÈ ¿¡³ÊÁö ÀúÀå ±â¼úÀ̸ç ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀÇ ÁÖ¿ä °æÀïÀÚÀÔ´Ï´Ù. ¸®Æ¬ À̿ ¹èÅ͸®´Â ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ¼ÒºñÀÚ ÀüÀÚ ±â±â¿¡ ³Î¸® »ç¿ëµÇ¸ç °ø±Þ¸ÁÀÌ Àß ±¸ÃàµÇ¾î Àֱ⠶§¹®¿¡ ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸®Æ¬ À̿ ¹èÅ͸®´Â ºñ¿ë Àý°¨°ú ±â´É °­È­¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±Ô¸ðÀÇ °æÁ¦ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®´Â ÀÌ ½ÃÀå¿¡¼­ Å« °æÀï¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ½ÃÀå Á¡À¯À²À» È®´ëÇϱâ À§Çؼ­´Â ƯÁ¤ ÀÀ¿ë ºÐ¾ß¿¡¼­ ¿ì¼ö¼ºÀ» ÀÔÁõÇØ¾ß ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

öÀ¯·®ÀüÁö ½ÃÀåÀº Äڷγª19 »çÅ·ΠÀÎÇØ Å« ¿µÇâÀ» ¹Þ¾ÒÀ¸¸ç, ÇÁ·ÎÁ§Æ® ¼³Ä¡¿Í °ø±Þ¸Á¿¡ Å« È¥¶õÀ» ÃÊ·¡Çß½À´Ï´Ù. °Ç¼³ Ȱµ¿ÀÇ Á¦ÇѰú Á¦Á¶ ½Ã¼³ÀÇ Æó¼â·Î ÀÎÇØ ¸¹Àº ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°Å³ª Ãë¼ÒµÇ¾î 2020 ³â¿¡ ´Ù¾çÇÑ ¿ëµµÀÇ ÇÃ·Î¿ì ¹èÅ͸® ¼³Ä¡°¡ °¨¼ÒÇß½À´Ï´Ù. ¶ÇÇÑ Àü¿°º´ÀÇ ¿µÇâÀ¸·Î ¹èÅ͸® Á¦Á¶¿¡ ÇÊ¿äÇÑ ÇÙ½É ºÎǰÀÌ ºÎÁ·ÇÏ¿© ½ÃÀåÀÇ ¾î·Á¿òÀº ´õ¿í ½É°¢ÇØÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È 100MW ¹Ì¸¸ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

100MW ¹Ì¸¸ ºÎ¹®ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇϰí Àִµ¥, ÀÌ´Â ¼Ò±Ô¸ð »ê¾÷, »ó¾÷ ¹× ÁְŠȯ°æ¿¡¼­ÀÇ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ö ÇÃ·Î¿ì ¹èÅ͸®´Â ¾à 20³âÀÇ ±ä ¼ö¸í ÁÖ±â¿Í µ¶¼º ¹× ÀÎÈ­¼ºÀÌ ¾ø´Â ¾ÈÀü¼ºÀ¸·Î ÀÎÇØ ÀÌ·¯ÇÑ ¿ëµµ¿¡ ƯÈ÷ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ¸¶ÀÌÅ©·Î±×¸®µå ¹× ž籤 ¹ßÀü ¼³ºñ¿Í °°Àº Àç»ý °¡´É ¿¡³ÊÁöÀÇ ¼Ò±Ô¸ð ÅëÇÕ Ãß¼¼·Î ÀÎÇØ ö ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀº ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â »ó¾÷ ¹× »ê¾÷ ºÎ¹®

öºÐ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå¿¡¼­ »ó¾÷ ¹× »ê¾÷ ºÐ¾ß´Â °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü·Â ¼ö¿ä°¡ Å©°Ô º¯µ¿ÇÒ ¼ö ÀÖ´Â »ó¾÷ ¹× »ê¾÷ ȯ°æ¿¡¼­´Â ½Å·ÚÇÒ ¼ö ÀÖ°í È¿°úÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â ¼ö¸íÀÌ ±æ°í, ¾ÈÀü ±â´ÉÀÌ ³»ÀåµÇ¾î ÀÖÀ¸¸ç, È®Àå °¡´ÉÇÑ ¿¡³ÊÁö ÀúÀåÀÌ °¡´ÉÇÑ ¾ÆÀ̾ð ÇÃ·Î¿ì ¹èÅ͸®°¡ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀÌ ¿¡³ÊÁö »ç¿ë ÃÖÀûÈ­, ¿î¿µ ºñ¿ë Àý°¨, Àç»ý °¡´É ¿¡³ÊÁö¿øÀÇ »ç¾÷ ÅëÇÕÀ» ¸ð»öÇÔ¿¡ µû¶ó »ó¾÷ ¹× »ê¾÷ ºÐ¾ß¿¡¼­ ö ÇÃ·Î¿ì ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª :

¾ÆÀ̾ð ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§¿¡´Â »ó¾÷, »ê¾÷, ÁÖ°Å, À¯Æ¿¸®Æ¼ µî ´Ù¾çÇÑ ¿ëµµ¿¡ »ç¿ëµÇ´Â ¼ö¸¹Àº À¯µ¿ÀüÁö°¡ ¿î¿µµÇ°í ÀÖ´Â µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±¹°¡·Î´Â Áß±¹°ú È£ÁÖ°¡ Æ÷ÇԵǸç, Áß±¹Àº Àüü ¼³Ä¡ ¿ë·®¿¡¼­ °¡Àå Å« ±Ô¸ð¸¦ ÀÚ¶ûÇÕ´Ï´Ù. Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕÀ» ÃËÁøÇϰí Àü·Â¸ÁÀÇ ¾ÈÁ¤¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª ½ÃÀåÀº ¿¡³ÊÁö ÀúÀå ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í Àεµ ¹× ÀϺ»°ú °°Àº ÁÖ¿ä ±¹°¡¿¡¼­ Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö °üÇà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â °­·ÂÇÑ Á¦Á¶ ºÎ¹®°ú Àç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ö-ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â È­ÇÐ, ¼®À¯ ¹× °¡½º »ý»ê, ¹ßÀü°ú °°Àº ÁÖ¿ä »ê¾÷ÀÇ Á¸Àç¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼­ ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» Áß¿ä½ÃÇϱ⠶§¹®¿¡ ºÒ¿¬¼º ¹× ¹«µ¶¼º ö ÇÃ·Î¿ì ¹èÅ͸®¸¦ ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÌ Àü·Â¸Á ¾ÈÁ¤¼º°ú Àç»ý °¡´É ¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ ¿ì¼±¼øÀ§¸¦ °è¼Ó À¯ÁöÇÔ¿¡ µû¶ó öºÐ ÇÃ·Î¿ì ¹èÅ͸®ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ºÏ¹Ì´Â ¼¼°è ½ÃÀå Àü¸Á¿¡¼­ ÁÖ¿ä ±â¾÷·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ÇÏÀ̺긮µå ÇÃ·Î¿ì ¹èÅ͸®
  • Redox ÇÃ·Î¿ì ¹èÅ͸®

Á¦6Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : À¯Çüº°

  • 100MW ¹Ì¸¸
  • 100MW-500MW
  • 500MW ÀÌ»ó

Á¦7Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : Àç·áº°

  • ¹Ù³ªµã
  • ¾Æ¿¬ ºê·Ò
  • ±âŸ Àç·á

Á¦8Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : ÀüÇØÁúº°

  • ¼ö¼º
  • ºñ¼ö¼º

Á¦9Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : Àü°³ Çüź°

  • On-grid
  • Off-grid

Á¦10Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : ¿ëµµº°

  • »ó¾÷ ¹× »ê¾÷
  • EV ÃæÀü¼Ò
  • ¸¶ÀÌÅ©·Î±×¸®µå
  • Àç»ý¿¡³ÊÁö ÀúÀå
  • ÁÖÅÃ
  • À¯Æ¿¸®Æ¼ ½Ã¼³
  • ±âŸ ¿ëµµ

Á¦11Àå ¼¼°èÀÇ Ã¶ ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Sumitomo Electric Industries Ltd.
  • UniEnergy Technologies
  • Lockheed Martin Corporation
  • CellCube Energy Storage Systems Inc
  • Primus Power
  • Bushveld Energy
  • ViZn Energy Systems
  • Australian Vanadium Limited
  • Redflow Limited
  • ESS, Inc.
  • Grupo Saesa
  • Invinity Energy Systems
  • VRB Energy
  • Largo Clean Energy
LSH 24.10.23

According to Stratistics MRC, the Global Iron Flow Battery Market is accounted for $5.62 billion in 2024 and is expected to reach $23.92 billion by 2030 growing at a CAGR of 27.3% during the forecast period. An increasingly viable substitute for conventional lithium-ion batteries in the energy storage market are iron-flow batteries, also known as iron-redox flow batteries. Moreover, through a redox reaction that involves the reduction and oxidation of iron compounds, this technology uses liquid electrolytes to facilitate the charging and discharging of electrons. Because common, non-toxic materials like salt and iron are used in their construction, these batteries have a higher safety profile (no thermal runaway dangers), which is in line with environmental sustainability objectives.

