![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1603760
ÀÚÀ²Çü ¹«ÀÎÀá¼öÁ¤(AUV) ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, Çü»óº°, ¼Óµµº°, ÀûÀç¹° À¯Çüº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Autonomous Underwater Vehicle (AUV) Market Forecasts to 2030 - Global Analysis By Type (Shallow AUVs, Medium AUVs and Large AUVs), Shape, Speed, Payload Type, Technology, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚÀ²Çü ¹«ÀÎÀá¼öÁ¤(AUV) ½ÃÀåÀº 2024³â¿¡ 21¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 17.9%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 56¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
AUV(Autonomous Underwater Vehicle: ÀÚÀ²¹«ÀÎÀá¼öÁ¤)´Â Àΰ£ÀÌ Á÷Á¢ Á¦¾îÇÏÁö ¾Ê°í ¼öÁß ÀÛ¾÷¿¡ »ç¿ëµÇ´Â ¹«ÀÎ ÀÚÀ²ÁÖÇà ¼öÁß ·Îº¿ÀÔ´Ï´Ù. ¼¾¼, Ä«¸Þ¶ó, ¼Ò³ª, Åë½Å ½Ã½ºÅÛÀ» °®Ãá AUV´Â µ¥ÀÌÅÍ ¼öÁý, ÇØÀú Áöµµ Á¦ÀÛ, ¼öÁß ±¸Á¶¹° °Ë»ç, Á¶»ç µîÀ» À§ÇØ ÀÚÀ²ÀûÀ¸·Î Ç×ÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±º, »ó¾÷, °úÇÐ ºÐ¾ß¿¡¼ ±¤¹üÀ§ÇÏ°Ô ÀÀ¿ëµÇ°í ÀÖ´Â AUV´Â ´Ù¾çÇÑ ¼ö½É¿¡¼ ÀÛµ¿ÇÏ¸ç ¿¾ÇÇÑ ¼öÁß È¯°æ¿¡¼ ȯ°æ ¸ð´ÏÅ͸µ, °¨½Ã, ÀÚ¿ø Ž»ç µîÀÇ ÀÓ¹«¸¦ ¼öÇàÇÕ´Ï´Ù.
±¹¹æ-¾Èº¸ ÅõÀÚ Áõ°¡
±¹¹æ ¹× ¾Èº¸¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¢±¹ Á¤ºÎ´Â AUV¸¦ »óȲ Àνİú ÀÛÀü È¿°ú¸¦ ³ôÀ̱â À§ÇÑ Àü·«Àû »ç¿ë°ú ±â·Ú °¨Áö¿¡ ¿ì¼±¼øÀ§¸¦ µÎ°í ÀÖ½À´Ï´Ù. ±¹¹æ ¿¹»êÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±º Á¶Á÷Àº º¸´Ù ÀÚÀ²ÀûÀ̰í Àº¹ÐÇÏ¸ç ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼öÁß ÀÓ¹«¸¦ À§ÇØ Ã·´Ü AUV ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â ÇØ±ºÀÇ ¿ª·®À» °ÈÇÏ°í °íÀ§Çè Áö¿ª¿¡¼ À¯ÀÎ ¼±¹Ú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß¸ç ±â¼úÀû ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀåÀÌ °íÁ¶µÇ°í ÇØ»ó ±¹°æÀÇ ¾ÈÀüÀ» º¸ÀåÇØ¾ß ÇÒ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ±¹¹æ ¿¹»êÀº ÀÚÀ² ½Ã½ºÅÛ¿¡ Á¡Á¡ ´õ ¸¹Àº ÀÚ±ÝÀ» ÇÒ´çÇϰí ÀÖÀ¸¸ç, Àü ¼¼°èÀÇ ´Ù¾çÇÑ ±¹¹æ Ȱµ¿À» À§ÇØ AUVÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ¹èÅ͸® ¼ö¸í ¹× Ç׼ӰŸ®
