![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1569825
¼¼°èÀÇ ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® ½ÃÀå ¿¹Ãø(-2030³â) : ¿ë·®, ¿øÀÚÀç, ¿ëµµ, Áö¿ªº° ºÐ¼®Silicon Anode Battery Market Forecasts to 2030 - Global Analysis By Capacity (Below 1500 mAh, 1500 mAh-2500 mAh, 2501 mAh-3500 mAh and Above 3500 mAh), Raw Material, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® ¼¼°è ½ÃÀåÀº 2024³â 48¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 45.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 461¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â ±âÁ¸ÀÇ Èæ¿¬ ´ë½Å ½Ç¸®ÄÜÀ» À½±Ø Àç·á·Î »ç¿ëÇϴ ÷´Ü ¸®Æ¬ À̿ ¹èÅ͸®ÀÔ´Ï´Ù. ½Ç¸®ÄÜÀº ¿¡³ÊÁö ÀúÀå ¿ë·®ÀÌ ¿ùµîÈ÷ ³ô°í ¿¡³ÊÁö ¹Ðµµ¸¦ ³ôÀÏ ¼ö Àֱ⠶§¹®¿¡ ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÏ°í ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â Àü±âÀÚµ¿Â÷, °¡ÀüÁ¦Ç°, ¿¡³ÊÁö ÀúÀå¿¡ Àû¿ëµÉ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é 2021³â Àü±âÀÚµ¿Â÷ ÆÇ¸Å·®Àº 660¸¸ ´ë¿¡ ´ÞÇϰí, ¼¼°è ÀÚµ¿Â÷ ½ÃÀåÀÇ 9%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ
½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â ±âÁ¸ÀÇ Èæ¿¬ À½±Ø¿¡ ºñÇØ ¿¡³ÊÁö ¹Ðµµ°¡ ÈξÀ ³ôÀ¸¸ç, Nature Nanotechnology Àú³Î¿¡ °ÔÀçµÈ ¿¬±¸¿¡ µû¸£¸é ½Ç¸®ÄÜ À½±ØÀº ÀÌ·ÐÀûÀ¸·Î Èæ¿¬ À½±Øº¸´Ù ÃÖ´ë 10¹è ´õ ¸¹Àº ¸®Æ¬ ÀÌ¿ÂÀ» ÀúÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ¹Ðµµ Áõ°¡´Â ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇϰí, ƯÈ÷ Àü±âÀÚµ¿Â÷ ¹× ÈÞ´ë¿ë ÀüÀÚ±â±â µî ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ À½±ØÀÌ Àü±âÀÚµ¿Â÷ÀÇ ÁÖÇà°Å¸®¸¦ ȹ±âÀûÀ¸·Î ´Ã¸®°í ½º¸¶Æ®ÆùÀÇ ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ ÀÌ ±â¼ú¿¡ ´ëÇÑ ¸¹Àº ÅõÀÚ¿Í ¿¬±¸°¡ ÁøÇàµÇ¾î ¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ ¼º´É Çâ»ó¿¡ ´ëÇÑ ±â´ë´Â ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
Á¦ÇÑÀûÀÎ »ó¾÷È
½Ç¸®ÄÜ À½±Ø ¹èÅ͸®ÀÇ »ó¿ëȰ¡ Á¦ÇÑÀûÀ̶ó´Â Á¡ÀÌ ½ÃÀå ¼ºÀåÀÇ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ À½±ØÀº ±× ÀáÀç·Â¿¡µµ ºÒ±¸ÇÏ°í »çÀÌŬ ¼ö¸í ¹× ÃæÀü ½Ã ºÎÇÇ ÆØÃ¢À̶ó´Â ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎ º¸°í¼¿¡ µû¸£¸é ½Ç¸®ÄÜ À½±ØÀº ¸®Æ¬È ½Ã ÃÖ´ë 300%±îÁö ÆØÃ¢ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ±¸Á¶Àû ¿È¿Í ¿ë·® °¨¼Ò¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Àå¾Ö¹°Àº ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®ÀÇ ´ë±Ô¸ð »ý»ê°ú äÅÃÀ» Áö¿¬½Ã۰í ÀÖ½À´Ï´Ù.
