½ÃÀ庸°í¼
»óÇ°ÄÚµå
1569771
¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® ÀçÈ°¿ë ½ÃÀå Àü¸Á(-2030³â) : ¹èÅ͸® À¯Çüº°, ÀçÈ°¿ë °øÁ¤º°, ºñÁî´Ï½º ¸ðµ¨º°, ¹èÅ͸® °ø±Þ¿øº°, Àç·áº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Electric Vehicle Battery Recycling Market Forecasts to 2030 - Global Analysis By Battery Type, Recycling Process, Business Model, Battery Source, Material, Application, End User and by Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Àü±âÀÚµ¿Â÷ ¹èÅ͸® ÀçÈ°¿ë ½ÃÀåÀº 2024³â 111¾ï 4,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 23.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 401¾ï 1,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àü±âÂ÷(EV) ¹èÅ͸®¸¦ ÀçÈ°¿ëÇÏ´Â °ÍÀº Áö¼Ó °¡´ÉÇÑ ¿î¼Û¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀ̸ç, Àü±âÂ÷ º¸±Þ¿¡ µû¸¥ ȯ°æ ¹®Á¦ ÇØ°á¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó, »ç¿ëÇÑ ¹èÅ͸®¿¡¼ ¸®Æ¬, ÄÚ¹ßÆ®, ´ÏÄÌ°ú °°Àº ±ÍÁßÇÑ ¹°ÁúÀ» ȸ¼öÇϱâ À§ÇÑ È¿°úÀûÀÎ ÀçÈ°¿ë ÀýÂ÷°¡ Á¡Á¡ ´õ ÇÊ¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á¸¦ Àç»ç¿ëÇϸé ó³à ÀÚ¿øÀÇ Çʿ伺À» ÁÙÀÌ°í ¹èÅ͸® »ý»êÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, Àü±âÀÚµ¿Â÷ ÆǸŷ®Àº 2030³â±îÁö Àü ¼¼°è ÀÚµ¿Â÷ ÆǸŷ®ÀÇ 30%¸¦ ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁÇÏ°í ÀÖ½À´Ï´Ù.
Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ °ü½É Áõ°¡
±â¼ú °³¹ß, ¿Â½Ç°¡½º ¹èÃâ·® °¨ÃàÀ» À§ÇÑ Á¤ºÎÀÇ À̴ϼÅƼºê, ȯ°æ ÀνÄÀÇ Çâ»ó µîÀÌ Àü ¼¼°è Àü±âÂ÷·ÎÀÇ Àüȯ¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¼¼°è Àü±âÂ÷ ½ÃÀåÀº °¡±î¿î ¹Ì·¡¿¡ ±Þ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ±Ã±ØÀûÀ¸·Î ½ÅÂ÷ ÆǸŷ®¿¡¼ Àü±âÂ÷°¡ Â÷ÁöÇÏ´Â ºñÁßÀº ´õ¿í Ä¿Áú °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿äÀÇ ±ÞÁõÀº »ç¿ëµÇ´Â ¹èÅ͸®ÀÇ ¾çÀ» Áõ°¡½Ãų »Ó¸¸ ¾Æ´Ï¶ó, ¹èÅ͸® ¼ö¸íÁֱ⠵¿¾È ¹èÅ͸®¸¦ ¾î¶»°Ô °ü¸®ÇÒ °ÍÀΰ¡¿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´õ ¸¹Àº Àü±âÀÚµ¿Â÷(EV)°¡ ¼ö¸íÀÌ ´ÙÇÔ¿¡ µû¶ó Æó±â¹°À» °ü¸®ÇÏ°í ±ÍÁßÇÑ Àç·á¸¦ ȸ¼öÇϱâ À§Çؼ´Â È¿°úÀûÀÎ ÀçÈ°¿ë ÀýÂ÷°¡ ÇʼöÀûÀÔ´Ï´Ù.
