½ÃÀ庸°í¼­
»óǰÄÚµå
1577154

RF ¹ÝµµÃ¼ ½ÃÀå ¿¹Ãø(-2030³â) : µð¹ÙÀ̽ºº°, Á֯ļö ´ë¿ªº°, µ¿ÀÛ Àü¾Ðº°, ¿þÀÌÆÛ »çÀÌÁ, Àç·áº°, ¿ëµµº°, Áö¿ªº° ºÐ¼®

RF Semiconductor Market Forecasts to 2030 - Global Analysis By Device, Frequency Band, Operating Voltage, Wafer Size, Material, Application and by Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀåÀº 2024³â¿¡ 259¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 10.5%·Î, 2030³â¿¡´Â 472¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀϹÝÀûÀ¸·Î 3KHz¿¡¼­ 300GHzÀÇ ¹«¼± Á֯ļö ´ë¿ª¿¡¼­ ÀÛµ¿ÇÏ´Â Àü¹® Àåºñ´Â RF ¹ÝµµÃ¼·Î ¾Ë·ÁÁ® ÀÖ½À´Ï´Ù. ¹«¼±Åë½Å, ·¹ÀÌ´õ ½Ã½ºÅÛ, ÀÇ·á±â±â µî ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ÀÌ ¹ÝµµÃ¼´Â ÇʼöÀûÀÔ´Ï´Ù. Åë½Å ½Ã½ºÅÛ¿¡¼­ ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ´õ ³ôÀº ´ë¿ªÆøÀ» ±¸ÇöÇϱâ À§Çؼ­´Â °íÁÖÆÄ¿¡¼­ È¿À²ÀûÀ¸·Î ÀÛµ¿ÇÏ´Â ¼³°è°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ RF ¹ÝµµÃ¼´Â ÀϹÝÀûÀ¸·Î ½Ç¸®ÄÜ(Si), źȭ±Ô¼Ò(SiC), °¥·ýºñ¼Ò(GaAs), ÁúÈ­°¥·ý(GaN)À¸·Î ¸¸µé¾îÁý´Ï´Ù.

¹ÝµµÃ¼»ê¾÷Çùȸ(SIA)¿¡ µû¸£¸é 2021³â ¼¼°è ¹ÝµµÃ¼ ¸ÅÃâÀº 2020³â ´ëºñ 26.2% Áõ°¡ÇÑ 5,559¾ï ´Þ·¯¿¡ ´ÞÇϸç, RF ¹ÝµµÃ¼´Â ¹«¼±Åë½Å°ú 5G µµÀÔ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

À̵¿Åë½Å ±â¼úÀÇ º¸±Þ È®´ë

RF ¹ÝµµÃ¼ ½ÃÀåÀº 4G¿¡¼­ 5G ±â¼ú·ÎÀÇ Àüȯ¿¡ Å« ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. 5G ³×Æ®¿öÅ©´Â ´õ ³ôÀº µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¿Í ´ë±â ½Ã°£ ´ÜÃàÀ» À§ÇØ ´õ º¹ÀâÇÏ°í ´õ ³ôÀº Á֯ļöÀÇ ¹«¼± Á֯ļö ºÎǰÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¯È­·Î ÀÎÇØ RF Àü·Â ÁõÆø±â, ÇÊÅÍ ¹× ½ºÀ§Ä¡¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ 5G ÀÎÇÁ¶ó°¡ Àü ¼¼°è¿¡¼­ È®»êµÊ¿¡ µû¶ó RF ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â Â÷¼¼´ë ³×Æ®¿öÅ©ÀÇ ±î´Ù·Î¿î »ç¾çÀ» ÃæÁ·Çϰí Çõ½ÅÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ ¾ò°Ô µÉ °ÍÀÔ´Ï´Ù.

