![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1587656
¼¼°èÀÇ ÀÚµ¿È¿ë »ý¼ºÇü AI ½ÃÀå ¿¹Ãø : ¼Ö·ç¼Ç À¯Çüº°, Á¶Á÷ ±Ô¸ðº°, Àü°³ Çüź°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2030³â)Generative AI in Automation Market Forecasts to 2030 - Global Analysis By Solution Type (Software, Services and Other Solution Types), Organization Size, Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ÀÚµ¿È¿ë »ý¼ºÇü AI ¼¼°è ½ÃÀåÀº 2024³â¿¡ 14¾ï 950¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 16.3%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 34¾ï 8,780¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÀÚµ¿È¿ë »ý¼ºÇü AI´Â ±âÁ¸ µ¥ÀÌÅÍ¿¡¼ ÇнÀÇϰí ÄÁÅÙÃ÷, µðÀÚÀÎ ¹× ¼Ö·ç¼ÇÀ» ÀÚÀ²ÀûÀ¸·Î ¸¸µé ¼ö ÀÖ´Â ÀΰøÁö´É ±â¼úÀÇ »ç¿ëÀ» ÀǹÌÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº µö·¯´× ¹× ½Å°æ¸Á°ú °°Àº °í±Þ ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© ÇнÀ µ¥ÀÌÅÍ¿¡¼ ÀνĵǴ ÆÐÅÏÀ» ±â¹ÝÀ¸·Î ÅØ½ºÆ®, À̹ÌÁö ¹× ¼ÒÇÁÆ®¿þ¾î ÄÚµå¿Í °°Àº »õ·Î¿î Ãâ·ÂÀ» »ý¼ºÇÕ´Ï´Ù. ÀÚµ¿È¿ë »ý¼ºÇü AI´Â ¿öÅ©Ç÷ο츦 ÃÖÀûÈÇϰí, ÀÇ»ç°áÁ¤À» °³¼±Çϰí, °³ÀÎÈµÈ ¼Ö·ç¼ÇÀ» »ý¼ºÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ÇÁ·Î¼¼½º¸¦ °ÈÇÏ°í ´Ù¾çÇÑ »ê¾÷ Àü¹ÝÀÇ È¿À²¼º°ú »ý»ê¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù.
GartnerÀÇ ¿¹Ãø¿¡ µû¸£¸é RPA, °¡»ó ¾î½Ã½ºÅÏÆ®, ÀΰøÁö´É µîÀÇ ÀÚµ¿È ±â¼úÀº 2024³â±îÁö ¾÷¹« ºñ¿ëÀ» 30%³ª ÁÙÀÏ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.
Áõ°¡ÇÏ´Â °³ÀÎÈ ¼ö¿ä
ÀÚµ¿È ½ÃÀå¿¡¼ °³ÀÎÈ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó °í°´ ¼ºñ½º ¹× Á¦Ç° Ãßõ°ú °°Àº ¸ÂÃãÇü °æÇèÀÌ Á¡Á¡ ±â´ëµÇ°í ÀÖ½À´Ï´Ù. »ý¼ºÇü AI´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ºÐ¼®ÇÏ¿© °³ÀÎÈµÈ ¼Ö·ç¼ÇÀ» »ý¼ºÇÏ°í °í°´ ¸¸Á·µµ¿Í Âü¿©µµ¸¦ ³ôÀÌ´Â µ¥ Ź¿ùÇÕ´Ï´Ù. ÀüÀÚ»ó°Å·¡, ¸¶ÄÉÆÃ, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µîÀÇ ºÎ¹®Àº AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È¸¦ ÅëÇØ ½Ç½Ã°£ ¸ÂÃãȸ¦ ´ë±Ô¸ð·Î °¡´ÉÇÏ°Ô ÇÏ¿© ¾÷¹« È¿À²¼ºÀ» Çâ»ó½ÃŰ¸é¼ °³ÀÎÀÇ ÃëÇâ¿¡ ºÎÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. °³ÀÎÈµÈ »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ ÀÌ·¯ÇÑ ¼ö¿ä´Â ±â¾÷ÀÌ »ý¼ºÇü AI ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» µÞ¹ÞħÇϰí ÀÚµ¿È ½ÃÀåÀÇ ¼ºÀå°ú Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.
