½ÃÀ庸°í¼­
»óǰÄÚµå
1569860

¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2030³â) : ¹èÅ͸® À¯Çüº°, Â÷·® À¯Çüº°, ºÎǰ À¯Çüº°, ¹èÅ͸® Å©±âº°, ±¸¼ºº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Electric Vehicle Battery Management System Market Forecasts to 2030 - Global Analysis By Battery Type, Vehicle Type, Component Type, Battery Size, Configuration, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀåÀº 2024³â 109¾ï 9,000¸¸ ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ µ¿¾È 21.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 346¾ï 9,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àü±âÂ÷(EV) ¹èÅ͸® ÆÑÀÇ È¿À²¼º, ¾ÈÀü¼º, ¼º´ÉÀ» Á¦¾îÇÏ°í ¸ð´ÏÅ͸µÇÏ´Â ½Ã½ºÅÛÀ» °³¹ßÇϰí Á¦°øÇÏ´Â ºÐ¾ß´Â Àü±âÂ÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ½ÃÀåÀ¸·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. BMS´Â ¹èÅ͸® ¼ö¸íÀ» ÃÖ´ëÈ­ÇÏ°í ¾ÈÀüÇÑ ÀÛµ¿À» º¸ÀåÇϱâ À§ÇØ ¿Âµµ, Àü¾Ð, ÃæÀü »óÅÂ¿Í °°Àº ¹èÅ͸® Ư¼ºÀ» Á¦¾îÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀº Àü±âÀÚµ¿Â÷(EV)ÀÇ Àαâ Áõ°¡, ¹èÅ͸® ±â¼ú ½ÃÀå °³Ã´, È¿°úÀûÀÎ ¿¡³ÊÁö °ü¸® ¹× ÀÚµ¿Â÷ ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

¹Ì±¹ ¿¡³ÊÁö Á¤º¸±¹(U.S. Energy Information Administration)¿¡ µû¸£¸é, 2022³â ¹Ì±¹¿¡¼­ ÆÇ¸ÅµÇ´Â Àüü ¼ÒÇüÂ÷ÀÇ 3.4%¸¦ EV°¡ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, EV¿¡ ´ëÇÑ ¼ö¿ä´Â ºü¸¥ ¼Óµµ·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

Àü±âÂ÷(EV) ¼ö¿ä Áõ°¡

Àü±âÂ÷(EV)´Â ³·Àº ¿î¿µ ºñ¿ë°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ±àÁ¤ÀûÀÎ ¿µÇâÀ¸·Î ÀÎÇØ Á¡Á¡ ´õ ¸¹Àº Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ±× °á°ú, ¹èÅ͸® ¼º´É°ú ¾ÈÀü¼ºÀ» ±Ø´ëÈ­Çϱâ À§ÇØ Ã·´Ü ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)ÀÌ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)Àº ¹èÅ͸®ÀÇ ÃæÀü, ¹æÀü ¹× Àü¹ÝÀûÀÎ °ÇÀü¼ºÀ» Á¦¾îÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. È¿°úÀûÀÎ ¿¡³ÊÁö »ç¿ëÀ» º¸ÀåÇÏ°í ¹èÅ͸® ¼ö¸íÀ» ¿¬ÀåÇÕ´Ï´Ù. ºü¸£°Ô ¼ºÀåÇÏ´Â Àü±âÂ÷ ½ÃÀå¿¡ ´ëÀÀÇϱâ À§ÇØ BMS Á¦°ø¾÷ü¿Í Á¦Á¶¾÷ü°¡ ÃÖ÷´Ü, ½Å·ÚÇÒ ¼ö ÀÖ´Â ±â¼úÀ» °³¹ßÇÒ ¼ö ÀÖ´Â ±âȸ´Â ¹«±Ã¹«ÁøÇÕ´Ï´Ù.

