![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1569801
¼¼°èÀÇ °íÀü¾Ð ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2030³â) : ¹èÅ͸® À¯Çüº°, Â÷·® À¯Çüº°, Àü¾Ð ¹üÀ§º°, ¹èÅ͸®¿ë·®º°, Áö¿ªº° ºÐ¼®High Voltage Battery Market Forecasts to 2030 - Global Analysis By Battery Type, Vehicle Type, Voltage Range, Battery Capacity and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è °íÀü¾Ð ¹èÅ͸® ½ÃÀåÀº 2024³â 585¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 36.9%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 3,856¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
°íÀü¾Ð ¹èÅ͸®´Â ÀϹÝÀûÀ¸·Î 60V ÀÌ»óÀÇ °íÀü¾Ð¿¡¼ ÀÛµ¿Çϵµ·Ï ¼³°èµÈ ÃæÀü½Ä ¹èÅ͸®ÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. ÀÌ ¹èÅ͸®´Â ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ Áß¿äÇϸç, ƯÈ÷ Àü±âÀÚµ¿Â÷(EV)¿Í Àç»ý °¡´É ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ¿¡¼ Áß¿äÇÕ´Ï´Ù. °íÀü¾Ð ¹èÅ͸®´Â ´ë·®ÀÇ Àü±â ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í °ø±ÞÇÏ¿© ÀÚµ¿Â÷ÀÇ ÁÖÇà°Å¸®¸¦ ¿¬ÀåÇϰí È¿À²ÀûÀÎ ¼º´ÉÀ» Á¦°øÇÕ´Ï´Ù. °íÀü¾Ð ¹èÅ͸®´Â ´ëºÎºÐ ¸®Æ¬ À̿°ú °°Àº ÷´Ü ÈÇÐ ¹°ÁúÀ» »ç¿ëÇÏ¿© ±âÁ¸ ³³Ãà ¹èÅ͸®¿¡ ºñÇØ ¿¡³ÊÁö ¹Ðµµ°¡ ³ô°í ¼ö¸íÀÌ ±æ¸ç ¾ÈÀü¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.
¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½É Áõ°¡
¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ Àü±âÀÚµ¿Â÷ ¹× Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ°ú °°Àº ´Ù¾çÇÑ °íÀü·Â ¿ëµµ¿¡ ÇʼöÀûÀÎ °íÀü¾Ð ¹èÅ͸®ÀÇ °³¹ßÀÌ Å©°Ô ÁøÀüµÇ°í ÀÖ½À´Ï´Ù. ¸®Æ¬ À̿ ÈÇÐ ¹°ÁúÀÇ °³¼±°ú °íü ¹èÅ͸®ÀÇ µµÀÔ°ú °°Àº ÃÖ±ÙÀÇ ¹èÅ͸® ±â¼ú Çõ½ÅÀº ¿¡³ÊÁö ¹Ðµµ, È¿À²¼º ¹× ¾ÈÀü¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¹ßÀüÀ¸·Î °íÀü¾Ð ¹èÅ͸®´Â ´õ Å« ¿ë·®ÀÇ ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í ¹æÀüÇÏ¸é¼ ½Å·Ú¼º°ú ¼ö¸íÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
¹èÅ͸® ¼º´É ÀúÇÏ
Àü±âÀÚµ¿Â÷ ¹× Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â °íÀü¾Ð ¹èÅ͸®ÀÇ ¹èÅ͸® ¿È´Â ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¹èÅ͸®ÀÇ ¼º´ÉÀÌ Á¡Â÷ ÀúÇϵǴ °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼º´É ÀúÇÏ´Â ÁÖ·Î ¹èÅ͸® ¼¿ÀÇ ÈÇÐÀû, ¹°¸®Àû º¯È¿¡ ±âÀÎÇÕ´Ï´Ù. ¹èÅ͸®°¡ ÃæÀü°ú ¹æÀüÀ» ¹Ýº¹ÇÏ¸é¼ Àü±ØÀÇ È°¹°ÁúÀÌ ¿ÈµÇ¾î ¿ë·®°ú È¿À²ÀÌ °¨¼ÒÇÕ´Ï´Ù. ±ØÇÑÀÇ ¿Âµµ, ³ôÀº ÃæÀü ¹× ¹æÀüÀ², ºÒÃæºÐÇÑ À¯Áö º¸¼ö¿Í °°Àº ¿äÀÎÀº ÀÌ °úÁ¤À» °¡¼ÓÈÇÕ´Ï´Ù. ¿È´Â ¹èÅ͸® ¼ö¸í °¨¼Ò, ÁÖÇà°Å¸® ¹× ÁÖÇà ½Ã°£ °¨¼Ò, Àü¹ÝÀûÀÎ Ãâ·Â °¨¼Ò·Î ³ªÅ¸³³´Ï´Ù. ¹èÅ͸®°¡ ³ëÈÄÈµÇ¸é ¿¡³ÊÁö ÀúÀå ¹× °ø±Þ ´É·ÂÀÌ ÀúÇϵǾî Àü¿øÀ» °ø±ÞÇÏ´Â ÀåÄ¡ÀÇ ¼º´É°ú ½Å·Ú¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù.