´Ù¾çÇÑ ºÐ¾ß¿¡¼ÀÇ ºñÁî´Ï½º ±âȸ
½Ç¸®ÄÜ À½±ØÀüÁö´Â Àü±âÀÚµ¿Â÷, °¡ÀüÁ¦Ç°, Àç»ý¿¡³ÊÁö ÀúÀå µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Å« ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ±¹Á¦¿¡³ÊÁö±â±¸¿¡ µû¸£¸é 2021³â Àü ¼¼°è Àü±âÀÚµ¿Â÷ ÆÇ¸Å·®Àº 660¸¸ ´ë¿¡ ´ÞÇϰí, 2020³â ´ëºñ 108% Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ Àü±âÀÚµ¿Â÷ ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀº ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í °í¼Ó ÃæÀü ±â´É¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®¿¡ Å« ±âȸ¸¦ âÃâÇÕ´Ï´Ù. ¶ÇÇÑ Àç»ý ¿¡³ÊÁö ºÐ¾ßÀÇ ¼ºÀå¿¡´Â ÷´Ü ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â Àü·Â¸ÁÀÇ ¾ÈÁ¤¼º°ú ¿¡³ÊÁö °ü¸®¸¦ °³¼±ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ȯ°æ¿¡ ´ëÇÑ °ü½É
½Ç¸®ÄÜ À½±Ø ¹èÅ͸®ÀÇ »ý»ê°ú Æó±â¿¡ ´ëÇÑ È¯°æÀû ¿ì·Á´Â ½ÃÀå ¼ºÀå¿¡ ÀáÀçÀûÀÎ À§ÇùÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. Journal of Cleaner Production Àú³Î¿¡ °ÔÀçµÈ ¼ö¸íÁÖ±â Æò°¡¿¡ µû¸£¸é, À½±Ø¿ë ½Ç¸®ÄÜ ³ª³ëÀÔÀÚ »ý»ê¿¡´Â ¸·´ëÇÑ ¿¡³ÊÁö°¡ ÇÊ¿äÇϸç, ÀÌ¿¡ µû¸¥ ź¼Ò ¹èÃâµµ ¹ß»ýÇÑ´Ù°í ÇÕ´Ï´Ù. ¿¡³ÊÁö°¡ ÇÊ¿äÇϸç, ±×¿¡ µû¸¥ ź¼Ò ¹èÃâµµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®ÀÇ ÀçȰ¿ëÀº ±âÁ¸ ¸®Æ¬ À̿ ¹èÅ͸®¿¡ ºñÇØ »õ·Î¿î µµÀü°úÁ¦¸¦ ¾È°í ÀÖ½À´Ï´Ù.