³ôÀº °³¹ß ¹× µµÀÔ ºñ¿ë

³ôÀº µµÀÔ ¹× °³¹ß ºñ¿ëÀÌ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼º´É, ¾ÈÀü¼º, È¿À²¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÃֽŠBMS ±â¼úÀ» °³¹ß ¹× Á¦Á¶Çϸ鼭 »ó´çÇÑ ¾çÀÇ ¿¬±¸°³¹ß ¹× Å×½ºÆ®¸¦ ¼öÇàÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ BMS¸¦ EV ¹èÅ͸® ¹× ÀÚµ¿Â÷ ½Ã½ºÅÛ°ú ÅëÇÕÇÏ´Â °ÍÀÌ º¹ÀâÇϱ⠶§¹®¿¡ Á¦Á¶ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. Á¦Á¶¾÷üÀÇ ¾î·Á¿òÀº °æÁ¦¼º°ú ±â¼ú Çõ½ÅÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ëÀº Á¾Á¾ ÀÚµ¿Â÷ °¡°Ý »ó½ÂÀ¸·Î À̾îÁ® Àü±âÂ÷ º¸±ÞÀ» ÀúÇØÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.

Á¤ºÎ ±ÔÁ¦¿Í ¹èÃâ°¡½º ±ÔÁ¦

Á¤ºÎ ±ÔÁ¦¿Í ȯ°æ ±ÔÁ¦´Â Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀ̰í Àü±âÀÚµ¿Â÷ »ç¿ëÀ» Àå·ÁÇϱâ À§ÇØ Àü ¼¼°è Á¤ºÎ´Â ´õ¿í ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¤¿¡´Â ¾ÈÀü ±âÁØ, ÃæÀü ÀÎÇÁ¶ó, ÃÖ¼Ò ¹èÅ͸® ÁÖÇà°Å¸® µîÀÇ ¿ä±¸»çÇ×ÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. Àü±âÀÚµ¿Â÷°¡ ÇÊ¿äÇÑ È¯°æ ¹× ¼º´É ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ BMS ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ ±ÔÁ¤À» ÁؼöÇØ¾ß ÇÕ´Ï´Ù.

Ç¥ÁØÈ­ ºÎÁ·

¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ½ÃÀåÀÇ Ç¥ÁØÈ­ ºÎÁ·À¸·Î ÀÎÇØ Àü±âÀÚµ¿Â÷(EV)ÀÇ º¸±Þ°ú »óÈ£¿î¿ë¼ºÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­°¡ °æÀïÀ» ÃËÁøÇÏ°í °¡°ÝÀ» ³·Ãß¸ç ¾ÈÀü¼ºÀ» º¸ÀåÇÏÁö¸¸, BMS¿¡ ´ëÇÑ ¼¼°è Ç¥ÁØÀÌ Á¸ÀçÇÏÁö ¾Ê´Â °ÍÀº °ø±Þ¾÷ü, °í°´ ¹× Á¦Á¶¾÷ü¿¡ ¾î·Á¿òÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©·¯ OEMÀÌ ÀÚü BMS ½Ã½ºÅÛÀ» »ç¿ëÇϸé ȣȯ¼ºÀÌ ¶³¾îÁö°í ¹èÅ͸® ¹× ºÎǰÀÇ »óÈ£ ±³È¯ÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â °­·ÂÇϰí È¿°úÀûÀÎ EV »ýŰèÀÇ ¼ºÀåÀ» ÀúÇØÇÏ¿© Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