±âÈÄ º¯È¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡
ź¼Ò ¹èÃâ·®À» ÁÙÀ̰í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ´Â °ÍÀÌ Àü ¼¼°èÀûÀÎ °ü½É»ç·Î ¶°¿À¸£¸é¼, º¸´Ù È¿À²ÀûÀÌ°í ³»±¸¼ºÀÌ ¶Ù¾î³ª¸ç ģȯ°æÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â Àü±âÀÚµ¿Â÷(EV), Àç»ý¿¡³ÊÁö ÀúÀå ¹× Àü·Â¸Á ¾ÈÁ¤È¿¡ ÇʼöÀûÀÎ °íÀü¾Ð ¹èÅ͸®ÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµé°ú Á¦Á¶¾÷üµéÀº ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀ̰í, ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇϸç, Èñ¼ÒÇϰųª À¯ÇØÇÑ ¹°Áú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß´Â »õ·Î¿î Àç·á¿Í ¼³°è¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ¹èÅ͸® ÀçȰ¿ë ¹æ¹ýÀ» °³¼±ÇÏ°í ¼¼ÄÁµå ¶óÀÌÇÁ ¿ëµµ¸¦ °³¹ßÇÏ¿© ȯ°æ ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù.
±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠¹®Á¦
±ÔÁ¦ ¹× ±ÔÁ¤ Áؼö ¹®Á¦´Â °íÀü¾Ð ¹èÅ͸®ÀÇ °³¹ß ¹× º¸±Þ¿¡ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ±ÔÁ¦ ±â°üÀÌ ºÎ°úÇÏ´Â ¾ö°ÝÇÑ ¾ÈÀü, ȯ°æ ¹× ¼º´É ±âÁØ¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀ» ÁؼöÇϱâ À§Çؼ´Â ´ë±Ô¸ð Å×½ºÆ® ¹× ÀÎÁõ ÇÁ·Î¼¼½º°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹À¸¸ç, ÀÌ´Â Á¦Á¶¾÷ü¿¡°Ô ºñ¿ë°ú ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµË´Ï´Ù. ¶ÇÇÑ, Áö¿ª¸¶´Ù ±ÔÁ¦°¡ ´Ù¸£±â ¶§¹®¿¡ ¼¼°è ½ÃÀå ÁøÃâÀÌ º¹ÀâÇØÁö¸ç, °¢ °üÇұǿ¡ ¸Â´Â ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇÕ´Ï´Ù. »õ·Î¿î ±â¼úÀ» ±âÁ¸ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿¡ ÅëÇÕÇÏ´Â º¹À⼺Àº ÀÌ·¯ÇÑ ¹®Á¦¸¦ ´õ¿í ¾ÇȽÃŵ´Ï´Ù.