¹èÅ͸® ±¸¼º ¹× ¼³°èÀÇ º¹À⼺
EV ¹èÅ͸® Á¦Á¶¿¡´Â Çöó½ºÆ½, ¾Ë·ç¹Ì´½, ÄÚ¹ßÆ®, ´ÏÄÌ, ¸®Æ¬ µî ´Ù¾çÇÑ Àç·á°¡ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °¢°¢ °íÀ¯ ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç ÀçÈ°¿ëÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº ¹èÅ͸® ¼³°è°¡ Á¦Á¶¾÷ü¸¶´Ù ´Ù¸£´Ù´Â »ç½Ç·Î ÀÎÇØ ´õ¿í º¹ÀâÇØÁý´Ï´Ù. ¿¹¸¦ µé¾î, ´Ù¸¥ ºê·£µåÀÇ ¹èÅ͸®´Â ó¸® ¹× ºÐÇظ¦ ´õ ¾î·Æ°Ô ¸¸µå´Â ´Ù¸¥ ÈÇÐ ¹°Áú°ú ±¸¼ºÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Â÷ÀÌ·Î ÀÎÇØ ¾ÈÀüÇÏ°í È¿À²ÀûÀÎ ÇØü¸¦ À§Çؼ´Â ƯÁ¤ µµ±¸¿Í Áö½ÄÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ¹èÅ͸®ÀÇ º¹À⼺À¸·Î ÀÎÇØ ÀΰǺñ°¡ »ó½ÂÇÏ°í À߸ø Ãë±ÞÇϸé À§ÇèÇÑ ¹°ÁúÀÌ ´©ÃâµÇ°Å³ª ¹ßÈ µÉ ¼ö Àֱ⠶§¹®¿¡ Ãë±Þ½Ã ¾ÈÀü À§ÇèÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ º¸±Þ
Àü ¼¼°èÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀÌ È®´ëµÇ¸é¼ ¹èÅ͸® ÀçÈ°¿ë ¼ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú À¯·´ µî Áö¿ª¿¡¼´Â Àü±âÂ÷ ÆǸŰ¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó »ç¿ë ÈÄ ¹èÅ͸®ÀÇ ¾çÀÌ ±ÞÁõÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Niti AayogÀÇ º¸°í¼¿¡ µû¸£¸é, 2030³â±îÁö Àεµ¿¡¼¸¸ 128GWhÀÇ ¸®Æ¬ ÀÌ¿Â ¹èÅ͸®°¡ ÀçÈ°¿ëµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ Áß ´ëºÎºÐÀº Àü±âÂ÷ ºÎ¹®¿¡¼ ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½ÃÀå È®´ë´Â ÀçÈ°¿ë ¾÷üµéÀÌ ÀÌ·¯ÇÑ ¹èÅ͸®¸¦ È¿°úÀûÀ¸·Î ó¸®ÇÏ°í ±ÍÁßÇÑ Àç·á¸¦ ÃßÃâÇÒ ¼ö ÀÖ´Â »ç¾÷À» ½ÃÀÛÇÒ ¼ö ÀÖ´Â ±âȸÀ̱⵵ ÇÕ´Ï´Ù.
¼¼ÄÁµå¶óÀÌÇÁ ¾Û°úÀÇ °æÀï
ÀÚµ¿Â÷¿¡ ´õ ÀÌ»ó žÀçµÇÁö ¾Ê´Â Áß°í Àü±âÂ÷ ¹èÅ͸®ÀÇ »ó´ç¼ö´Â ¿©ÀüÈ÷ »ó´çÇÑ ¿ë·®À» º¸À¯ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹èÅ͸®´Â Áï½Ã ÀçÈ°¿ëµÇÁö ¾Ê°í ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ »ç¿ëµÇ±â ¶§¹®¿¡ ¼¼ÄÁµå ¶óÀÌÇÁ ¿ëµµ ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ½ÄÀº ¹èÅ͸® ºÎÇ°ÀÇ ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖÁö¸¸, Áï½Ã ÀçÈ°¿ëÇÒ ¼ö ÀÖ´Â ¹èÅ͸®ÀÇ ¼ö´Â ÁÙ¾îµé°Ô µË´Ï´Ù. ¶ÇÇÑ, ±â¾÷µéÀÌ »ç¿ëÇÑ ¹èÅ͸®ÀÇ ´ëü ¿ëµµ¸¦ ãÀ¸¸é¼ ÀçÈ°¿ë ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ¿¡ ´ëÇÑ ½Ã±Þ¼ºÀÌ ¶³¾îÁú ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19´Â ÀÚµ¿Â÷ »ê¾÷°ú ÀçÈ°¿ë »ê¾÷¿¡¼ »ý»ê ¶óÀÎÀÇ È¥¶õ°ú ±¤¹üÀ§ÇÑ °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ Àü±âÀÚµ¿Â÷(EV) ÀçÈ°¿ë ¹èÅ͸® ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. Àü¿°º´ ±â°£ µ¿¾È ¾ö°ÝÇÑ ¿©Çà ±ÝÁö¿Í ºÀ¼â·Î ÀÎÇØ ³ëµ¿·ÂÀÌ ºÎÁ·ÇÏ¿© ¸¹Àº ÀçÈ°¿ë ½Ã¼³ÀÌ ¹®À» ´Ý¾Ò½À´Ï´Ù. ±× °á°ú ó¸®ÇÒ ¼ö ¾ø´Â ¹èÅ͸®°¡ Á¤Ã¼µÇ¾î ¹èÅ͸® Æó±â¹° °ü¸®°¡ ÀÌ¹Ì ¾î·Á¿î »óȲÀ̾ú½À´Ï´Ù. ¶ÇÇÑ, Àü¿°º´À¸·Î ÀÎÇÑ °æÁ¦Àû ºÒ¾ÈÀº »õ·Î¿î Àü±âÂ÷ ½ÃÀåÀ» Ãà¼Ò½ÃÅ°°í °á°úÀûÀ¸·Î ÀçÈ°¿ë È帧¿¡ µé¾î°¡´Â ¹èÅ͸®ÀÇ ¾çÀ» Á¦ÇÑÇÏ°í Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚ ÁöÃâÀ» ÁÙ¿´½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¸®Æ¬ ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV) ¹èÅ͸® ÀçÈ°¿ë »ê¾÷¿¡¼ ¸®Æ¬ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ´Â ÁÖ·Î Àü±âÂ÷¿¡ »ç¿ëµÇ´Â °¡Àå ÀϹÝÀûÀÎ ¹èÅ͸® À¯ÇüÀÎ ¸®Æ¬ ÀÌ¿Â ¹èÅ͸®¿¡ ¸®Æ¬ÀÌ ÇʼöÀûÀ̱⠶§¹®À̸ç, 2022³â ½ÃÀå Á¡À¯À²Àº ¾à 58.36%À̸ç, ¸®Æ¬ ÀÌ¿Â ¹èÅ͸®´Â ³ôÀº ¿¡³ÊÁö ¹Ðµµ, ¿ ¾ÈÁ¤¼º ¹× È¿À²¼ºÀ¸·Î ÀÎÇØ Àü±âÂ÷(EV) »ê¾÷À» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àü±âÀÚµ¿Â÷(EV) »ê¾÷À» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ Àü ¼¼°èÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó Æó¹èÅ͸®¿¡¼ ¸®Æ¬À» ȸ¼öÇØ¾ß ÇÒ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ½Å±Ô ä±¼ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¸®Æ¬ Á¶´Þ°ú °ü·ÃµÈ °ø±Þ¸Á ¸®½ºÅ©¸¦ ÃÖ¼ÒÈÇϱâ À§ÇØ ³ë·ÂÇÏ°í ÀÖ½À´Ï´Ù.
¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀçÈ°¿ë Àü±âÂ÷ ¹èÅ͸® ½ÃÀå¿¡¼ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±× ¹è°æ¿¡´Â Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖÀ¸¸ç, »ç¿ëÇÑ Àü±âÀÚµ¿Â÷ ¹èÅ͸®¸¦ °íÁ¤½Ä ¿¡³ÊÁö ÀúÀå ¿ëµµ·Î Àç»ç¿ëÇÏ´Â »ç·Ê°¡ Áõ°¡ÇÏ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. Àü±âÂ÷ ¹èÅ͸®°¡ ¼ÒÁøµÈ ÈÄ¿¡µµ ¿©ÀüÈ÷ ¸¹Àº ¿ë·®ÀÌ ³²¾ÆÀֱ⠶§¹®¿¡ Àç»ý °¡´É ¿¡³ÊÁö¿øÀ» ±×¸®µå¿¡ ÅëÇÕÇÏ´Â µ¥ ÇÊ¿äÇÑ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡¼ ÀÌÂ÷ÀûÀ¸·Î »ç¿ëÇϱ⿡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ ½ÃÀåÀº ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú Áö¼Ó°¡´É¼ºÀ» Áö¿øÇÏ´Â Á¤ºÎ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î 45¾ï ´Þ·¯ ÀÌ»óÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àü±âÀÚµ¿Â÷ ¹èÅ͸® ÀçÈ°¿ë ½ÃÀå¿¡¼ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Çѱ¹, ÀϺ», Áß±¹ µî ÁÖ¿ä ±¹°¡¿¡¼ Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ¸·Î ÀÎÇØ ÀçÈ°¿ëÀÌ ÇÊ¿äÇÑ »ç¿ë ÈÄ ¹èÅ͸®°¡ ´ë·®À¸·Î ¹ß»ýÇ߱⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº Áö¼Ó °¡´ÉÇÑ °üÇà°ú ÀûÀýÇÑ Æó±â ±â¼úÀ» Àå·ÁÇÏ´Â ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦¿Í »ç¿ëÇÑ ¹èÅ͸®¿¡¼ ±ÍÁßÇÑ Àç·á¸¦ ȸ¼öÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÏ´Â ÃÖ÷´Ü ÀçÈ°¿ë ±â¼ú¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¸¦ ÅëÇØ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °·ÂÇÑ Á¦Á¶ »ýÅ°è¿Í ¼÷·ÃµÈ ÀηÂÀ» º¸À¯ÇÔÀ¸·Î½á ÀÌ Áö¿ªÀÇ È¿À²ÀûÀÎ ÀçÈ°¿ë ½Ã½ºÅÛÀ» ±¸ÃàÇÏ°í ½ÇÇàÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
Àü±âÂ÷ ¹èÅ͸® ÀçÈ°¿ë ½ÃÀåÀº À¯·´¿¡¼ °¡Àå ³ôÀº CAGR·Î Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ¹èÅ͸® ÀçÈ°¿ë ´É·Â°ú Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃÅ°±â À§ÇÑ ¾ö°ÝÇÑ ¹ý·ü°ú ÁöħÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¼øȯ °æÁ¦¿¡ ´ëÇÑ ³ë·ÂÀº Æó±â¹° ÃÖ¼ÒÈ¿Í ÀÚ¿ø È¿À²¼º¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÀçÈ°¿ë ÀÎÇÁ¶ó¿Í ±â¼ú¿¡ ´õ ¸¹Àº ÀÚ±ÝÀÌ ÇÒ´çµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯·´ Àü¿ª¿¡ °ÉÃÄ Àü±âÀÚµ¿Â÷ÀÇ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó, »ç¿ë ÈÄ ¹èÅ͸®°¡ ´ë·®À¸·Î »ý»êµÇ°í ÀÖ¾î È¿À²ÀûÀÎ ÀçÈ°¿ë ¼Ö·ç¼ÇÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Electric Vehicle Battery Recycling Market is accounted for $11.14 billion in 2024 and is expected to reach $40.11 billion by 2030 growing at a CAGR of 23.8% during the forecast period. Recycling the batteries from electric vehicles (EVs) is an essential part of sustainable transportation, helping to solve the environmental issues raised by the growing use of EVs. Effective recycling procedures are becoming more and more necessary in order to recover valuable materials like lithium, cobalt, and nickel from spent batteries as the demand for electric vehicles (EVs) grows. Reusing these materials reduces the need for virgin resources and lessens the environmental impact of battery production.