Äڷγª19·Î ÀÎÇÑ °ø±Þ¸Á È¥¶õ°ú »ý»ê Áß´ÜÀº Àü±âÂ÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Á¦Á¶ Áö¿¬°ú ³ëµ¿·Â °¨¼Ò´Â BMS ±â¼úÀÇ ¹ßÀü°ú ±¸ÇöÀ» ¹æÇØÇß½À´Ï´Ù. ¹Ý¸é, Àü¿°º´Àº »ç¶÷µéÀÌ ´õ ģȯ°æÀûÀÎ À̵¿ ¼ö´ÜÀ» ¼±ÅÃÇÏ°Ô µÇ¸é¼­ Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀ» ÃËÁøÇß½À´Ï´Ù. °í±Þ BMS ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â Àü±âÀÚµ¿Â÷ »ç¿ëÀ» Àå·ÁÇϱâ À§ÇØ °í¾ÈµÈ Á¤ºÎ Àμ¾Æ¼ºê¿¡ ÀÇÇØ ´õ¿í ÀÚ±ØÀ» ¹Þ¾ÒÀ¸¸ç, ¹èÅ͸® °ü¸®°¡ È®´ëµÇ´Â Àü±âÀÚµ¿Â÷ ½ÃÀå¿¡¼­ È¿À²¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» °­Á¶Çß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼¿ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Àü±âÀÚµ¿Â÷ÀÇ ¾ÈÀü¼º°ú È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼¿ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼¿ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀº ¿Âµµ, °ÇÀü¼º »óÅÂ(SoH), ÃæÀü »óÅÂ(SoC)¸¦ Áö¼ÓÀûÀ¸·Î ÃøÁ¤ÇÏ¿© ¹èÅ͸® ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. À̸¦ ÅëÇØ ÃÖÀûÀÇ ÀÛµ¿À» º¸ÀåÇÏ°í °ú¿­ ¹× °úÃæÀü°ú °°Àº ¹®Á¦¸¦ ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â Àü±âÀÚµ¿Â÷ »ç¿ëÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ¹èÅ͸® ¼ö¸í°ú ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» °­È­ÇÏ´Â °ÍÀ» ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ½Â¿ëÂ÷ ºÎ¹®

½Â¿ëÂ÷ ºÎ¹®Àº Áö¼Ó °¡´ÉÇÑ À̵¿¼ºÀ» Áö¿øÇÏ´Â Á¤ºÎ Àμ¾Æ¼ºê¿Í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ Àü±âÀÚµ¿Â÷(EV)¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿å±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¡Á¡ ´õ ¸¹Àº »ç¶÷µéÀÌ Àü±âÀÚµ¿Â÷¸¦ ¼±ÅÃÇÔ¿¡ µû¶ó ¹èÅ͸® ¼ö¸í, ¾ÈÀü ¹× ¼º´ÉÀ» ÃÖ´ëÇÑ º¸ÀåÇϱâ À§ÇÑ È¿°úÀûÀÎ ¹èÅ͸® °ü¸® ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ ¹èÅ͸® ±â¼úÀÇ ¹ßÀü°ú µµ½ÃÈ­ÀÇ ¹ßÀüÀº EVÀÇ º¸±ÞÀ» ÃËÁøÇÏ¿© º¹ÀâÇÑ BMS ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Àü±âÀÚµ¿Â÷(EV)ÀÇ ºü¸¥ º¸±ÞÀ» ÃËÁøÇÏ´Â Á¤ºÎ Àμ¾Æ¼ºê, ¹èÃâ°¡½º ±ÔÁ¦ ¹× ÀÎÇÁ¶ó ÁöÃâ, Áß±¹, ÀϺ», Çѱ¹À» Æ÷ÇÔÇÑ ÁÖ¿ä ±¹°¡µéÀÌ EV ÀüȯÀ» ÁÖµµÇϰí ÀÖ¾î Çõ½ÅÀûÀÎ BMS ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ¹èÅ͸® ±â¼ú Çõ½Å¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ´ë±Ô¸ð Àü±âÂ÷ Á¦Á¶¾÷ü¿Í ¹èÅ͸® Á¦Á¶¾÷üÀÇ Á¸Àç´Â ȯ°æ Àǽİú µµ½ÃÈ­ È®´ë¿¡ µû¸¥ ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

ºÏ¹Ì´Â ÃæÀü ÀÎÇÁ¶ó ³×Æ®¿öÅ© È®´ë, Á¤ºÎ Àμ¾Æ¼ºê, ¾ö°ÝÇÑ ¿À¿° ±âÁØ µîÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÌ Áö¼Ó°¡´É¼ºÀ» Áß½ÃÇϰí ûÁ¤ ¿¡³ÊÁö Â÷·®À¸·Î ÀüȯÇÔ¿¡ µû¶ó ¹èÅ͸®ÀÇ ¾ÈÀü¼º°ú È¿À²¼ºÀ» º¸ÀåÇϴ ÷´Ü BMS ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ģȯ°æ ±³Åë¼ö´Ü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁø µ¥´Ù, ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ÇÏÀÌÅ×Å© ±â¾÷µéÀÌ Àü±âÀÚµ¿Â÷(EV) ±â¼ú¿¡ ÅõÀÚÇϰí ÀÖ´Â °Íµµ ºÏ¹Ì BMS ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ´ÏÄÌ ¼ö¼Ò(NiMH) ¹èÅ͸®
  • °íü ¹èÅ͸®
  • ¸®Æ¬ À̿ ¹èÅ͸®
  • ±âŸ ¹èÅ͸® À¯Çü