Äڷγª19´Â ÁÖ·Î °ø±Þ¸Á È¥¶õ, ¼ö¿ä º¯È, ±â¼ú Áö¿¬À» ÅëÇØ °íÀü¾Ð ¹èÅ͸® ½Ã½ºÅÛ¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸Á ¹®Á¦´Â °øÀå °¡µ¿ Áߴܰú ¹°·ù ¹®Á¦·Î ÀÎÇØ ¸®Æ¬ ¹× ÄÚ¹ßÆ®¿Í °°Àº Áß¿äÇÑ ¿øÀÚÀç ºÎÁ·À¸·Î ÀÎÇØ ¹ß»ýÇß½À´Ï´Ù. ±× °á°ú ¹èÅ͸® »ý»êÀÌ Áö¿¬µÇ°í ºñ¿ëÀÌ »ó½ÂÇß½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV) ÆÇ¸Å´Â Ãʱ⿡´Â Ç϶ô¼¼¸¦ º¸¿´À¸³ª, ÀÌÈÄ È¯°æº¸È£¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í Á¤ºÎÀÇ Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î ¼ö¿ä°¡ ±ÞÁõÇÏ¸é¼ ¼ö¿ä°¡ º¯µ¿Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àλêö ¸®Æ¬ ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àλêö ¸®Æ¬ ºÎ¹®Àº ´Ù¸¥ ¸®Æ¬ À̿ ÈÇÐ ¹°Áú¿¡ ºñÇØ ¾ÈÁ¤¼º°ú ¾ÈÀü¼ºÀÌ ¿ì¼öÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÐ¾ßÀÇ ¹èÅ͸®´Â ¿ ¾ÈÁ¤¼ºÀÌ ³ô°í °ú¿ ¹× ¿ ÆøÁÖ Çö»óÀÌ ÀûÀ¸¸ç, LiFePO4 ¹èÅ͸®´Â »çÀÌŬ ¼ö¸íÀÌ ¿ì¼öÇÏ¿© ±î´Ù·Î¿î ¿ëµµ¿¡ ±ä ¼ö¸í°ú ½Å·Ú¼ºÀ» Á¦°øÇϸç, LiFePO4ÀÇ ±Ã±ØÀûÀÎ ÀåÁ¡Àº ¾ÈÀü°ú ¼º´ÉÀ» ¸ðµÎ ÃæÁ·½ÃŰ´Â ´É·ÂÀ¸·Î, °íÃâ·Â°ú ¾ÈÁ¤¼ºÀÌ ¸ðµÎ ÇÊ¿äÇÑ ¿ëµµ¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ ¿ëµµ¿¡ ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ó¿ëÂ÷ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»ó¿ëÂ÷ ºÎ¹®Àº ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¸¦ °¡Áø ¹èÅ͸®¸¦ °³¹ßÇÏ¿© ÁÖÇà°Å¸®¸¦ ´Ã¸®°í ÃæÀü ½Ã°£À» ´ÜÃàÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ȹ° ¿î¼Û ¹× ´ëÁß ±³Åë°ú °°Àº »ó¾÷¿ë ¿ëµµÀÇ ±î´Ù·Î¿î ¿ä±¸ »çÇ×À» °ßµô ¼ö ÀÖµµ·Ï ¹èÅ͸®ÀÇ ³»±¸¼º°ú ¼ö¸íÀ» Çâ»ó½ÃŰ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÃÖÀûÀÇ ÀÛµ¿ ¿Âµµ¸¦ À¯ÁöÇÏ°í ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ ¿ °ü¸® ½Ã½ºÅÛÀÇ ¹ßÀüÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷üµéÀº ¼Ö¸®µå ½ºÅ×ÀÌÆ® ¹èÅ͸® ¹× °³¼±µÈ ¸®Æ¬ À̿ ¼¿°ú °°Àº ÃÖ÷´Ü ±â¼ú°ú Àç·á¸¦ ÅëÇÕÇÏ¿© º¸´Ù È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±³Åë ½Ã½ºÅÛ Å»Åº¼ÒÈ´Â ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ°í ¿¡³ÊÁö È¿À²À» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÎ °íÀü¾Ð ¹èÅ͸®ÀÇ °³¹ß°ú º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª ±¹°¡µéÀÌ Àü±âÀÚµ¿Â÷(EV)¿Í Áö¼Ó °¡´ÉÇÑ ¿î¼Û ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÔ¿¡ µû¶ó ÁÖÇà°Å¸® ¿¬Àå ¹× ÃæÀü ½Ã°£ ´ÜÃàÀ» Áö¿øÇÒ ¼ö ÀÖ´Â °íÀü¾Ð ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ¼¼°è ±âÈÄ º¯È ¸ñÇ¥¿¡ ºÎÇÕÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹èÅ͸® ºÐ¾ßÀÇ Áö¿ª ³» ±â¼ú Çõ½Å°ú Á¦Á¶¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. °íÀü¾Ð ¹èÅ͸® ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â ¹èÅ͸® ÈÇÐ ¹× ÀÎÇÁ¶óÀÇ ¹ßÀüÀ» °¡¼ÓÈÇÏ¿© ºñ¿ë Àý°¨°ú ¼º´É Çâ»óÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ±â¼ú Çõ½Å°ú ÅõÀÚ¸¦ Áö¿øÇϴ ȯ°æÀ» Á¶¼ºÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È ¼öÀͼº ³ôÀº ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¼±Ý °øÁ¦, º¸Á¶±Ý, º¸Á¶±Ý°ú °°Àº ÇÁ·Î±×·¥Àº °íÀü¾Ð ¹èÅ͸®¸¦ °³¹ßÇÏ´Â ±â¾÷ÀÇ °æÁ¦Àû ºÎ´ãÀ» ÁÙÀÌ°í ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©µµ °£¼ÒÈµÇ¾î ½ÂÀÎ ÀýÂ÷ÀÇ ½Å¼Ó¼º°ú Ç¥ÁØÈ¸¦ ÃËÁøÇÏ°í ½Å±â¼úÀÇ º¸±ÞÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ź¼Ò ¹èÃâ·®À» ÁÙÀ̰í Àç»ý °¡´É ¿¡³ÊÁö¸¦ ÃËÁøÇϱâ À§ÇÑ ³ë·ÂÀº ÷´Ü ¹èÅ͸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global High Voltage Battery Market is accounted for $58.5 billion in 2024 and is expected to reach $385.6 billion by 2030 growing at a CAGR of 36.9% during the forecast period. A high voltage battery is a type of rechargeable battery designed to operate at elevated voltages, typically above 60 volts. These batteries are crucial in various applications, most notably in electric vehicles (EVs) and renewable energy storage systems. They store and supply significant amounts of electrical energy, enabling vehicles to achieve longer driving ranges and efficient performance. High voltage batteries often utilize advanced chemistries such as lithium-ion, which offer high energy density, longer life cycles, and improved safety features compared to traditional lead-acid batteries.
Increased focus on energy storage solutions
The heightened emphasis on energy storage solutions is significantly advancing the development of High Voltage Batteries, which are crucial for various high-power applications, including electric vehicles and renewable energy systems. Recent innovations in battery technology, such as improvements in lithium-ion chemistries and the introduction of solid-state batteries, are enhancing energy density, efficiency, and safety. Additionally, these advancements enable High Voltage Batteries to store and discharge greater amounts of energy with improved reliability and longevity.
Battery degradation
Battery degradation in high voltage batteries, commonly used in electric vehicles and renewable energy systems, refers to the gradual decline in battery performance over time. This deterioration is primarily due to chemical and physical changes within the battery cells. As the battery undergoes charge and discharge cycles, the active materials in the electrodes degrade, leading to reduced capacity and efficiency. Factors such as temperature extremes, high charge/discharge rates, and poor maintenance practices can accelerate this process. Degradation manifests as decreased battery life, reduced range or runtime, and diminished overall power output. As the battery ages, its ability to hold and deliver energy diminishes, impacting the performance and reliability of the device it powers.
Rising awareness about climate change
As the global focus intensifies on reducing carbon emissions and minimizing environmental impacts, there is a growing demand for more efficient, durable, and environmentally friendly energy storage solutions. This has spurred innovation in high voltage batteries, which are essential for electric vehicles (EVs), renewable energy storage, and grid stabilization. Researchers and manufacturers are investing in new materials and designs that enhance energy density, extend battery life, and reduce reliance on rare or harmful materials. Additionally, improved recycling methods and second-life applications for batteries are being developed to address environmental concerns.