According to the International Flow Battery Forum, as reported by Chemical & Engineering News (C&EN), flow batteries could be storing about 61 MWh of electricity each year and generating annual sales for producers of more than $22 billion by 2030.

Market Dynamics:

Driver:

Increasing need for power sources

The world's energy landscape is changing dramatically as nations work to meet their energy needs in a sustainable manner. The need for dependable energy storage solutions has increased due to the frequency of power outages becoming more frequent and the requirement for grid stability. Iron-flow batteries have the capacity to store excess energy produced on days with high production, like sunny or windy ones, and release it on days with low generation or high demand. Additionally, iron-flow batteries are a vital part of present energy infrastructure because of their capacity to improve energy reliability and facilitate the grid's integration of variable renewable energy sources.

Restraint:

Excessive initial capital expenses

The high initial capital investment needed for deployment is one of the biggest obstacles to the widespread adoption of iron-flow batteries. These systems can be developed, manufactured, and installed at significant financial expense. Component, material, and infrastructure setup costs are included in this. Furthermore, these up-front expenses may be too much for small and medium-sized businesses (SMEs), which restrict their capacity to invest in iron flow battery technology even with its long-term advantages.

Opportunity:

Growing renewable energy source integration

There is a growing need for efficient energy storage solutions due to the world's transition to renewable energy sources like solar and wind. Because iron-flow batteries can store a lot of energy for a long time, they are perfect for balancing supply and demand in renewable energy systems, which makes them especially well-suited for this role. Moreover, iron-flow batteries will become more and more necessary as governments and organizations invest in renewable infrastructure, making them a vital part of accomplishing energy transition objectives.

Threat:

Fierce rivalry from well-established technologies

Lithium-ion batteries and vanadium redox flow batteries, two well-established energy storage technologies, are the main competitors for the iron flow battery market. Due to their high energy density, extensive usage in consumer electronics, and well-established supply chains, lithium-ion batteries have dominated the market. Furthermore, they gain from economies of scale that enable reduced expenses and enhanced functionality. Iron-flow batteries face a great deal of competition in this market, and in order to increase their market share, they must show that they are superior in particular applications.

Covid-19 Impact:

The market for iron flow batteries has been significantly impacted by the COVID-19 pandemic, which has also caused major disruptions in project installations and supply chains. There was a decrease in the installation of flow batteries for a variety of applications in 2020 as a result of numerous projects experiencing delays or cancellations because of limitations on construction activities and the closure of manufacturing facilities. Moreover, the pandemic also resulted in shortages of vital parts needed for battery manufacturing, which made the market's difficulties even worse.

The Below 100 MW segment is expected to be the largest during the forecast period

The largest share is held by the below 100 MW segment, due to the growing need for energy storage solutions in small-scale industrial, commercial, and residential settings is the main driver of this market. Because of their long life cycle of about 20 years without degradation and safety features like not being toxic or flammable, iron flow batteries are especially well-suited for these applications. Additionally, the market for iron-flow batteries is further supported by the growing trend of smaller-scale integration of renewable energy sources, such as microgrids and solar installations.

The Commercial & Industrial segment is expected to have the highest CAGR during the forecast period

In the iron-flow battery market, the commercial and industrial segment is anticipated to grow at the highest CAGR. The need for dependable and effective energy storage solutions in commercial and industrial settings, where power demands can be high and fluctuating, is what is fueling this growth. For these kinds of applications, iron-flow batteries are especially useful because of their extended lifespan, built-in safety features, and capacity for scalable energy storage. Furthermore, the demand for iron-flow batteries in the commercial and industrial sectors is expected to rise significantly as businesses look to optimize energy usage, reduce operating costs, and integrate renewable energy sources into their operations.