Á¦6Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : Â÷·® À¯Çüº°

  • ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV)
  • ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)
  • Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)
  • ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)

Á¦7Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ÄÄÆ÷³ÍÆ® À¯Çüº°

  • Åë½Å ÀÎÅÍÆäÀ̽º
  • ¼¼Æ÷ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ
  • ¹èÅ͸® Á¦¾î À¯´Ö(BCU)
  • ¿­°ü¸® ½Ã½ºÅÛ

Á¦8Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ¹èÅ͸® »çÀÌÁ

  • ¼Ò¿ë·®(40kWh ¹Ì¸¸)
  • Á߿뷮(40-80 kWh)
  • ´ë¿ë·®(80kWh ÀÌ»ó)

Á¦9Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ±¸¼ºº°

  • 36¼¿ ¹Ì¸¸
  • 48¼¿-84¼¿
  • 96¼¿-132¼¿
  • 144¼¿-180¼¿
  • 180¼¿ ÀÌ»ó

Á¦10Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ¿ëµµº°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • ÀÌ·ûÂ÷
  • »ê¾÷ Â÷·®
  • ±âŸ ¿ëµµ

Á¦11Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • OEM
  • ¾ÖÇÁÅ͸¶ÄÏ °ø±Þ¾÷ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦12Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦13Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦14Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Robert Bosch GmbH
  • Continental AG
  • LG Chem
  • Panasonic Corporation
  • Denso Corporation
  • BYD Co., Ltd.
  • Toshiba Corporation
  • NXP Semiconductors
  • Renesas Electronics Corporation
  • Texas Instruments Incorporated
  • Analog Devices, Inc.
  • Infineon Technologies AG
  • Johnson Matthey
  • Valeo
  • Leclanche S.A.
LSH 24.10.24

According to Stratistics MRC, the Global Electric Vehicle Battery Management System Market is accounted for $10.99 billion in 2024 and is expected to reach $34.69 billion by 2030 growing at a CAGR of 21.1% during the forecast period. The sector devoted to the development and delivery of systems that control and monitor the efficiency, safety, and performance of battery packs in electric vehicles (EVs) is known as the electric vehicle battery management system (BMS) market. In order to maximize battery lifespan and guarantee safe operation, a BMS controls battery characteristics like temperature, voltage, and state of charge. The market is being pushed by the growing popularity of electric vehicles (EVs), developments in battery technology, and the rising demand for effective energy management and safety features in cars.

According to the U.S. Energy Information Administration, 2022, demand for EVs is increasing at a rapid pace in the U.S., as EVs account for 3.4% of the total light-duty vehicles sold in the country.

Market Dynamics:

Driver:

Rising demand for electric vehicles (EVs)

Electric vehicles (EVs) are becoming more and more popular due to their lower running costs and positive environmental effects. As a result, advanced battery management systems (BMS) are essential for maximizing battery performance and safety. Battery management systems (BMS) are essential for controlling battery charging, discharging, and general health. They guarantee effective energy use and prolong battery life. There are plenty of chances for BMS providers and manufacturers to develop cutting-edge and dependable technology in order to keep up with the rapidly expanding EV market.

Restraint:

High development and implementation costs

High implementation and development costs are a major obstacle. In order to assure performance, safety, and efficiency, a significant amount of research, development, and testing must be done while creating and manufacturing modern BMS technology. Furthermore, production costs are increased by the intricacy of integrating BMS with EV batteries and car systems. The difficulty for manufacturers is striking a balance between affordability and innovation because these expenses frequently result in increased car prices, which could impede the widespread adoption of electric vehicles.