³ôÀº µµÀÔ ºñ¿ë
¸¹Àº ±â¾÷¿¡¼ ÀÎÇÁ¶ó, ¼ÒÇÁÆ®¿þ¾î, ¼÷·ÃµÈ Àη°ú °ü·ÃµÈ ºñ¿ëÀ» °í·ÁÇÏ¸é »ý¼ºÇü AI¸¦ ±âÁ¸ ¿öÅ©Ç÷ο쿡 ÅëÇÕÇϱ⿡ ÃæºÐÇÑ ¿¹»êÀ» ÇÒ´çÇÏ´Â °ÍÀº ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ Æ¯Á¤ Á¶Á÷ÀÇ ¿ä±¸¿¡ ¸Â°Ô ¸ðµ¨À» ±¤¹üÀ§ÇÏ°Ô »ç¿ëÀÚ Á¤ÀÇÇÏ°í ¹Ì¼¼ Á¶Á¤ÇØ¾ß ÇϹǷΠÀÌ·¯ÇÑ ºñ¿ëÀÌ Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍÀÌ º¸ÀåµÇÁö ¾Ê°í ¾öû³ ÅõÀÚ¸¦ ÇÏ´Â °ÍÀ» ÁÖÀúÇϰí äÅ÷üÀÇ ÀúÇÏ¿Í ½ÃÀå ÀüüÀÇ ¼ºÀå ¾ïÁ¦·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.
¾÷Á¾À» ³Ñ¾î¼´Â ¿ëµµ È®´ë
°³ÀÎÈµÈ ¸¶ÄÉÆÃ, ÄÁÅÙÃ÷ Á¦ÀÛ, µ¥ÀÌÅÍ ºÐ¼®, °í°´ ¼ºñ½º ÀÚµ¿È µî ´Ù¾çÇÑ ¿ëµµ·Î ´Ù¾çÇÑ »ê¾÷¿¡ °ÉÃÄ »ý¼ºÇü AIÀÇ ¿ëµµ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¹ü¿ë¼ºÀ» ÅëÇØ ±â¾÷Àº ºñÁî´Ï½º È¿À²¼ºÀ» ³ôÀÌ°í »ç¿ëÀÚ Âü¿©µµ¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á, ±ÝÀ¶, ¹Ìµð¾î µîÀÇ ºÎ¹®Àº Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» À§ÇØ »ý¼ºÇü AI¸¦ Ȱ¿ëÇÏ¿© AI ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¿Í ÅõÀÚ¸¦ ÃËÁøÇÕ´Ï´Ù. ±â¼úÀÌ ÁøÈÇÔ¿¡ µû¶ó »õ·Î¿î ±âȸ°¡ °è¼Ó âÃâµÇ°í ½ÃÀåÀº ³î¶ó¿î ¼Óµµ·Î ÀüÁøÇϰí ÀÖ½À´Ï´Ù.