According to the International Energy Agency (IEA), electric vehicle sales are projected to reach 30% of total global vehicle sales by 2030.
Growing interest in electric cars
Technology developments, government initiatives to reduce greenhouse gas emissions, and environmental awareness are all contributing to the global shift towards electric vehicles. The global EV market is predicted to expand rapidly in the near future, and projections indicate that EV sales may eventually make up a sizeable share of new car sales. This spike in demand causes the quantity of batteries in use to rise, and it also raises concerns about how these batteries are managed throughout their lifecycle. Additionally, effective recycling procedures are essential to managing waste and recovering valuable materials as more electric vehicles (EVs) approach the end of their life cycles.
Complexity of battery composition and design
A range of materials, including plastics, aluminum, cobalt, nickel, and lithium, are used to make EV batteries. Each of these materials has unique characteristics and recycling needs. This complexity is increased by the fact that battery designs differ amongst manufacturers. For example, different brand batteries have different chemistries and configurations that make processing and disassembly more difficult. Due to this variability, safe and efficient disassembly requires specific tools and knowledge. Furthermore, these batteries are complicated, which raises labor costs and creates safety hazards when handling them because mishandled batteries can leak dangerous substances or catch fire.
Quick increase in the use of electric vehicles
The increasing global adoption of electric vehicles is driving up demand for battery recycling services. It is anticipated that the volume of end-of-life batteries will rise sharply as EV sales continue to rise, especially in regions like Asia-Pacific and Europe. According to a Niti Aayog report, for example, by 2030, 128 GWh of lithium-ion batteries will be available for recycling in India alone, with a large share coming from the EV segment. Moreover, the expanding market offers recyclers the chance to set up businesses that can effectively handle these batteries and extract valuable materials.
Rivalry with second-life apps
Even after they can no longer be used in automobiles, many used EV batteries still have a significant amount of capacity. Since these batteries are being used for energy storage solutions instead of being recycled right away, there is a growing market for second-life applications. The number of batteries that are immediately available for recycling decreases, even though this practice can lengthen the lifespan of battery components. Additionally, the urgency of investing in recycling infrastructure may decrease as businesses look for alternate uses for spent batteries.