Opportunity:

Government regulations and emission norms

Government rules and environmental regulations are significantly influencing the market for battery management systems (BMS) for electric vehicles. stricter regulations are being implemented by governments all over the world to lower greenhouse gas emissions and encourage the usage of electric vehicles. These rules frequently include requirements for safety standards, charging infrastructure, and minimum battery range. In order to guarantee that electric vehicles fulfil the necessary environmental and performance criteria, BMS systems need to abide with these rules.

Threat:

Lack of standardization

The widespread adoption and interoperability of electric vehicles (EVs) may be restricted by a lack of standardization in battery management systems (BMS) market. The absence of a global BMS standard might present difficulties for suppliers, customers, and manufacturers even though standardization can increase competition, lower prices, and guarantee safety. The use of proprietary BMS systems by several OEMs may cause incompatibilities and restrict the inter-changeability of batteries and componentry. This may slow down the shift to electric vehicles by impeding the growth of a strong and effective EV ecosystem.

Covid-19 Impact

The COVID-19 epidemic caused supply chain disruptions and production halts, which had a substantial effect on the market for electric vehicle battery management systems (BMS). Delays in manufacturing and a shrinking labor pool hindered the advancement and implementation of BMS technology. On the other hand, as people opted for more environmentally friendly ways to travel, the pandemic also expedited the transition to electric cars. The demand for sophisticated BMS systems was further sparked by government incentives designed to encourage the use of electric vehicles, underscoring the vital role that battery management plays in guaranteeing efficiency and safety in the expanding electric car market.

The cell monitoring system segment is expected to be the largest during the forecast period

During the forecast period, the cell monitoring system segment is anticipated to register the largest market share, owing to the growing need for safety and efficiency in electric vehicles. Cell monitoring systems improve battery performance by continuously measuring temperature, state of health (SoH), and state of charge (SoC). This ensures optimal operation and avoids problems like overheating or overcharging. Manufacturers are prioritizing enhanced monitoring systems to increase battery longevity and dependability as the usage of electric vehicles develops.

The passenger vehicles segment is expected to have the highest CAGR during the forecast period

The passenger vehicles segment is projected to have the highest CAGR in the market during the extrapolated period, because of government incentives supporting sustainable mobility and growing consumer desire for electric vehicles (EVs) as a result of environmental concerns. As more people choose electric passenger cars, effective battery management systems are needed to guarantee the best possible battery longevity, safety, and performance. The adoption of EVs is also being encouraged by developments in battery technology and rising urbanization, which increases the demand for complex BMS systems.

Region with largest share:

During the projected timeframe, the Asia Pacific region is expected to hold the largest market share, due to the government's incentives, emission rules, and infrastructure expenditures for electric cars (EVs) driving their quick adoption. The EV transition is being led by important nations including China, Japan, and South Korea, which is increasing demand for innovative BMS technology. In addition, the region's emphasis on battery innovation, together with the existence of significant EV and battery manufacturers, drives market growth as environmental consciousness and urbanization expand.

Region with highest CAGR:

The North America region is expected to register the highest growth rate over the forecast period, owing to growing network of charging infrastructure, government incentives, and harsher pollution standards that are supporting the use of EVs. The need for sophisticated BMS systems to guarantee battery safety and efficiency is increased by the region's emphasis on sustainability and its shift towards clean energy cars. The fact that top automakers and tech firms are investing in electric vehicle (EV) technologies, in addition to growing consumer awareness of environmentally friendly transportation, is another factor driving the BMS market in North America.

Key players in the market

Some of the key players profiled in the Electric Vehicle Battery Management System Market include Robert Bosch GmbH, Continental AG, LG Chem, Panasonic Corporation, Denso Corporation, BYD Co., Ltd., Toshiba Corporation, NXP Semiconductors, Renesas Electronics Corporation, Texas Instruments Incorporated, Analog Devices, Inc., Infineon Technologies AG, Johnson Matthey, Valeo and Leclanche S.A.

Key Developments:

In April 2022, Denso unveiled its next-gen battery management system, optimized for high-efficiency EVs, targeting enhanced safety and power management.

In September 2021, NXP introduced the MC33772C, a highly integrated battery cell controller with advanced safety and efficiency features for electric vehicle battery management.

