½ÃÀ庸°í¼­
»óǰÄÚµå
1577175

¼¼°èÀÇ µöÆäÀÌÅ© ±â¼ú ½ÃÀå ¿¹Ãø(-2030³â) : ÄÁÅÙÃ÷ À¯Çüº°, ±¸¼º¿ä¼Òº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Deepfake Technology Market Forecasts to 2030 - Global Analysis By Content Type (Video Deepfakes, Image Deepfakes, Audio Deepfakes, Text Deepfakes and Other Content Types), Component, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è µöÆäÀÌÅ© ±â¼ú ½ÃÀåÀº 2024³â 77¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 24.5%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 290¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µöÆäÀÌÅ© ±â¼úÀº ÀΰøÁö´ÉÀ» Ȱ¿ëÇØ ÃÊÇö½ÇÀûÀÎ µðÁöÅÐ ÄÁÅÙÃ÷, ƯÈ÷ ½ÇÁ¦ Àι°À» ¸ð¹æÇÑ ¿µ»ó°ú À½¼ºÀ» ¸¸µé¾î³»´Â ±â¼úÀÔ´Ï´Ù. µö·¯´× ¾Ë°í¸®ÁòÀ» ÅëÇØ ¹Ìµð¾î¸¦ ¸Å²ô·´°Ô Á¶ÀÛÇϰųª »ý¼ºÇÒ ¼ö ÀÖ¾î ÁøÂ¥¿Í °¡Â¥¸¦ ±¸ºÐÇÏ±â ¾î·Æ°Ô ¸¸µì´Ï´Ù. ÀÌ ±â¼úÀº ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿Í ±³À°¿¡ Àû¿ëµÉ °ÍÀ¸·Î ±â´ëµÇ´Â ¹Ý¸é, ¿Àº¸³ª »ç±â, ¾ÇÀÇÀûÀΠȰµ¿¿¡ ¾Ç¿ëµÉ ¼ö ÀÖ¾î À±¸®Àû ¿ì·Áµµ Ä¿ È¿°úÀûÀΠŽÁö ¹æ¹ý°ú Ã¥ÀÓ°¨ ÀÖ´Â »ç¿ë °¡À̵å¶óÀÎÀÇ °³¹ßÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

°³ÀÎÈ­µÈ ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

°³ÀÎÈ­ ÄÁÅÙÃ÷¿¡ ´ëÇÑ ½ÃÀå ¼ö¿ä Áõ°¡´Â AIÀÇ ¹ßÀü°ú ¸ÂÃãÇü °æÇè¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ëÄ¡°¡ ³ô¾ÆÁö¸é¼­ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¸¶ÄÉÆÃ, ±³À° µî ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â¾÷µéÀÌ µöÆäÀÌÅ© ±â´ÉÀ» Ȱ¿ëÇÏ¿© °³º° ½ÃûÀÚÀÇ ¸¶À½À» »ç·ÎÀâÀ» ¼ö ÀÖ´Â ¸ÂÃãÇü ¹Ìµð¾î¸¦ Á¦ÀÛÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ ÅëÇØ ºê·£µå´Â »ç¿ëÀÚ¸¦ ´õ È¿°úÀûÀ¸·Î Âü¿©½Ã۰í, ½ºÅ丮ÅÚ¸µÀ» °­È­Çϸç, °í°´ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

ºü¸£°Ô ÁøÈ­ÇÏ´Â Á¶ÀÛ ±â¼ú

½ÃÀå Á¶ÀÛ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀº À߸øµÈ Á¤º¸ÀÇ È®»ê°ú µðÁöÅÐ ¹Ìµð¾î¿¡ ´ëÇÑ ½Å·Úµµ Ç϶ô µî ½É°¢ÇÑ ºÎÀÛ¿ëÀ» ÃÊ·¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÌ °íµµÈ­µÉ¼ö·Ï ÁøÂ¥ ÄÁÅÙÃ÷¿Í °¡Â¥ ÄÁÅÙÃ÷¸¦ ±¸ºÐÇϱ⠾î·Á¿öÁö°í, »ç±â, ±«·ÓÈû, Á¤Ä¡Àû Á¶ÀÛ¿¡ ¾Ç¿ëµÉ °¡´É¼ºÀÌ ³ô¾ÆÁý´Ï´Ù. µû¶ó¼­ ÀÌ·¯ÇÑ À§ÇèÀ» È¿°úÀûÀ¸·Î ¿ÏÈ­Çϱâ À§ÇÑ Å½Áö ¹æ¹ýÀÇ °­È­¿Í ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ ¹Ìµð¾î Ç÷§ÆûÀÇ È®»ê