Äڷγª19´Â Ãʱ⿡´Â ¿¬±¸¼Ò Æó¼â¿Í °ø±Þ¸Á Áß´ÜÀ¸·Î ÀÎÇØ ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® ¿¬±¸ °³¹ß Ȱµ¿¿¡ È¥¶õÀ» ÃÊ·¡Çß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ È¸º¹Åº·Â¼º°ú Áö¼Ó°¡´É¼ºÀ» À§ÇÑ Ã·´Ü ¿¡³ÊÁö ÀúÀå ±â¼úÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, ÆÒµ¥¹Í¿¡µµ ºÒ±¸Çϰí 2020³â Àü ¼¼°è Àü±âÂ÷ ÆÇ¸Å·®Àº 41% Áõ°¡Çß´Ù°í ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü±âÀÚµ¿Â÷ÀÇ Áö¼ÓÀûÀÎ º¸±ÞÀº °æ±â ȸº¹À» À§ÇÑ ±â¼ú Çõ½Å¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ÇÔ²² ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® °³¹ß¿¡ ´ëÇÑ Àå±âÀûÀÎ ÅõÀÚ¸¦ °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È 1500mAh ÀÌÇÏ ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
1500mAh ¹Ì¸¸ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®Àº ÁÖ·Î ¼ÒºñÀÚ ÀüÀÚ±â±â, ƯÈ÷ ½º¸¶Æ®Æù°ú ¿þ¾î·¯ºí ±â±â¿¡ Àû¿ëµÇ¸ç, 1500mAh ÀÌÇÏÀÇ ¿ë·®Àº ÀÌ·¯ÇÑ ±â±â¿¡ ÀûÇÕÇϸç, ±â±âÀÇ ¼³°è¸¦ Å©°Ô º¯°æÇÏÁö ¾Ê°íµµ ¿¡³ÊÁö ¹Ðµµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â ÀåÁ¡ÀÌ ÀÖ½À´Ï´Ù. ÀÌ ¿ë·® ¹üÀ§ÀÇ ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â ½º¸¶Æ®Æù¿¡ ´õ ±ä ¹èÅ͸® ¼ö¸íÀ» Á¦°øÇÏ°í ´õ ¾ã°í °·ÂÇÑ ¿þ¾î·¯ºíÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ ³ôÀº »ý»ê·®°ú ÀÌ·¯ÇÑ ±â±âµéÀÇ Áö¼ÓÀûÀÎ ¹èÅ͸® ¼º´É Çâ»ó¿¡ ´ëÇÑ ¿ä±¸·Î ÀÎÇØ ÀÌ ºÐ¾ß¿¡¼ ¾ÐµµÀûÀÎ ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â Àü±âÀÚµ¿Â÷ ºÎ¹®
Àü±âÂ÷ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ºü¸¥ ¼ºÀåÀÇ ¹è°æ¿¡´Â Àü ¼¼°èÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ º¸±Þ°ú ´õ ³ôÀº ¿¡³ÊÁö ¹Ðµµ¿Í ºü¸¥ ÃæÀü ±â´ÉÀ» °®Ãá ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®´Â Àü±âÀÚµ¿Â÷ÀÇ ÁÖÇà°Å¸®¸¦ Å©°Ô ´Ã¸®°í Àü±âÀÚµ¿Â÷ º¸±ÞÀÇ ÁÖ¿ä À庮 Áß Çϳª¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ÀÚµ¿Â÷ ¹× ¹èÅ͸® Á¦Á¶¾÷ü´Â Â÷¼¼´ë Àü±âÂ÷ ¹èÅ͸®¸¦ °³¹ßÇϱâ À§ÇØ ½Ç¸®ÄÜ À½±Ø ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ À½±ØÀÌ ÃæÀü ½Ã°£À» ´ÜÃàÇϰí Àüü Â÷·® ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÀáÀç·ÂÀÌ ÀÌ ºÎ¹®ÀÇ ³ôÀº ¼ºÀå·ü¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§´Â ÁÖ·Î ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç, dzºÎÇÑ R&D ÅõÀÚ ¹× Á¤ºÎ Áö¿ø Á¤Ã¥À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ÀÌ Áö¿ªÀº ͏®Æ÷´Ï¾Æ ÁÖ¿Í °°Àº ÁÖ¿¡¼ ¹«°øÇØ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¾ß½ÉÂù ¸ñÇ¥¸¦ ¼³Á¤ÇÏ´Â µî Àü±âÀÚµ¿Â÷ µµÀÔ¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, À̴ ÷´Ü ¹èÅ͸® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ½Ç¸®ÄÜ À½±Ø ¹èÅ͸® °³¹ß ¾÷üµéÀÇ Á¸Àç¿Í ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½ÊÀº ÀÌ ºÐ¾ß¿¡¼ ºÏ¹Ì°¡ Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϴµ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ºü¸¥ ¼ºÀåÀÇ ¹è°æ¿¡´Â ¹èÅ͸® Á¦Á¶¿¡¼ ÀÌ Áö¿ªÀÇ ¿ìÀ§, Àû±ØÀûÀÎ Àü±âÀÚµ¿Â÷ µµÀÔ ¸ñÇ¥, Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é Áß±¹¸¸ 2021³â Àü ¼¼°è Àü±âÂ÷ ÆÇ¸Å·®ÀÇ 46%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀϺ»°ú Çѱ¹ °°Àº ³ª¶óµµ ¹èÅ͸® ±â¼ú Çõ½ÅÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾ç ±¹°¡µéÀÌ Â÷¼¼´ë ¹èÅ͸® °³¹ßÀ» ÁÖµµÇϱâ À§ÇØ ³ë·ÂÇϰí Àֱ⠶§¹®¿¡ ½Ç¸®ÄÜ À½±Ø ¹èÅ͸®¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÌ Áö¿ª ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
According to Stratistics MRC, the Global Silicon Anode Battery Market is accounted for $4.8 billion in 2024 and is expected to reach $46.1 billion by 2030 growing at a CAGR of 45.5% during the forecast period. A Silicon Anode Battery is an advanced type of lithium-ion battery that uses silicon as the anode material instead of traditional graphite. Silicon has a significantly higher energy storage capacity, allowing for greater energy density, which can extend the battery life and improve performance. Silicon anode batteries hold promise for applications in electric vehicles, consumer electronics, and energy storage.
According to the International Energy Agency, electric car sales reached 6.6 million in 2021, representing 9% of the global car market.
Offer higher energy density
Silicon anode batteries offer significantly higher energy density compared to traditional graphite anodes. According to research published in Nature Nanotechnology, silicon anodes can theoretically store up to 10 times more lithium ions than graphite anodes. This increased energy density translates to longer battery life and improved performance in various applications, particularly in electric vehicles and portable electronics. The potential for silicon anodes to dramatically increase the range of electric vehicles and extend the battery life of smartphones has driven substantial investment and research in this technology. This promise of enhanced performance is a key factor propelling the growth of the silicon anode battery market.
Limited commercialization
The limited commercialization of silicon anode batteries poses a significant restraint to market growth. Despite their potential, silicon anodes face challenges in terms of cycle life and volume expansion during charging. According to a report by the U.S. Department of Energy, silicon anodes can expand up to 300% during lithiation, leading to structural degradation and capacity loss over time. These technical hurdles have slowed down the large-scale production and adoption of silicon anode batteries.
Opportunities in various sectors
Silicon anode batteries present significant opportunities across various sectors, including electric vehicles, consumer electronics, and renewable energy storage. According to the International Energy Agency, global electric car sales reached 6.6 million in 2021, a 108% increase from 2020. This rapid growth in the electric vehicle market creates a substantial opportunity for silicon anode batteries to meet the demand for higher energy density and faster charging capabilities. Additionally, the growing renewable energy sector requires advanced energy storage solutions, where silicon anode batteries could play a crucial role in improving grid stability and energy management.
Environmental concerns
Environmental concerns related to the production and disposal of silicon anode batteries pose a potential threat to market growth. The mining and processing of silicon, while less environmentally impactful than some other battery materials, still have environmental consequences. According to a lifecycle assessment published in the Journal of Cleaner Production, the production of silicon nanoparticles for anodes can have significant energy requirements and associated carbon emissions. Additionally, the recycling of silicon anode batteries presents new challenges compared to traditional lithium-ion batteries.
The COVID-19 pandemic initially disrupted silicon anode battery research and development activities due to laboratory closures and supply chain interruptions. However, the crisis also highlighted the importance of advanced energy storage technologies for resilience and sustainability. According to the International Energy Agency, despite the pandemic, global electric car sales grew by 41% in 2020. This continued growth in electric vehicle adoption, coupled with increased focus on technological innovation for economic recovery, may accelerate long-term investment in silicon anode battery development.