ÃÖ÷´Ü ¼ÒÀçÀÇ Å͹«´Ï¾ø´Â °¡°Ý

°¡·ý ÁúÈ­¹°(GaN)°ú °¥·ý ºñ¼Ò(GaAs)¿Í °°Àº °í¼º´É Àç·áÀÇ °¡°Ý »ó½ÂÀÌ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Àü·Â ¹Ðµµ Çâ»ó, ¿­ ¾ÈÁ¤¼º Çâ»ó µî ´õ ³ôÀº Á֯ļö¿¡¼­ ´õ ³ªÀº ¼º´ÉÀ» ¹ßÈÖÇÏ´Â È¿°úÀûÀÎ RF ¼ÒÀÚ¸¦ °³¹ßÇϱâ À§Çؼ­´Â ÀÌ·¯ÇÑ Àç·áÀÇ »ç¿ëÀÌ ÇʼöÀûÀÔ´Ï´Ù. ±×·¯³ª ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ¼ÒÀÚ¿¡ ºñÇØ °¡°ÝÀÌ ºñ½Î±â ¶§¹®¿¡ ƯÈ÷ °æÁ¦¼ºÀ» Áß½ÃÇÏ´Â ºÐ¾ß³ª ¿ëµµ¿¡¼­´Â ½ÃÀå¿¡¼­ ³Î¸® »ç¿ëµÇÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ Ã·´Ü Àç·á¸¦ ¸¸µå´Â µ¥ »ç¿ëµÇ´Â Á¦Á¶ °øÁ¤ÀÌ ´õ º¹ÀâÇϰí ÀÚ¿ø Áý¾àÀûÀ̱⠶§¹®¿¡ Àüü Á¦Á¶ ºñ¿ëÀÌ ´õ ³ô½À´Ï´Ù.

»ç¹°ÀÎÅÍ³Ý ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ß

RF ¹ÝµµÃ¼ ½ÃÀåÀº »ç¹°ÀÎÅͳÝ(IoT) ±â±âÀÇ ±Þ¼ÓÇÑ º¸±ÞÀ¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½º¸¶Æ® ±â±â°¡ ÇコÄɾî, ÀÚµ¿Â÷, ȨÀÚµ¿È­ µî ´Ù¾çÇÑ »ê¾÷À¸·Î È®»êµÊ¿¡ µû¶ó ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹«¼± Á֯ļö ºÎǰ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â È¿°úÀûÀÎ µ¥ÀÌÅÍ Àü¼ÛÀ» º¸ÀåÇϰí, ÀåºñÀÇ Åë½ÅÀ» ÃËÁøÇϰí, Àüü ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ IoT ¿ëµµ¿¡ ƯȭµÈ RF ¹ÝµµÃ¼ °³¹ß¿¡ ÁýÁßÇÏ´Â ±â¾÷Àº ÇâÈÄ ¼ö³â°£ Å« ¼ºÀåÀ» ±â´ëÇÒ ¼ö ÀÖ´Â ¼öÀͼº ³ôÀº ½ÃÀå ºÎ¹®À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