±ÔÁ¦»ó °úÁ¦
±ÔÁ¦»ó °úÁ¦´Â ÄÄÇöóÀÌ¾ð½º¿Í À§Çè °ü¸®¸¦ µÑ·¯½Ñ º¹À⼺À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ƯÈ÷ EU ¹× ¹Ì±¹ Á¤ºÎ°¡ AI ¹ý°ú °°Àº ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ÁøÇàÇÏ´Â µ¿¾È ±â¾÷Àº ¿µÇâ·ÂÀÌ Å« AI ½Ã½ºÅÛÀÇ À§Çè Æò°¡ µî ´Ù¾çÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·ÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Á¦Ç° °³¹ßÀ» Áö¿¬½ÃŰ°Å³ª ¿ëÀÎÇÒ ¼ö ¾ø´Â °ÍÀ¸·Î ÆÇ´ÜµÈ AI ¿ëµµ¿¡ Á¦ÇÑÀ» ºÎ°úÇϰųª Ã¥ÀÓÀ̳ª ¼³¸í Ã¥ÀÓ¿¡ °üÇÑ ºÒÈ®½Ç¼ºÀ» ÀÏÀ¸Å³ ¼ö ÀÖ¾î ÅõÀÚ³ª Çõ½ÅÀ» ÀúÇØ ±×¸®°í ½ÃÀåÀÇ ¼ºÀåÀ» ´õ ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº ³ëµ¿·ÂÀÌ ²÷¾îÁö´Â °¡¿îµ¥ ±â¾÷ÀÌ ¾÷¹«ÀÇ À¯Áö¸¦ ¿ä±¸Ç߱⠶§¹®¿¡ ÀÚµ¿È ½ÃÀå¿¡¼ÀÇ »ý¼ºÇü AIÀÇ Ã¤¿ëÀ» °¡¼Ó½ÃÄ×½À´Ï´Ù. ¿ø°Ý±Ù¹«·ÎÀÇ Àüȯ°ú µðÁöÅÐ Æ®·£½ºÆ÷¸ÞÀ̼ÇÀÇ Çʿ伺À¸·Î ±â¾÷Àº ÇÁ·Î¼¼½º ÃÖÀûÈ, ºñ¿ë Àý°¨, »ý»ê¼º Çâ»ó À̸¦ À§ÇØ AI ÁÖµµÀÇ ÀÚµ¿È¿¡ ´«À» µ¹·È½À´Ï´Ù. ±×·¯³ª ´çÃÊ °ø±Þ¸ÁÀÇ È¥¶õ°ú °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀ¸·Î ÀÎÇØ AI ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ´Â µÐȵǾú½À´Ï´Ù. ȸº¹ÀÌ ÁøÇàµÇ¸é¼ ÀÚµ¿È¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇß°í, »ý¼º AI´Â ȸº¹·Â°ú ¹Ì·¡ ¼ºÀå¿¡ ÇʼöÀûÀÎ µµ±¸·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» º¸ÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â »ý¼ºÇü AIÀÇ ±â´ÉÀ» ±âÁ¸ ¼ÒÇÁÆ®¿þ¾î ¾ÖÇø®ÄÉÀ̼ǿ¡ ÅëÇÕÇÏ´Â ÀÏÀÌ Áõ°¡Ç߱⠶§¹®À¸·Î ±ÝÀ¶, ÀÇ·á, Á¦Á¶ µî ´Ù¾çÇÑ »ê¾÷ÀÇ ÀÚµ¿È ÇÁ·Î¼¼½º¸¦ °ÈÇÕ´Ï´Ù. ÀÌ ÅëÇÕÀ» ÅëÇØ ÀÇ»ç°áÁ¤ÀÇ °³¼±, ÇÁ·Î¼¼½ºÀÇ ÃÖÀûÈ, »ý»ê¼ºÀÇ Çâ»óÀÌ °¡´ÉÇØÁý´Ï´Ù. Microsoft¿Í IBM µî ´ë±â¾÷Àº ÀÎÅÚ¸®ÀüÆ® 꺿°ú ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È(RPA) µî ÀÚµ¿È ¿öÅ©Ç÷ο츦 Áö¿øÇÒ ¼ö ÀÖ´Â AI ´ëÀÀ ¼ÒÇÁÆ®¿þ¾î °³¹ß¿¡ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµÇ´Â ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®
¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÎ¹®Àº ÄÁÅÙÃ÷ Á¦ÀÛ ¹× °³ÀÎÈ °È·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È »ó´çÇÑ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. »ý¼ºÇü AI µµ±¸´Â º¸´Ù ¸Å·ÂÀûÀÎ ±¤°í Ä·ÆäÀÎÀ» °³¹ßÇÏ°í °¡°Ý Àü·«À» ÃÖÀûÈÇÏ´Â µ¥ Ȱ¿ëµÇ¸ç ±â¾÷Àº °³º° °í°´ÀÇ ¼±È£µµ¿¡ ¸Â°Ô ÄíÆùÀ» Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº º¸´Ù È¿°úÀûÀÎ ¸¶ÄÉÆÃ ¹× ÄÁÅÙÃ÷ Àü´ÞÀ» À§ÇØ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ·Á°í Çϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ±â¼úÀÇ ÅëÇÕÀº ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °è¼Ó ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È µö·¯´× ¾Ë°í¸®ÁòÀÇ Áøº¸, Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç äÅà Ȯ´ë, ¹Ìµð¾î, ÀüÀÚ»ó°Å·¡, ÀÇ·á µîÀÇ ºÎ¹®¿¡¼ AI »ý¼º ÄÁÅÙÃ÷ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡µéÀº AIÀÇ Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÇÇØ Áö¿øµÇ°í µµÀÔ¿¡ ¼±µµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀþÀº Á÷¿øÀº ´Ù¾çÇÑ »ê¾÷¿¡¼ »ý¼ºÇü AIÀÇ ÅëÇÕÀ» °¡¼ÓÈÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÷´Ü ±â¼ú ÀÎÇÁ¶ó¿Í IBM, Microsoft, Google°ú °°Àº ÁÖ¿ä ±â¾÷ÀÇ ´ë±Ô¸ð ÅõÀÚ·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±â¾÷Àº »ý»ê¼º Çâ»ó, ¾÷¹« ÇÕ¸®È, °í°´ °æÇè