µðÁöÅÐ ¹Ìµð¾î Ç÷§ÆûÀÇ È®»ê

µðÁöÅÐ ¹Ìµð¾î Ç÷§ÆûÀÇ È®»êÀº Á¶ÀÛµÈ ÄÁÅÙÃ÷¸¦ °øÀ¯ÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖ´Â Á¢±Ù °¡´ÉÇÑ Ã¤³ÎÀ» Á¦°øÇÔÀ¸·Î½á ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¼Ò¼È ¹Ìµð¾î¿Í µ¿¿µ»ó ½ºÆ®¸®¹Ö ¼­ºñ½º¿Í °°Àº Ç÷§ÆûÀÌ ¼ºÀåÇÔ¿¡ µû¶ó µöÆäÀÌÅ©ÀÇ ±Þ¼ÓÇÑ È®»êÀÌ ÃËÁøµÇ¾î Çö½Ç°ú Ç㱸ÀÇ °æ°è°¡ ¸ðÈ£ÇØÁö´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±ÙÀÇ ¿ëÀ̼ºÀº ¿£ÅÍÅ×ÀÎ¸ÕÆ®¿Í ¸¶ÄÉÆÃ ºÐ¾ß¿¡¼­ âÀÇÀûÀÎ ÀÀ¿ë °¡´É¼ºÀ» ³ô¿©ÁÖÁö¸¸, µ¿½Ã¿¡ ¿Àº¸, ÇÁ¶óÀ̹ö½Ã Ä§ÇØ, À±¸®Àû Àǹ̿¡ ´ëÇÑ ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°±âµµ ÇÕ´Ï´Ù.

±â¾÷ ³» ³·Àº ÀÎÁöµµ

µöÆäÀÌÅ© ±â¼ú¿¡ ´ëÇÑ ±â¾÷ÀÇ ÀνÄÀÌ ºÎÁ·Çϸé ÀǵµÄ¡ ¾ÊÀº ¿À¿ëÀ̳ª Á¶ÀÛ¿¡ ´ëÇÑ Ãë¾à¼º µî ½É°¢ÇÑ ¾Ç¿µÇâÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¹Àº Á¶Á÷ÀÌ µöÆäÀÌÅ©¿Í °ü·ÃµÈ ÀáÀçÀû À§ÇèÀ» ÃæºÐÈ÷ ÀÌÇØÇÏÁö ¸øÇÒ ¼ö ÀÖÀ¸¸ç, ÇãÀ§ Á¤º¸ Ä·ÆäÀÎ, »ç±â, À¯¾ðºñ¾î¿¡ ½±°Ô ³ëÃâµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö½ÄÀÇ ºÎÁ·Àº È¿°úÀûÀÎ Á¤Ã¥ ¹× º¸È£ ¼ö´ÜÀÇ °³¹ßÀ» ¹æÇØÇϰí, ±â¾÷À» ¹ýÀû Ã¥ÀÓ¿¡ ³ëÃâ½Ã۸ç, ¼ÒºñÀÚ ½Å·Ú¸¦ ÈѼÕÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

Äڷγª19´Â µðÁöÅÐ ÄÁÅÙÃ÷ ¼Òºñ¿Í ¿ø°Ý Ä¿¹Â´ÏÄÉÀÌ¼Ç µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­ÇÏ¿© ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. »ç¶÷µéÀÌ ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ±³À°, »çȸÀû ±³·ù¸¦ À§ÇØ ¿Â¶óÀÎ Ç÷§ÆûÀ» ÀÌ¿ëÇÏ°Ô µÇ¸é¼­ °³ÀÎÈ­µÈ ¸ôÀÔÇü ¹Ìµð¾î¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ µðÁöÅÐ Âü¿©ÀÇ ±ÞÁõÀº °¡»ó À̺¥Æ®, ¿Â¶óÀÎ ÇнÀ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ µöÆäÀÌÅ© ¿ëµµÀÇ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çß½À´Ï´Ù. ±×·¯³ª ¿Àº¸¿Í µöÆäÀÌÅ©ÀÇ À±¸®Àû »ç¿ë¿¡ ´ëÇÑ ¿ì·Áµµ Ä¿Áö¸é¼­ ´õ ³ªÀº ±ÔÁ¦¿Í ŽÁö ¼ö´ÜÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù.