°ø±Þ¸Á Áß´Ü

ÁöÁ¤ÇÐÀû ±äÀå, ¹«¿ªÀüÀï, COVID-19 ÆÒµ¥¹Í°ú °°Àº ÃÖ±Ù ¼¼°è À̽´·Î ÀÎÇØ RF ¹ÝµµÃ¼ »ê¾÷¿¡ °ø±Þ¸Á È¥¶õÀÌ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼ °ø±Þ¸ÁÀº ¸Å¿ì »óÈ£ ¿¬°ü¼ºÀÌ ³ô°í º¹ÀâÇϹǷΠ±× ÀϺÎÀÇ È¥¶õÀº Àüü »ýŰ迡 ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. »ý»ê ÀÏÁ¤°ú ¸®µåŸÀÓÀº °ü¼¼ Àλó°ú ¼öÃâ ±ÔÁ¦¸¦ ÃÊ·¡ÇÑ ¹Ì±¹°ú Áß±¹ °£ÀÇ ¹«¿ª ºÐÀïÀ¸·Î ÀÎÇØ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷ÀÌ ½ÃÀå ¼ö¿ä¿¡ ´ëÀÀÇÏÁö ¸øÇÏ¸é °á±¹ ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡ ¿µÇâÀ» ¹Þ¾Æ ºñ¿ë Áõ°¡, »ý»ê Áö¿¬ ¹× Çʼö ºÎǰ ºÎÁ·À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19°¡ RF ¹ÝµµÃ¼ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡¸é¼­ ¿©·¯ ¹æ¸é¿¡¼­ Å« È¥¶õÀÌ ¹ß»ýÇÏ¿´½À´Ï´Ù. Ãʱ⿡´Â »ý»êÀÌ Áß´ÜµÇ°í ºÀ¼â¿Í Á¦ÇÑÀ¸·Î ÀÎÇØ °ø±Þ¸ÁÀÌ Áö¿¬µÇ¾î Çʼö ºÎǰÀÇ Àü¹ÝÀûÀÎ ºÎÁ·ÀÌ ¹ß»ýÇß½À´Ï´Ù. ¿ø°Ý ±Ù¹« ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÐ¾ßÀÇ ÀüÀÚ Á¦Ç° ¼ö¿ä°¡ ±ÞÁõÇϸ鼭 Àü¿°º´°ú °ü·ÃµÈ ¼¼°è Ĩ ºÎÁ·Àº À̸¦ ´õ¿í ¾ÇÈ­½ÃÄ×½À´Ï´Ù. °æ±â ħü·Î ÀÎÇØ ¹«¼± Á֯ļö ±â¼ú Çõ½ÅÀÌ µÐÈ­µÇ¾î ¿¬±¸°³¹ß ºñ¿ë¿¡µµ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ Åë½Å ¹× ÀÚµ¿Â÷ »ê¾÷°ú °°ÀÌ RF ºÎǰ¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ºÐ¾ß ¼ö¿ä º¯È­·Î ÀÎÇØ ½ÃÀåÀÇ ºÒ¾ÈÁ¤¼º°ú ºÒÈ®½Ç¼ºÀÌ Áõ°¡Çß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Àü·Â ÁõÆø±â ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Î»ý ÀüÀÚ±â±â ¹× Åë½Å ºÐ¾ß¿¡¼­ °í¼º´É µð¹ÙÀ̽º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó RF Àü·Â ÁõÆø±â ºÐ¾ß°¡ RF ¹ÝµµÃ¼ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. À̵¿Åë½Å ±â¼úÀÇ ¹ßÀü, ƯÈ÷ 5GÀÇ µµÀÔ°ú ÇÔ²² È¿°úÀûÀÎ RF Àü·Â ÁõÆø±â¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÁõÆø±â´Â ±âÁö±¹, ÅÂºí¸´, ÈÞ´ëÆù°ú °°Àº °¡Á¬ÀÇ ½ÅÈ£ °­µµ¸¦ ³ôÀÌ´Â µ¥ ÇʼöÀûÀ̸ç, ´õ ºü¸¥ µ¥ÀÌÅÍ Àü¼Û°ú ´õ ³ªÀº ¿¬°á¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¶ÇÇÑ RF Àü·Â ÁõÆø±â ±â¼ú¿¡ ÁúÈ­°¥·ý(GaN)°ú °°Àº Àç·á¸¦ »ç¿ëÇÏ¿© ¼º´É°ú È¿À²À» Çâ»ó½ÃÄÑ ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¸¦ ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù.

ÃʰíÁÖÆÄ(SHF) ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

RF ¹ÝµµÃ¼ ½ÃÀå Áß ÃʰíÁÖÆÄ(SHF) ºÎ¹®Àº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀ» À̲ô´Â ÁÖ¿ä ¿äÀÎÀº ¹«¼±Åë½Å ¹× Åë½Å ¿ëµµ, ƯÈ÷ 5G ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀü°ú ÇÔ²² SHF RF ¹ÝµµÃ¼ÀÇ ºü¸¥ µµÀÔ¿¡ ±âÀÎÇÕ´Ï´Ù. À§¼º Åë½Å, ·¹ÀÌ´õ ½Ã½ºÅÛ, ÷´Ü ¹«¼± ³×Æ®¿öÅ© µî ³ôÀº µ¥ÀÌÅÍ ¼Óµµ¿Í ´ë¿ªÆøÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ´Â 3-30GHz Á֯ļö ´ë¿ª¿¡¼­ ÀÛµ¿ÇÏ´Â SHF°¡ °¡Àå ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ µ¥ÀÌÅÍ Àü¼Û ¼Óµµ¿Í ¿¬°á¼º Çâ»ó¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó SHF ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä´Â ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