Çâ»óÀ» À§ÇØ ÀÚµ¿È, ÄÁÅÙÃ÷ »ý¼º, ¿¹Ãø ºÐ¼® µîÀÇ Áß¿äÇÑ ¿ëµµÀ» °®Ãá »ý¼ºÇü AIÀÇ È°¿ëÀ» Á¡Â÷ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¿¬±¸°³¹ß°ú ÷´Ü±â¾÷°ú ½ÅÈï±â¾÷ÀÇ Çù¾÷¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Generative AI in Automation Market is accounted for $1409.5 million in 2024 and is expected to reach $3487.8 million by 2030 growing at a CAGR of 16.3% during the forecast period. Generative AI in automation refers to the use of artificial intelligence technologies that can create content, designs, or solutions autonomously by learning from existing data. This approach leverages advanced algorithms, such as deep learning and neural networks, to generate new outputs, including text, images, and even software code, based on patterns recognized in the training data. In automation, generative AI enhances processes by optimizing workflows, improving decision-making, and enabling the creation of personalized solutions, thereby increasing efficiency and productivity across various industries.
According to Gartner's predictions, Automation technologies like RPA, virtual assistants and artificial intelligence can reduce operational costs as much as 30% by 2024.
Growing demand for personalization
The growing demand for personalization in automation market increasingly expects tailored experiences, whether in customer service, product recommendations. Generative AI excels at analyzing vast datasets to generate personalized solutions, enhancing customer satisfaction and engagement. In sectors like e-commerce, marketing, and entertainment, AI-driven automation enables real-time customization at scale, improving operational efficiency while meeting individual preferences. This demand for personalized interactions pushes businesses to adopt generative AI technologies, driving growth and innovation in the automation market.
High implementation costs
High implementation costs in many businesses find it challenging to allocate sufficient budgets for integrating generative AI into their existing workflows, given the costs associated with infrastructure, software, and skilled personnel. Furthermore, the need for extensive customization and fine-tuning of models to fit specific organizational needs can increase these expenses. Companies may hesitate to invest heavily without guaranteed returns, leading to slower adoption rates and limiting the overall growth of the market.
Expanding applications across industries
The expanding applications of generative AI across various industries for diverse uses, including personalized marketing, content creation, data analysis, and customer service automation. This versatility allows businesses to enhance operational efficiency and improve user engagement. Sectors like healthcare, finance, and media are leveraging generative AI for innovative solutions, driving demand and investment in AI technologies. As the technology evolves, it continues to create new opportunities, pushing the market forward at an impressive pace.