The below 1500 mAh segment is expected to be the largest during the forecast period
The below 1500 mAh segment is predicted to secure the largest market share throughout the forecast period. This segment primarily caters to consumer electronics, particularly smartphones and wearable devices, which represent a large and growing market. The below 1500 mAh capacity is well-suited for these devices, offering improved energy density without significantly altering device designs. Silicon anode batteries in this capacity range can provide longer battery life for smartphones and enable slimmer, more powerful wearables. The high volume of consumer electronics production and the continuous demand for improved battery performance in these devices contribute to this segment's dominant market share.
The electric vehicles segment is expected to have the highest CAGR during the forecast period
The electric vehicles segment is projected to have the highest CAGR during the extrapolated period. This rapid growth is driven by the increasing global adoption of electric vehicles and the need for batteries with higher energy density and faster charging capabilities. Silicon anode batteries have the potential to significantly increase the range of electric vehicles, addressing one of the key barriers to EV adoption. Major automakers and battery manufacturers are investing heavily in silicon anode technology to develop next-generation EV batteries. The potential for silicon anodes to reduce charging times and improve overall vehicle performance further contributes to this segment's high growth rate.
During the projected timeframe, the North America region is expected to hold the largest market share. This dominance is primarily driven by the presence of key technology companies, substantial research and development investments, and supportive government policies. The region's strong focus on electric vehicle adoption, with states like California setting ambitious targets for zero-emission vehicles, further fuels the demand for advanced battery technologies. Additionally, the presence of major silicon anode battery developers and partnerships between automotive and technology companies contribute to North America's significant market share in this sector.
Over the forecasted timeframe, the Asia Pacific region is anticipated to exhibit the highest CAGR. This rapid growth is fueled by several factors, including the region's dominant position in battery manufacturing, aggressive electric vehicle adoption targets, and significant investments in renewable energy. According to the International Energy Agency, China alone accounted for 46% of global electric car sales in 2021. Countries like Japan and South Korea are also at the forefront of battery technology innovation. As Asia Pacific countries strive to lead in next-generation battery development, the demand for silicon anode batteries is expected to surge, propelling the region's market growth.
Key players in the market
Some of the key players in Silicon Anode Battery Market include Amprius Technologies, Sila Nanotechnologies, Enovix Corporation, Group14 Technologies, Nexeon Limited, XG Sciences, Enevate Corporation, Nanotek Instruments, OneD Material, Advano, BTR New Material Group Co. Ltd., EIT InnoEnergy SE, Elkem ASA, E-magy, Hitachi Chemical Co., Ltd., LeydenJar Technologies, Targray Technology International, and Daejoo Electronic Materials Co., Ltd.
In June 2024, Group14 Technologies, Inc., the world's largest global manufacturer and supplier of advanced silicon battery materials, announces the signing of five multi-year binding offtake agreements amounting to a minimum commitment of over $300 million with three leading electric vehicle (EV) and two consumer electronic (CE) cell manufacturers across Europe, Asia, and North America. These strategic supply agreements continue to demonstrate Group14's progress in driving the global adoption of next-generation silicon battery technology.
In December 2023, Panasonic Energy Co., Ltd., a Panasonic Group Company, and Sila, a next-generation battery materials company, today announced the signing of a commercial agreement for Sila's high-performance nano-composite silicon anode, Titan SiliconTM.
In March 2023, Amprius Technologies, Inc., a leader in next-generation lithium-ion batteries with its Silicon Anode Platform, is once again raising the bar with the verification of its lithium-ion cell delivering unprecedented energy density of 500 Wh/kg, 1300 Wh/L, resulting in unparalleled run time. At approximately half the weight and volume of state-of-the-art, commercially available lithium-ion cells, the all-new battery cell deliver potential industry-disrupting performance with barrier breaking discharge times. Amprius' next-generation cells are well positioned to power products in the fast-growing aviation and, eventually, electric vehicles markets, estimated to be collectively over $100 billion in battery demand by 2025.