½ÃÀå Á¡À¯À²¿¡¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀº RF ¹ÝµµÃ¼ »ê¾÷À» Áö¹èÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ìÀ§ÀÇ ¹è°æ¿¡´Â Åë½ÅÀÇ ±Þ¼ÓÇÑ ¹ßÀü, ƯÈ÷ 5G ±â¼úÀÇ µµÀÔ°ú ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ »ç¹°ÀÎÅͳÝ(IoT) ±â±âÀÇ º¸±ÞÀÌ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È®ÀåÀ» ÁÖµµÇϰí ÀÖ´Â ±¹°¡´Â Áß±¹, Àεµ µî °¡ÀüÁ¦Ç°°ú ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿¡ ´ë±Ô¸ð ÅõÀÚ¸¦ Çϰí ÀÖ´Â ±¹°¡µéÀÔ´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß¿äÇÑ Á¦Á¶¾÷ü¿Í °­·ÂÇÑ ÀüÀÚ »ê¾÷ÀÌ Á¸ÀçÇϹǷΠRF ¹ÝµµÃ¼ ½ÃÀåÀÇ ±â¼ú Çõ½Å°ú »ý»êÀÇ Áß¿äÇÑ °ÅÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

RF ¹ÝµµÃ¼ ½ÃÀåÀº À¯·´¿¡¼­ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, V2X(Vehicle-to-Everything) Åë½Å ¹× ÀÚÀ²ÁÖÇà ±â¼ú°ú °°Àº ¿ëµµ¸¦ À§ÇØ ¸¶ÀÌÅ©·Î ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ´Â ÀÚµ¿Â÷ »ê¾÷ÀÌ ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÁÖ¿ä ¿øÀÎÀ¸·Î ²ÅÈü´Ï´Ù. RF ¹ÝµµÃ¼ ±â¼ú °³¹ßÀº À¯·´ À§¿øÈ¸ÀÇ 5G ±â¼ú¿¡ ´ëÇÑ Çå½Å°ú Horizon 2020°ú °°Àº ÇÁ·Î±×·¥À» ÅëÇÑ ¸·´ëÇÑ °ø°ø ÀÚ±Ý Áö¿øÀ¸·Î ´õ¿í Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬°á¼º Çâ»ó°ú ½º¸¶Æ® ±â¼ú·Î ÀÎÇØ º¸´Ù È¿À²ÀûÀÎ RF ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, À¯·´Àº ÀÌ·¯ÇÑ ½ÅÈï ½ÃÀåÀ» °³Ã´ÇÏ´Â µ¥ À¯¸®ÇÑ À§Ä¡¿¡ ÀÖÀ¸¸ç, ¼¼°è RF ¹ÝµµÃ¼ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ÀÇ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : µð¹ÙÀ̽ºº°

  • ÆÄ¿ö ¾ÚÇÁ
  • ÇÊÅÍ
  • ½ºÀ§Ä¡
  • Àú³ëÀÌÁî ¾ÚÇÁ
  • À§»ó ½ÃÇÁÅÍ
  • ¹ßÁø±â
  • °¨¼è±â
  • Ä¿Ç÷¯
  • ¾ÈÅ׳ª Æ©³Ê
  • ±âŸ µð¹ÙÀ̽º

Á¦6Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : Á֯ļö´ëº°

  • VHF¿Í UHF
  • ÃʰíÁÖÆÄ(SHF)
  • ±ØÃÊ´ÜÆÄ(EHF)

Á¦7Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : µ¿ÀÛ Àü¾Ðº°

  • 5V ¹Ì¸¸
  • 5-20V
  • 20V Ãʰú

Á¦8Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : ¿þÀÌÆÛ »çÀÌÁ

  • 200¹Ð¸®¹ÌÅÍ ¹Ì¸¸
  • 200¹Ð¸®¹ÌÅÍ
  • 300¹Ð¸®¹ÌÅÍ

Á¦9Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : Àç·áº°

  • ½Ç¸®ÄÜ(Si)
  • ½Ç¸®ÄÜ °Ô¸£¸¶´½(SiGe)
  • °¥·ý ºñ¼Ò(GaAs)¿Í ¾ÐÀü ±âÆÇ
  • ÁúÈ­°¥·ý(GaN)
  • ÀÎÈ­Àεã(InP)