Regulatory and compliance issues
Regulatory and compliance issues are significant barriers to the development and deployment of high voltage batteries. These challenges stem from stringent safety, environmental, and performance standards imposed by regulatory bodies. Compliance with these standards often involves extensive testing and certification processes, which can be costly and time-consuming for manufacturers. Additionally, varying regulations across different regions can complicate global market entry, requiring tailored solutions for each jurisdiction. The complexity of integrating new technologies with existing regulatory frameworks further exacerbates these issues.
The COVID-19 pandemic significantly impacted high voltage battery systems, primarily through disruptions in the supply chain, shifts in demand, and technological delays. Supply chain issues arose from factory shutdowns and logistical challenges, causing shortages of critical raw materials like lithium and cobalt. This, in turn, slowed down battery production and increased costs. Demand fluctuations occurred as electric vehicle (EV) sales initially dropped but later surged due to increased environmental awareness and government incentives.
The Lithium Iron Phosphate segment is expected to be the largest during the forecast period
Lithium Iron Phosphate segment is expected to be the largest during the forecast period due to its superior stability and safety compared to other lithium-ion chemistries. This segment of batteries offers high thermal stability, making them less prone to overheating and thermal runaway. LiFePO4 batteries deliver excellent cycle life, providing longevity and reliability for demanding applications. The ultimate advantage of LiFePO4 is its ability to combine safety with performance, making it a compelling choice for applications requiring both high power and stability.
The Commercial Cars segment is expected to have the highest CAGR during the forecast period
Commercial Cars segment is expected to have the highest CAGR during the forecast period as it involves the development of batteries with higher energy densities, which translates to extended driving ranges and reduced charging times. The focus is also on increasing the durability and lifespan of these batteries to ensure they can withstand the rigorous demands of commercial applications, such as freight and public transport. Additionally, advancements in thermal management systems are being incorporated to maintain optimal operating temperatures and enhance safety. By integrating cutting-edge technologies and materials, such as solid-state batteries or improved lithium-ion cells, manufacturers aim to offer more efficient, reliable, and cost-effective solutions.
Asia Pacific region commanded the largest market share over the projected period. Transport system decarbonization in the Asia Pacific region is advancing the development and deployment of high voltage batteries, crucial for reducing greenhouse gas emissions and enhancing energy efficiency. As countries in this region shift towards electric vehicles (EVs) and sustainable transport solutions, there is a growing demand for high voltage batteries that can support longer ranges and faster charging times. This shift not only aligns with global climate goals but also stimulates local innovation and manufacturing in the battery sector. Investments in high voltage battery technology are accelerating advancements in battery chemistry and infrastructure, driving down costs and improving performance.
North America region is estimated to witness profitable growth during the extrapolated period by creating a supportive environment for innovation and investment. Programs such as tax credits, grants, and subsidies reduce the financial burden on companies developing high voltage batteries, making it easier for them to invest in research and development. Regulatory frameworks are also being streamlined to facilitate faster approval processes and standardization, which accelerates the deployment of new technologies. Additionally, initiatives aimed at reducing carbon emissions and promoting renewable energy are driving demand for advanced battery solutions, further stimulating growth in the sector.
Key players in the market
Some of the key players in High Voltage Battery market include BYD Company Limited , Contemporary Amperex Technology Co. Limited, Exide Technologies, Ford Motor Company, LG Energy Solution, Mercedes-Benz Group, Northvolt AB, QuantumScape Corporation , Robert Bosch GmbH, Tesla, Inc and Toshiba Corporation.
In July 2024, Exide Technologies to launch advanced SLI-AGM battery for automotive market. The lead-acid battery class based on AGM technology is nowadays seen as a high-performance option, designed to give reliable starting power, improved durability and potentially longer life compared to standard lead-acid batteries.
In May 2024, Exide Industries Ltd. has announced to invest around INR 1,000 crore in its lithium-ion cell manufacturing and battery pack solutions. This investment is part of the INR 5,000 crore earmarked for the first phase of its lithium-ion cell manufacturing project.