À½¼º µöÆäÀÌÅ© ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À½¼º µöÆäÀÌÅ© ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ±â¼úÀº ¿£ÅÍÅ×ÀÎ¸ÕÆ®, °ÔÀÓ, °³ÀÎÈ­µÈ ÄÁÅÙÃ÷¿¡ Àû¿ëµÇ°í ÀÖÀ¸¸ç, Å©¸®¿¡ÀÌÅͰ¡ »ç½ÇÀûÀÎ ³»·¹À̼ÇÀ» ¸¸µé°Å³ª ¿ª»çÀû Àι°ÀÇ ¿¬¼³À» ÀçÇöÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. ±×·¯³ª À½¼º µöÆäÀÌÅ©ÀÇ µîÀåÀº »ç±â, ¿Àº¸, °³ÀÎÁ¤º¸ µµ¿ë¿¡ ¾Ç¿ëµÉ °¡´É¼º µî ½É°¢ÇÑ À±¸®Àû ¿ì·Á¸¦ ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó °­·ÂÇÑ Å½Áö µµ±¸¿Í ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Åë½Å ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Åë½Å ºÐ¾ß´Â ³×Æ®¿öÅ©¸¦ ÅëÇØ µöÆäÀÌÅ© ÄÁÅÙÃ÷¸¦ ºü¸£°Ô Àü¼ÛÇÏ°í °øÀ¯ÇÒ ¼ö ÀÖ´Â Åë½Å ºÐ¾ß°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ð¹ÙÀϰú ÀÎÅÍ³Ý ¿¬°á¼ºÀÌ Çâ»óµÊ¿¡ µû¶ó »ç¿ëÀÚ´Â Á¤±³ÇÑ µöÆäÀÌÅ©¿¡ ½±°Ô Á¢±ÙÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖ°Ô µÇ¾î Ä¿¹Â´ÏÄÉÀ̼ǰú ¹Ìµð¾î ¼Òºñ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. Åë½Å»çµéÀº ¿Àº¸¿Í ÇÁ¶óÀ̹ö½Ã Ä§ÇØ·Î À̾îÁú ¼ö ÀÖ´Â À¯ÇØÇÑ µöÆäÀÌÅ©ÀÇ È®»êÀ» °¨ÁöÇÏ°í ¿ÏÈ­ÇØ¾ß ÇÏ´Â °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ÀΰøÁö´ÉÀÇ ¹ßÀü°ú ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Çõ½ÅÀûÀÎ ÄÁÅÙÃ÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¾÷ ¹× ¿¬±¸ ±â°üÀÇ ÅºÅºÇÑ ±â¼ú »ýŰè´Â ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¸¶ÄÉÆÃ, º¸¾È ºÐ¾ß¿¡¼­ ÷´Ü µöÆäÀÌÅ© ¿ëµµÀÇ °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú µðÁöÅÐ Âü¿© Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µöÆäÀÌÅ©´Â ¿µÈ­¿Í ¸¶ÄÉÆÃ Ä·ÆäÀο¡¼­ ¸Å·ÂÀûÀÎ ÄÁÅÙÃ÷¸¦ Á¦ÀÛÇÏ´Â µ¥ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÎÅÍ·¢Æ¼ºê ±³À° ÀÚ·á Á¦ÀÛ¿¡ µöÆäÀÌÅ© ±â¼úÀ» Ȱ¿ëÇÏ¿© ½ÇÁ¦¿Í °°Àº ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ÇнÀ °æÇèÀ» Çâ»ó½ÃŰ´Â °Í¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ ¼ºÀåÇÔ¿¡ µû¶ó Áö¼Ó °¡´ÉÇÑ ¹ßÀüÀ» À§Çؼ­´Â Çõ½Å°ú À±¸®Àû °í·ÁÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀÌ Áß¿äÇØÁ³½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : ÄÁÅÙÃ÷ À¯Çüº°

  • ºñµð¿À µö ÆäÀÌÅ©
  • ¿µ»ó µö ÆäÀÌÅ©
  • ¿Àµð¿À µö ÆäÀÌÅ©
  • ÅØ½ºÆ® µö ÆäÀÌÅ©
  • ±âŸ ÄÁÅÙÃ÷ À¯Çü

Á¦6Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼ÒÇÁÆ®¿þ¾î
    • µö ÆäÀÌÅ© »ý¼º ¼ÒÇÁÆ®¿þ¾î
    • ¹Ìµð¾î ÀÎÁõ Åø
    • ¹ýÀÇÇÐ ºÐ¼® ¼ÒÇÁÆ®¿þ¾î
    • ÄÜÅÙÃ÷ ÁßÀç ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
  • Çϵå¿þ¾î
    • °í¼º´É GPU
    • °è»ê ÀÎÇÁ¶ó