Á¦10Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : ¿ëµµº°

  • ¼ÒºñÀÚ¿ë µð¹ÙÀ̽º
  • Åë½Å
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • CATV¿Í À¯¼± ºê·Îµå¹êµå
  • RF ¿¡³ÊÁö
  • Å×½ºÆ®¿Í ÃøÁ¤
  • ±âŸ ¿ëµµ

Á¦11Àå ¼¼°èÀÇ RF ¹ÝµµÃ¼ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Broadcom Inc.
  • Fujitsu Limited
  • Huawei Technologies Co. Ltd.
  • Infineon Technologies AG
  • NXP Semiconductors
  • Analog Devices, Inc.
  • ZTE Corporation
  • Murata Manufacturing Co., Ltd.
  • Toshiba Corporation
  • Microchip Technology Inc.
  • Texas Instruments Incorporated
  • ON Semiconductor
  • STMicroelectronics N.V.
  • Qualcomm Incorporated
  • TE Connectivity Ltd.
  • Qorvo, Inc
KSA 24.11.07

According to Stratistics MRC, the Global RF Semiconductor Market is accounted for $25.94 billion in 2024 and is expected to reach $47.23 billion by 2030 growing at a CAGR of 10.5% during the forecast period. Specialized equipment operating in the radio frequency spectrum, which normally spans from 3 KHz to 300 GHz, is known as an RF semiconductor. In many different applications, such as wireless communications, radar systems, and medical devices, these semiconductors are essential. In order to enable faster data transmission and higher bandwidth in communication systems, their design must be able to operate efficiently at high frequencies. Moreover, RF semiconductors are commonly made of silicon (Si), silicon carbide (SiC), gallium arsenide (GaAs), and gallium nitride (GaN).

According to the Semiconductor Industry Association (SIA), global semiconductor sales reached $555.9 billion in 2021, an increase of 26.2% over 2020, with RF semiconductors playing a crucial role in wireless communication and 5G adoption.

Market Dynamics:

Driver:

Growing uptake of mobile communication technologies

The market for RF semiconductors is significantly influenced by the switch from 4G to 5G technology. In order to manage higher data rates and reduced latency, 5G networks need more intricate and high-frequency radio frequency components. The demand for RF power amplifiers, filters, and switches is rising as a result of this change. Furthermore, as 5G infrastructure is deployed globally, RF semiconductor makers will have the chance to innovate and meet the demanding specifications of next-generation networks.

Restraint:

Exorbitant prices for cutting-edge materials

A major obstacle is the rising cost of high-performance materials such as gallium nitride (GaN) and gallium arsenide (GaAs). The development of effective RF devices with improved performance attributes, such as increased power density and thermal stability, at higher frequencies requires the use of these materials. Their higher price in comparison to conventional silicon-based devices, however, may prevent them from being widely used in the market, especially in areas or applications where affordability is a factor. Additionally, higher overall production costs are a result of the more complicated and resource-intensive manufacturing processes used to create these advanced materials.

Opportunity:

Development of internet of things applications

The RF semiconductor market is poised for significant growth due to the swift uptake of Internet of Things (IoT) devices. The need for dependable radio frequency components will rise as smart devices spread throughout a number of industries, such as healthcare, automotive, and home automation. These elements are essential for guaranteeing effective data transfer, facilitating device communication, and improving system performance as a whole. Furthermore, a profitable market segment that is expected to grow significantly in the upcoming years is available to companies that concentrate on developing RF semiconductors specifically for IoT applications.

Threat:

Supply chain interruptions

Geopolitical tensions, trade wars, and recent global events such as the COVID-19 pandemic have made supply chain disruptions a serious threat to the RF semiconductor industry. A disruption in one part of the semiconductor supply chain can have repercussions for the entire ecosystem since it is so interconnected and complex. Production schedules and lead times may be impacted by the ongoing trade dispute between the United States and China, which has resulted in higher tariffs and export controls. Additionally, the inability of businesses to meet market demand may ultimately be impacted by these difficulties, which may lead to higher expenses, production delays, and possible shortages of essential components.