Regulatory challenges
Regulatory challenges are introduced by complexities around compliance and risk management. As governments, particularly in the EU and US, move toward stringent regulations like the AI Act, businesses must adapt to various requirements, including risk assessments for high-impact AI systems. These regulations can slow product development, impose limitations on AI applications deemed unacceptable, and create uncertainties regarding liability and accountability, potentially discouraging investment and innovation, further hampering the growth of the market.
Covid-19 Impact
The COVID-19 pandemic accelerated the adoption of generative AI in the automation market as companies sought to maintain operations amid workforce disruptions. With the shift to remote work and the need for digital transformation, businesses turned to AI-driven automation for process optimization, cost reduction, and enhanced productivity. However, initial supply chain disruptions and economic uncertainty slowed investments in AI technologies. As recovery progressed, demand for automation surged, positioning generative AI as a critical tool for resilience and future growth.
The software segment is expected to be the largest during the forecast period
The software segment is predicted to secure the largest market share throughout the forecast period, due to increase integrate generative AI capabilities into existing software applications, it enhances automation processes across various industries, including finance, healthcare, and manufacturing. This integration allows for improved decision-making, process optimization, and productivity gains. Major companies like Microsoft and IBM are focusing on developing AI-enabled software that can support automated workflows, such as intelligent chatbot and robotic process automation (RPA), fuelling the growth of the market.
The media and entertainment segment is expected to have the highest CAGR during the forecast period
The media and entertainment segment is projected to witness substantial growth during the projection period, due to enhanced content creation and personalization. Generative AI tools are being utilized to develop more engaging advertising campaigns and optimize pricing strategies, enabling companies to tailor offers to individual customer preferences. Additionally, the integration of these technologies is expected to continue propelling growth in this sector, as companies seek to leverage data for more effective marketing and content delivery.
During the projected timeframe, the Asia Pacific region is expected to hold the largest market share due to driven by advancements in deep learning algorithms, increased adoption of cloud-based solutions, and a rising demand for AI-generated content across sectors like media, e-commerce, and healthcare. Countries like China and India are leading in adoption, supported by government initiatives fostering AI innovation and investment. Additionally, young employees are playing a pivotal role in accelerating the integration of Generative AI in various industries.
Over the forecasted timeframe, the North America region is anticipated to exhibit the highest CAGR, owing to advanced technological infrastructure and significant investments from leading companies like IBM, Microsoft, and Google. Companies are increasingly leveraging generative AI to enhance productivity, streamline operations, and improve customer experiences, with significant applications in automation, content generation, and predictive analytics. The region's focus on research and development and collaborations between tech companies and start-ups further fuels this growth.
Key players in the market
Some of the key players profiled in the Generative AI in Automation Market include OpenAI, Google DeepMind, Microsoft, International Business Machines Corporation (IBM), NVIDIA, Salesforce, Adobe, C3.ai, Hugging Face, DataRobot, UiPath, Appen, Twilio, Zoho, Botpress, SingularityNET, Algolia, PaddlePaddle and KAI Technologies.
In April 2024, Microsoft and The Coca-Cola Company announced a five-year strategic partnership. This collaboration, with Coca-Cola committing $1.1 billion, focuses on enhancing cloud services and generative AI capabilities. The partnership aims to leverage Microsoft's Azure OpenAI Service to improve various business functions, from marketing to supply chain operations.
In January 2024, Microsoft entered a 10-year partnership with Vodafone. This deal aims to enhance customer experiences using Microsoft's generative AI, particularly for small and medium-sized enterprises (SMEs). Vodafone plans to invest $1.5 billion in cloud and AI services, and the partnership will also expand the M-Pesa platform to improve financial inclusion in Africa.
In January 2024, IBM signed a definitive agreement to acquire application modernization capabilities from Advanced. This move aims to bolster IBM Consulting's mainframe application and data modernization services.