Á¦7Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : ±â¼úº°

  • Generative Adversarial Networks (GANs)
  • ¿ÀÅä ÀÎÄÚ´õ
  • Recurrent Neural Networks (RNNs)
  • È®»ê ¸ðµ¨
  • ÀÚ¿¬¾ð¾îó¸®(NLP)
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : ¿ëµµº°

  • Äݼ¾ÅÍ º¸¾È
  • ºÎÁ¤ÇàÀ§ ŽÁö
  • ±¹°¡ ¾Èº¸
  • ÀÇ·á Æ®·¹ÀÌ´× ¹× ½Ã¹Ä·¹À̼Ç
  • µðÁöÅÐ ÄÁÅÙÃ÷ Á¦ÀÛ
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Åë½Å
  • Á¤ºÎ ¹× ¹æÀ§
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å ¹× E-Commerce
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ µö ÆäÀÌÅ© ±â¼ú ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Intel Corporation
  • NVIDIA
  • Facebook
  • Google LLC
  • Twitter
  • Cogito Tech
  • Tencent
  • Microsoft
  • Kairos
  • Reface AI
  • Amazon Web Services
  • Adobe
  • TikTok
  • DeepWare AI
LSH 24.11.11

According to Stratistics MRC, the Global Deepfake Technology Market is accounted for $7.7 billion in 2024 and is expected to reach $29.0 billion by 2030 growing at a CAGR of 24.5% during the forecast period. Deepfake technology utilizes artificial intelligence to create hyper-realistic digital content, particularly videos and audio that mimics real people. By employing deep learning algorithms, it can seamlessly manipulate or generate media, making it challenging to distinguish between authentic and fabricated content. While this technology has potential applications in entertainment and education, it also poses significant ethical concerns, as it can be exploited for misinformation, fraud, and malicious activities, necessitating the development of effective detection methods and responsible usage guidelines.

Market Dynamics:

Driver:

Growing demand for personalized content

The growing demand for personalized content in the market is driven by advancements in AI and increasing consumer expectations for tailored experiences. Businesses across various sectors, including entertainment, marketing, and education, seek to leverage deepfake capabilities to create customized media that resonates with individual audiences. This trend allows brands to engage users more effectively, enhance storytelling, and improve customer experiences.

Restraint:

Rapidly evolving manipulation techniques

The rapid evolution of manipulation techniques in the market poses significant negative effects, including the proliferation of misinformation and erosion of trust in digital media. As these techniques become more sophisticated, it becomes increasingly difficult to distinguish between real and fabricated content, leading to potential exploitation for fraud, harassment, and political manipulation. Consequently, there is an urgent need for enhanced detection methods and regulatory frameworks to mitigate these risks effectively.

Opportunity:

Proliferation of digital media platforms

The proliferation of digital media platforms has significantly impacted the market by providing accessible channels for sharing and distributing manipulated content. As platforms like social media and video streaming services grow, they facilitate the rapid spread of deepfakes, often blurring the lines between reality and fiction. This accessibility increases the potential for creative applications in entertainment and marketing, but it also raises concerns about misinformation, privacy violations, and the ethical implications.

Threat:

Limited awareness among enterprises

Limited awareness among enterprises regarding deepfake technology can lead to significant negative effects, including unintentional misuse and vulnerability to manipulation. Many organizations may not fully understand the potential risks associated with deepfakes, making them susceptible to misinformation campaigns, fraud, and reputational damage. This lack of knowledge can hinder the development of effective policies and protective measures, exposing businesses to legal liabilities and eroding consumer trust.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the market by accelerating digital content consumption and the demand for remote communication tools. As people turned to online platforms for entertainment, education, and social interaction, the interest in personalized and immersive media grew. This surge in digital engagement spurred innovation in deepfake applications across various sectors, including virtual events and online learning. However, it also heightened concerns about misinformation and the ethical use of deepfakes, prompting calls for better regulation and detection measures.

The audio deepfakes segment is projected to be the largest during the forecast period

The audio deepfakes segment is projected to account for the largest market share during the projection period. This technology has applications in entertainment, gaming, and personalized content, allowing creators to produce realistic voiceovers or re-create historical figures' speeches. However, the rise of audio deepfakes raises significant ethical concerns, including potential misuse for fraud, misinformation, and identity theft. As awareness grows, the need for robust detection tools and regulatory frameworks becomes increasingly critical.

The telecommunications segment is expected to have the highest CAGR during the forecast period

The telecommunications segment is expected to have the highest CAGR during the extrapolated period enabling the rapid transmission and sharing of deepfake content across networks. As mobile and internet connectivity improve, users can easily access and distribute sophisticated deepfakes, impacting communication and media consumption. Telecommunications companies face challenges in detecting and mitigating the spread of harmful deepfakes, which can lead to misinformation and privacy violations.