Covid-19 Impact:

Significant disruptions in multiple dimensions were caused by the COVID-19 pandemic, which had a profound effect on the RF semiconductor market. At first, production was stopped and supply chains were delayed by lockdowns and restrictions, which caused a general shortage of essential components. Due to a spike in demand for electronics in the remote work and entertainment sectors, the pandemic-related worldwide chip shortage made this worse. Innovation in radio frequency technologies was slowed by the economic downturn, which also had an impact on R&D spending. Moreover, market instability and uncertainty were brought about by shifting demand from sectors that significantly rely on RF components, such as telecommunications and the automotive industry.

The Power Amplifier segment is expected to be the largest during the forecast period

Due to the growing need for high-performance devices in consumer electronics and telecommunications, the RF power amplifier segment dominates the RF semiconductor market. As mobile communication technologies progress, especially with the introduction of 5G, there is an increasing demand for effective RF power amplifiers. These amplifiers are essential for increasing signal strength in gadgets like base stations, tablets, and cellphones, which permits quicker data transfer and better connectivity. Furthermore, the use of materials like gallium nitride (GaN) in RF power amplifier technology has improved performance and efficiency, further solidifying its dominance in the market.

The Super High Frequency (SHF) segment is expected to have the highest CAGR during the forecast period

Within the RF semiconductor market, the super high frequency (SHF) segment is anticipated to grow at the highest CAGR. The primary factor propelling this growth is the swift implementation of SHF RF semiconductors in wireless communication and telecommunication applications, especially with the continuous advancement of 5G technology. For applications needing high data rates and bandwidth, like satellite communications, radar systems, and advanced wireless networks, SHF, which operates in the frequency range of 3 to 30 GHz, is perfect. Moreover, the need for SHF components is further fueled by the growing emphasis on boosting data transmission speeds and connectivity in consumer electronics.

Region with largest share:

In terms of market share, the Asia-Pacific region dominates the RF semiconductor industry. The main forces behind this dominance are the quick development of telecommunications, especially with the introduction of 5G technology, and the growing uptake of Internet of Things (IoT) devices in a variety of industries. Leading the way in this expansion are nations like China and India, who have made large investments in consumer electronics and network infrastructure. Additionally, Asia-Pacific is a key hub for innovation and production in the RF semiconductor market due to the presence of significant manufacturers and a strong electronics industry.

Region with highest CAGR:

The RF semiconductor market is expected to grow at the highest CAGR in the European region. The automotive industry, which depends more and more on microelectronics for applications like Vehicle-to-Everything (V2X) communication and autonomous driving technologies, is largely responsible for this growth. The development of RF semiconductor technologies is further supported by the European Commission's commitment to 5G technology and significant public funding via programs like Horizon 2020. Furthermore, with increased connectivity and smart technologies driving the need for more efficient RF components, Europe is well-positioned to take advantage of these developments and establish itself as a major player in the global RF semiconductor market.

Key players in the market

Some of the key players in RF Semiconductor market include Broadcom Inc., Fujitsu Limited, Huawei Technologies Co. Ltd., Infineon Technologies AG, NXP Semiconductors, Analog Devices, Inc., ZTE Corporation, Murata Manufacturing Co., Ltd., Toshiba Corporation, Microchip Technology Inc., Texas Instruments Incorporated, ON Semiconductor, STMicroelectronics N.V., Qualcomm Incorporated, TE Connectivity Ltd. and Qorvo, Inc.

Key Developments:

In September 2024, Fujitsu Limited and Stellar Science Foundation, a General Incorporated Association have entered into a partnership focused on discovering and supporting the next generation of scientific researchers and fostering the creation of cutting-edge research topics. Through this partnership, Fujitsu will contribute funds to SS-F to support the creation of a unique scientific research ecosystem that promotes collaboration and interaction among researchers.