Due to production line disruptions and widespread shutdowns in the automotive and recycling industries, the COVID-19 pandemic had a major effect on the market for recycled electric vehicle (EV) batteries. Strict travel bans and lockdowns during the pandemic caused a shortage of workers, which resulted in the closure of numerous recycling facilities. This exacerbated already-existing difficulties in managing battery waste by creating a backlog of exhausted batteries that could not be processed. Furthermore, reducing the market for new EVs and, as a result, limiting the amount of batteries entering the recycling stream was the economic uncertainty brought on by the pandemic, which also resulted in lower consumer spending on electric vehicles.
The Lithium segment is expected to be the largest during the forecast period
The lithium segment holds the largest market share in the electric vehicle (EV) battery recycling industry. This is mostly because lithium is essential to lithium-ion batteries, which are the most popular kind of batteries used in EVs. With a market share of roughly 58.36% in 2022, lithium-ion batteries are expected to dominate the electric vehicle (EV) industry due to their high energy density, thermal stability, and efficiency. Moreover, the need for lithium recovery from used batteries has increased due to the growing global adoption of electric vehicles. Manufacturers are trying to lessen their reliance on newly mined resources and minimize supply chain risks related to sourcing lithium.
The Energy Storage Systems segment is expected to have the highest CAGR during the forecast period
The energy storage systems segment is expected to have the highest CAGR in the market for recycled electric vehicle batteries. This is due to the growing need for sustainable energy solutions and the repurposing of used EV batteries for stationary storage applications. When the batteries in electric vehicles run out, they still have a lot of capacity left in them, which makes them good for second-life uses in energy storage systems-which are necessary to incorporate renewable energy sources into the grid. Additionally, the market for energy storage systems is anticipated to grow to a value of over USD 4.5 billion, driven by developments in battery technology and government incentives that support sustainability.
The Asia-Pacific region is anticipated to hold the largest share of the market for recycling electric vehicle batteries. This dominance is mostly due to the quick uptake of electric vehicles in important nations like South Korea, Japan, and China, which has led to a significant amount of used batteries that need to be recycled. The region gains from strict government regulations that promote sustainable practices and appropriate disposal techniques, as well as large investments in cutting-edge recycling technologies targeted at recovering valuable materials from spent batteries. Moreover, having a strong manufacturing ecosystem and a trained labor force improves the area's ability to create and execute efficient recycling systems.
The market for recycling batteries from electric vehicles is expected to grow significantly in the European region, with the highest CAGR. Strict laws and mandates designed to improve the region's capacity for battery recycling and sustainability are the driving forces behind this expansion. The area's dedication to a circular economy places a strong emphasis on waste minimization and resource efficiency, which has led to more funding being allocated to recycling infrastructure and technologies. Additionally, as electric vehicles become more and more popular throughout Europe, a significant amount of end-of-life batteries are produced, this calls for efficient recycling solutions.
Key players in the market
Some of the key players in Electric Vehicle Battery Recycling market include Umicore N.V., Tata Chemicals Limited, Duesenfeld GmbH, EnerSys, Fortum Corporation, Ace Green Recycling, Inc, Contemporary Amperex Technology Co., Limited., BatX Energies Pvt. Ltd., Glencore plc, Li-Cycle Holdings Corp., Andritz AG, Redwood Materials, Inc., Eco-Bat Technologies Ltd., Battery Solutions LLC, GEM Co., Ltd., Exxon Mobil Corp., Snam S.p.A. and Attero Recycling Pvt. Ltd.
In May 2024, EnerSys, the global leader in stored energy solutions for industrial applications, today announced it has entered into a definitive agreement to acquire Bren-Tronics, Inc. in an all-cash transaction of $208 million. The purchase price represents approximately 8.7x Bren-Tronics' adjusted EBITDA for the twelve months.
In February 2024, Tata Chemicals Ltd has announced collaboration with IITB-Monash Research Academy for pioneering research in the perovskite/clean energy domain. This strategic partnership is aimed at advancing sustainable energy transition solutions and fostering cutting-edge innovation in clean energy technologies.
In October 2023, Umicore and AESC, a global leader in the development and manufacturing of high-performance batteries for electric vehicles (EV) and energy storage systems, have signed a ten-year agreement whereby Umicore will supply high-nickel battery materials for the production of EV batteries at AESC's US manufacturing facilities.