In March 2021, Analog Devices released a new BMS chipset focused on safety, enabling efficient and reliable battery management for next-gen electric vehicles.

Battery Types Covered:

  • Nickel-Metal Hydride (NiMH) Batteries
  • Solid-State Batteries
  • Lithium-Ion Batteries
  • Other Battery Types

Vehicle Types Covered:

  • Hybrid Electric Vehicles (HEVs)
  • Battery Electric Vehicles (BEVs)
  • Plug-in Hybrid Electric Vehicles (PHEVs)
  • Fuel Cell Electric Vehicles (FCEVs)

Component Types Covered:

  • Communication Interface
  • Cell Monitoring System
  • Battery Control Unit (BCU)
  • Thermal Management System

Battery Sizes Covered:

  • Small Capacity (Below 40 kWh)
  • Medium Capacity (40-80 kWh
  • Large Capacity (Above 80 kWh)

Configurations Covered:

  • Up to 36 Cells
  • 48 Cells to 84 Cells
  • 96 Cells to 132 Cells
  • 144 Cells to 180 Cells
  • More than 180 Cells

Applications Covered:

  • Passenger Vehicles
  • Commercial Vehicles
  • Two-Wheelers
  • Industrial Vehicles
  • Other Applications

End Users Covered:

  • Original Equipment Manufacturers (OEMs)
  • Aftermarket Suppliers
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle Battery Management System Market, By Battery Type

  • 5.1 Introduction
  • 5.2 Nickel-Metal Hydride (NiMH) Batteries
  • 5.3 Solid-State Batteries
  • 5.4 Lithium-Ion Batteries
  • 5.5 Other Battery Types

6 Global Electric Vehicle Battery Management System Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Hybrid Electric Vehicles (HEVs)
  • 6.3 Battery Electric Vehicles (BEVs)
  • 6.4 Plug-in Hybrid Electric Vehicles (PHEVs)
  • 6.5 Fuel Cell Electric Vehicles (FCEVs)

7 Global Electric Vehicle Battery Management System Market, By Component Type

  • 7.1 Introduction
  • 7.2 Communication Interface
  • 7.3 Cell Monitoring System
  • 7.4 Battery Control Unit (BCU)
  • 7.5 Thermal Management System

8 Global Electric Vehicle Battery Management System Market, By Battery Size

  • 8.1 Introduction
  • 8.2 Small Capacity (Below 40 kWh)
  • 8.3 Medium Capacity (40-80 kWh
  • 8.4 Large Capacity (Above 80 kWh)

9 Global Electric Vehicle Battery Management System Market, By Configuration

  • 9.1 Introduction
  • 9.2 Up to 36 Cells
  • 9.3 48 Cells to 84 Cells
  • 9.4 96 Cells to 132 Cells
  • 9.5 144 Cells to 180 Cells
  • 9.6 More than 180 Cells

10 Global Electric Vehicle Battery Management System Market, By Application

  • 10.1 Introduction
  • 10.2 Passenger Vehicles
  • 10.3 Commercial Vehicles
  • 10.4 Two-Wheelers
  • 10.5 Industrial Vehicles
  • 10.6 Other Applications

11 Global Electric Vehicle Battery Management System Market, By End User

  • 11.1 Introduction
  • 11.2 Original Equipment Manufacturers (OEMs)
  • 11.3 Aftermarket Suppliers
  • 11.4 Other End Users

12 Global Electric Vehicle Battery Management System Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Robert Bosch GmbH
  • 14.2 Continental AG
  • 14.3 LG Chem
  • 14.4 Panasonic Corporation
  • 14.5 Denso Corporation
  • 14.6 BYD Co., Ltd.
  • 14.7 Toshiba Corporation
  • 14.8 NXP Semiconductors
  • 14.9 Renesas Electronics Corporation
  • 14.10 Texas Instruments Incorporated
  • 14.11 Analog Devices, Inc.
  • 14.12 Infineon Technologies AG
  • 14.13 Johnson Matthey
  • 14.14 Valeo
  • 14.15 Leclanche S.A.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