In April 2024, Huawei and EDMI announced signing a patent license agreement under fair, reasonable, and non-discriminatory (FRAND) conditions. Huawei will grant a cellular IoT Standard Essential Patents (SEPs) license. This agreement represents recognition of the strength of Huawei's cellular IoT SEPs from industry peers. It also enables EDMI to secure its own business and provide comprehensive legal protection to its customers.

In November 2023, Broadcom closed its $69 billion acquisition of cloud-computing firm VMware (VMW.N), opens new tab after receiving regulatory approval in last major market China and ending a months-long saga. The deal, one of the biggest globally when announced in May 2022, was the latest in CEO Hock Tan's efforts to boost the chipmaker's software business.

Devices Covered:

  • Power Amplifier
  • Filter
  • Switch
  • Low Noise Amplifier
  • Phase Shifters
  • Oscillators
  • Attenuators
  • Couplers
  • Antenna Tuners
  • Other Devices

Frequency Bands Covered:

  • VHF & UHF
  • Super High Frequency (SHF)
  • Extremely High Frequency (EHF)

Operating Voltages Covered:

  • <5 V
  • 5-20 V
  • >20 V

Wafer Sizes Covered:

  • <200 mm
  • 200 mm
  • 300 mm

Materials Covered:

  • Silicon (Si)
  • Silicon-Germanium (SiGe)
  • Gallium Arsenide (GaAs) & Piezoelectric Substrate
  • Gallium Nitride (GaN)
  • Indium Phosphide (InP)

Applications Covered:

  • Consumer Devices
  • Telecommunication
  • Aerospace & Defense
  • Automotive
  • CATV & Wired Broadband
  • RF Energy
  • Test & Measurement
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global RF Semiconductor Market, By Device

  • 5.1 Introduction
  • 5.2 Power Amplifier
  • 5.3 Filter
  • 5.4 Switch
  • 5.5 Low Noise Amplifier
  • 5.6 Phase Shifters
  • 5.7 Oscillators
  • 5.8 Attenuators
  • 5.9 Couplers
  • 5.10 Antenna Tuners
  • 5.11 Other Devices

6 Global RF Semiconductor Market, By Frequency Band

  • 6.1 Introduction
  • 6.2 VHF & UHF
  • 6.3 Super High Frequency (SHF)
  • 6.4 Extremely High Frequency (EHF)

7 Global RF Semiconductor Market, By Operating Voltage

  • 7.1 Introduction
  • 7.2 <5 V
  • 7.3 5-20 V
  • 7.4 >20 V

8 Global RF Semiconductor Market, By Wafer Size

  • 8.1 Introduction
  • 8.2 <200 mm
  • 8.3 200 mm
  • 8.4 300 mm

9 Global RF Semiconductor Market, By Material

  • 9.1 Introduction
  • 9.2 Silicon (Si)
  • 9.3 Silicon-Germanium (SiGe)
  • 9.4 Gallium Arsenide (GaAs) & Piezoelectric Substrate
  • 9.5 Gallium Nitride (GaN)
  • 9.6 Indium Phosphide (InP)

10 Global RF Semiconductor Market, By Application

  • 10.1 Introduction
  • 10.2 Consumer Devices
  • 10.3 Telecommunication
  • 10.4 Aerospace & Defense
  • 10.5 Automotive
  • 10.6 CATV & Wired Broadband
  • 10.7 RF Energy
  • 10.8 Test & Measurement
  • 10.9 Other Applications

11 Global RF Semiconductor Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Broadcom Inc.
  • 13.2 Fujitsu Limited
  • 13.3 Huawei Technologies Co. Ltd.
  • 13.4 Infineon Technologies AG
  • 13.5 NXP Semiconductors
  • 13.6 Analog Devices, Inc.
  • 13.7 ZTE Corporation
  • 13.8 Murata Manufacturing Co., Ltd.
  • 13.9 Toshiba Corporation
  • 13.10 Microchip Technology Inc.
  • 13.11 Texas Instruments Incorporated
  • 13.12 ON Semiconductor
  • 13.13 STMicroelectronics N.V.
  • 13.14 Qualcomm Incorporated
  • 13.15 TE Connectivity Ltd.
  • 13.16 Qorvo, Inc
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