Region with largest share:

North America region is projected to account for the largest market share during the forecast period driven by advancements in artificial intelligence and increasing demand for innovative content across various industries. The region's robust tech ecosystem, characterized by leading companies and research institutions, fosters the development of sophisticated deepfake applications in entertainment, marketing, and security.

Region with highest CAGR:

Asia Pacific is expected to register the highest growth rate over the forecast period driven by its rapid technological advancements and increasing digital engagement. Deepfakes are being utilized for creating engaging content in film and marketing campaigns. There is growing interest in using deepfake technology for creating interactive training materials, enhancing learning experiences through realistic simulations. As the market grows, balancing innovation with ethical considerations will be crucial for sustainable development.

Key players in the market

Some of the key players in Deepfake Technology market include Intel Corporation, NVIDIA, Facebook, Google LLC, Twitter, Cogito Tech, Tencent, Microsoft, Kairos, Reface AI, Amazon Web Services, Adobe, TikTok and DeepWare AI.

Key Developments:

In May 2024, Google unveiled a new method to label text as AI-generated without altering it. This new feature has been integrated into Google DeepMind's SynthID tool, which was already capable of identifying AI-generated images and audio clips. This method introduces additional information to the large language model (LLM)-based tool while generating text.

In April 2024, Microsoft's research team gave a glimpse into their latest AI model. Called VASA-1, the model can generate lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip.

Content Types Covered:

  • Video Deepfakes
  • Image Deepfakes
  • Audio Deepfakes
  • Text Deepfakes
  • Other Content Types

Components Covered:

  • Software
  • Services
  • Hardware

Technologies Covered:

  • Generative Adversarial Networks (GANs)
  • Autoencoders
  • Recurrent Neural Networks (RNNs)
  • Diffusion Models
  • Natural Language Processing (NLP)
  • Other Technologies

Applications Covered:

  • Call Center Security
  • Fraud Detection
  • National Security
  • Medical Training & Simulation
  • Digital Content Creation
  • Other Applications

End Users Covered:

  • Telecommunications
  • Government & Defense
  • Healthcare & Life Sciences
  • Media & Entertainment
  • Retail & E-commerce
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Deepfake Technology Market, By Content Type

  • 5.1 Introduction
  • 5.2 Video Deepfakes
  • 5.3 Image Deepfakes
  • 5.4 Audio Deepfakes
  • 5.5 Text Deepfakes
  • 5.6 Other Content Types

6 Global Deepfake Technology Market, By Component

  • 6.1 Introduction
  • 6.2 Software
    • 6.2.1 Deepfake Generation Software
    • 6.2.2 Media Authentication Tools
    • 6.2.3 Forensic Analysis Software
    • 6.2.4 Content Moderation Software
  • 6.3 Services
    • 6.3.1 Professional Services
    • 6.3.2 Managed Services
  • 6.4 Hardware
    • 6.4.1 High-Performance GPUs
    • 6.4.2 Computational Infrastructure

7 Global Deepfake Technology Market, By Technology

  • 7.1 Introduction
  • 7.2 Generative Adversarial Networks (GANs)
  • 7.3 Autoencoders
  • 7.4 Recurrent Neural Networks (RNNs)
  • 7.5 Diffusion Models
  • 7.6 Natural Language Processing (NLP)
  • 7.7 Other Technolgoies

8 Global Deepfake Technology Market, By Application

  • 8.1 Introduction
  • 8.2 Call Center Security
  • 8.3 Fraud Detection
  • 8.4 National Security
  • 8.5 Medical Training & Simulation
  • 8.6 Digital Content Creation
  • 8.7 Other Applications

9 Global Deepfake Technology Market, By End User

  • 9.1 Introduction
  • 9.2 Telecommunications
  • 9.3 Government & Defense
  • 9.4 Healthcare & Life Sciences
  • 9.5 Media & Entertainment
  • 9.6 Retail & E-commerce
  • 9.7 Other End Users

10 Global Deepfake Technology Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Intel Corporation
  • 12.2 NVIDIA
  • 12.3 Facebook
  • 12.4 Google LLC
  • 12.5 Twitter
  • 12.6 Cogito Tech
  • 12.7 Tencent
  • 12.8 Microsoft
  • 12.9 Kairos
  • 12.10 Reface AI
  • 12.11 Amazon Web Services
  • 12.12 Adobe
  • 12.13 TikTok
  • 12.14 DeepWare AI
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