Region with largest share:

The market for iron-flow batteries is dominated by the Asia-Pacific region. Numerous factors contribute to this dominance, including the large number of operational flow battery installations in a variety of applications, including commercial, industrial, residential, and utility sectors. Leading nations include China and Australia, with China having the largest installed flow battery capacity overall. The increasing need for energy storage solutions to facilitate the integration of renewable energy sources and improve grid stability is driving the growth of the region. Moreover, the market in this region is anticipated to grow during the forecast period due to factors such as rising investments in energy storage projects and a growing focus on sustainable energy practices in major economies like India and Japan.

Region with highest CAGR:

Due to its strong manufacturing sector and rising investments in renewable energy projects, the North American region is expected to have the highest CAGR in the iron-flow battery market. The need for efficient energy storage solutions is fueled by the existence of important industries such as chemicals, oil and gas production, and power generation. The preference for non-flammable and non-toxic iron flow batteries is further bolstered by North America's emphasis on safety and dependability in energy systems. Additionally, iron-flow battery adoption is anticipated to increase as the region continues to prioritize grid stability and the integration of renewable energy sources, establishing North America as a key player in the global market landscape.

Key players in the market

Some of the key players in Iron Flow Battery market include Sumitomo Electric Industries Ltd., UniEnergy Technologies, Lockheed Martin Corporation , CellCube Energy Storage Systems Inc, Primus Power, Bushveld Energy, ViZn Energy Systems, Australian Vanadium Limited, Redflow Limited, ESS, Inc., Grupo Saesa, Invinity Energy Systems, VRB Energy and Largo Clean Energy.

Key Developments:

In August 2024, Lockheed Martin announced the signing of a definitive agreement to acquire Terran Orbital, a global leader of satellite-based solutions primarily supporting the aerospace and defense industries. Terran Orbital brings a high throughput, robotic manufacturing capacity and high-performing modular space vehicle designs.

In May 2024, Sumitomo Electric Industries, Ltd. announces that it has received the contract for the 250-kV DC XLPE cable construction, a pivotal part of the Hokuto-Imabetsu HVDC (high-voltage direct current) Link Enhancement Project being implemented by Hokkaido Electric Power Network, Inc.

Battery Types Covered:

  • Hybrid Flow Battery
  • Redox Flow Battery

Types Covered:

  • Below 100 MW
  • 100 MW to 500 MW
  • Above 500 MW

Materials Covered:

  • Vanadium
  • Zinc-Bromine
  • Other Materials

Electrolytes Covered:

  • Aqueous
  • Non-Aqueous

Deployments Covered:

  • On-Grid
  • Off-Grid

Applications Covered:

  • Commercial & Industrial
  • EV Charging Stations
  • Microgrids
  • Renewable Energy Storage
  • Residential
  • Utility Facilities
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Iron Flow Battery Market, By Battery Type

  • 5.1 Introduction
  • 5.2 Hybrid Flow Battery
  • 5.3 Redox Flow Battery

6 Global Iron Flow Battery Market, By Type

  • 6.1 Introduction
  • 6.2 Below 100 MW
  • 6.3 100 MW to 500 MW
  • 6.4 Above 500 MW

7 Global Iron Flow Battery Market, By Material

  • 7.1 Introduction
  • 7.2 Vanadium
  • 7.3 Zinc-Bromine
  • 7.4 Other Materials

8 Global Iron Flow Battery Market, By Electrolyte

  • 8.1 Introduction
  • 8.2 Aqueous
  • 8.3 Non-Aqueous

9 Global Iron Flow Battery Market, By Deployment

  • 9.1 Introduction
  • 9.2 On-Grid
  • 9.3 Off-Grid

10 Global Iron Flow Battery Market, By Application

  • 10.1 Introduction
  • 10.2 Commercial & Industrial
  • 10.3 EV Charging Stations
  • 10.4 Microgrids
  • 10.5 Renewable Energy Storage
  • 10.6 Residential
  • 10.7 Utility Facilities
  • 10.8 Other Applications

11 Global Iron Flow Battery Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Sumitomo Electric Industries Ltd.
  • 13.2 UniEnergy Technologies
  • 13.3 Lockheed Martin Corporation
  • 13.4 CellCube Energy Storage Systems Inc
  • 13.5 Primus Power
  • 13.6 Bushveld Energy
  • 13.7 ViZn Energy Systems
  • 13.8 Australian Vanadium Limited
  • 13.9 Redflow Limited
  • 13.10 ESS, Inc.
  • 13.11 Grupo Saesa
  • 13.12 Invinity Energy Systems
  • 13.13 VRB Energy
  • 13.14 Largo Clean Energy
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