¹èÅ͸® ¼ö¸í°ú Ç׼ӰŸ®°¡ Á¦ÇÑÀûÀ̱⠶§¹®¿¡ ¿¡³ÊÁö ¹Ðµµ°¡ ³ôÀº ¹èÅ͸®¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ½ÉÇØ Ž»ç³ª Àå½Ã°£ ÀÓ¹«ÀÇ °æ¿ì, AUV´Â ÀÚÁÖ ÃæÀüÇϰųª ¹èÅ͸®¸¦ ±³Ã¼ÇÏÁö ¾Ê°íµµ ¿À·£ ½Ã°£ µ¿¾È ÀÛµ¿ÇØ¾ß ÇÏ´Â Á¦¾à¿¡ Á÷¸éÇÏ°Ô µË´Ï´Ù. ÀÌ´Â ÀÓ¹«°¡ ±æ¾îÁö°Å³ª º¹ÀâÇØÁö´Â ¿ÀÁö³ª Á¢±ÙÇϱ⠾î·Á¿î Áö¿ª¿¡¼ÀÇ ½Ç¿ë¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. ¶ÇÇÑ Å©°í ¹«°Å¿î ¹èÅ͸®°¡ ÇÊ¿äÇϹǷΠ±âµ¿¼ºÀÌ ¶³¾îÁö°í ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼úÀº °è¼Ó ¹ßÀüÇϰí ÀÖÁö¸¸, ÀÌ·¯ÇÑ ÇѰè·Î ÀÎÇØ ÀϺΠ»ê¾÷¿¡¼ AUVÀÇ Ã¤ÅÃÀÌ Áö¿¬µÇ°í ÀáÀçÀûÀÎ ¿ëµµ°¡ Á¦Çѵǰí ÀÖ½À´Ï´Ù.
AI¿Í ¸Ó½Å·¯´×ÀÇ ¹ßÀü
AI ±â¹Ý ¾Ë°í¸®ÁòÀ» ÅëÇØ AUV´Â ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí, Ž»öÀ» ÃÖÀûÈÇϰí, Àå¾Ö¹°À» ÇÇÇϰí, Àΰ£ÀÇ °³ÀÔ ¾øÀÌ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, º¹ÀâÇÑ ÀÓ¹«¿¡ ÀÌ»óÀûÀ̸ç, AI ±â¹Ý ¹°Ã¼ °¨Áö ¹× ºÐ·ù ¾Ë°í¸®ÁòÀ» ÅëÇØ º¹ÀâÇÑ ÀÓ¹«¿¡ ÀÌ»óÀûÀÌ´Ù, AUV´Â ÇØ¾ç »ý¹°, ¼öÁß ±¸Á¶¹° ¹× ÀÌ»ó ¡Èĸ¦ º¸´Ù Á¤È®ÇÏ°Ô ½Äº°Çϰí ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´×Àº ¼Ò³ª ¹× À̹ÌÁö µ¥ÀÌÅÍÀÇ ÆÐÅÏ ÀνÄÀ» Çâ»ó½ÃÄÑ º¸´Ù Á¤È®ÇÑ ¸ÅÇΰú ¸ñÇ¥¹° ½Äº°À» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº ¿î¿µ ºñ¿ë Àý°¨, ÀÓ¹« È¿À²¼º Çâ»ó, ±¹¹æ, »ó¾÷ ¹× ¿¬±¸ ºÐ¾ß¿¡¼ AUVÀÇ Àû¿ë ¹üÀ§¸¦ È®´ëÇÏ¿© ½ÃÀå ¼ºÀå°ú ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
»çÀ̹ö º¸¾È À§Çè
»çÀ̹ö º¸¾È À§Çè»çÀ̹ö º¸¾È À§ÇèÀº »çÀ̹ö °ø°Ý¿¡ Ãë¾àÇÑ Åë½Å ½Ã½ºÅÛ, ¼¾¼ ¹× µ¥ÀÌÅÍ ÀúÀå¼Ò¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, AUV¿¡ ´ëÇÑ ¾ÇÀÇÀûÀÎ ÇØÅ· ¹× ¹«´Ü ¾×¼¼½º´Â ÀÓ¹« µ¥ÀÌÅ͸¦ À§Çè¿¡ ºü¶ß¸®°í ¿î¿µÀ» ¹æÇØÇÏ¸ç °í°¡ÀÇ Àåºñ ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù. ¹Î°¨ÇÑ ±º ¹× »ó¾÷ Ȱµ¿¿¡¼ »çÀ̹ö °£¼·ÀÇ À§ÇèÀº AUVÀÇ ¹èÄ¡¸¦ ´õ¿í º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. ½ÃÀåÀÌ È®´ëµÊ¿¡ µû¶ó ±â¾÷Àº °ß°íÇÑ »çÀ̹ö º¸¾È Á¶Ä¡¿¡ ÅõÀÚÇØ¾ß Çϴµ¥, ÀÌ´Â ¿î¿µ ºñ¿ëÀ» Áõ°¡½ÃŰ°í ±âÁ¸ ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ» º¹ÀâÇÏ°Ô ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »çÀ̹ö º¸¾È ¹®Á¦´Â AUVÀÇ Ã¤ÅÃÀ» Áö¿¬½Ã۰í, ƯÈ÷ Á߿䵵°¡ ³ôÀº ¿ëµµ¿¡¼ AUVÀÇ ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â °ø±Þ¸Á¿¡ È¥¶õÀ» ÃÊ·¡Çϰí, ÇÁ·ÎÁ§Æ® ÀÏÁ¤À» Áö¿¬½Ã۰í, °æ±â µÐÈ·Î ÀÎÇØ ¼®À¯ ¹× °¡½º µî ÇØ¾ç ºÎ¹® ¼ö¿ä¸¦ °¨¼Ò½ÃÅ´À¸·Î½á ÀÚÀ²¹«ÀÎÀá¼öÁ¤(AUV) ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±¹¹æ ¹× °úÇÐ ¿¬±¸ ºÐ¾ß´Â ¾î´À Á¤µµÀÇ ¸ð¸àÅÒÀ» À¯ÁöÇßÀ¸³ª, ¿©Çà Á¦ÇѰú ÀÚ¿ø Á¦ÇÑÀÌ ¹èÄ¡ ¹× ¿î¿µ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª »ê¾÷ÀÌ È¸º¹µÊ¿¡ µû¶ó ¿¡³ÊÁö¿¡ ´ëÇÑ ÀçÅõÀÚ ¹× ¿ø°Ý ¹× ÀÚµ¿È ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ȯ°æ ¸ð´ÏÅ͸µ ¹× ¼öÁß °Ë»ç¿¡¼ AUV¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß Ä«¸Þ¶ó ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Ä«¸Þ¶ó ºÎ¹®Àº µ¥ÀÌÅÍ Á¤È®µµ, °Ë»ç ¹× Ž»ç ´É·Â Çâ»óÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó´Â ÇØÀú ¸ÅÇÎ, ¼öÁß ÀÎÇÁ¶ó °Ë»ç ¹× ÇØ¾ç Á¶»ç¸¦ À§ÇÑ Á¤È®ÇÑ À̹Ì¡À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÷´Ü Ä«¸Þ¶ó´Â Á¾Á¾ ¼öÁß À½ÆÄ°¨Áö±â¿Í °áÇյǾî Ž»ö, ¹°Ã¼ °¨Áö, »ý¹°Á¾ ½Äº°À» Áö¿øÇÏ´Â »ó¼¼ÇÑ ¿µ»óÀ» Á¦°øÇÕ´Ï´Ù. Ä«¸Þ¶ó ±â¼úÀÌ ¹ßÀüÇÏ¿© ´õ ¼±¸íÇÏ°í ±íÀº ¹üÀ§¸¦ Á¦°øÇÔ¿¡ µû¶ó ´õ ±í°í ¾î·Á¿î ȯ°æ¿¡¼ AUVÀÇ Àû¿ëÀÌ È®´ëµÇ¾î Àüü »ó¾÷, ¹æÀ§ ¹× °úÇÐ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀÔ´Ï´Ù.
±º ¹× ±¹¹æ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
±º ¹× ¹æÀ§ ºÎ¹®Àº øº¸ ¹× ±â·Ú Á¦°Å ±â´ÉÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº ½ÃÀå CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AUV´Â ´ëÀá¼öÇÔÀü, Á¤Âû, ÇØ±º ÀÛÀü ¸ÅÇΰú °°Àº Áß¿äÇÑ ÀÓ¹«¸¦ ¼öÇàÇÏ¿© Àΰ£ ¿î¿µÀÚÀÇ À§ÇèÀ» ÁÙÀ̰í Àü·«Àû ¿ìÀ§¸¦ Á¦°øÇÕ´Ï´Ù. ÇØ¾ç ¾Èº¸¿¡ ´ëÇÑ Á¤ºÎÀÇ ÅõÀÚ Áõ°¡¿Í ½ºÅÚ½º ¹× ÀÚÀ²¼º ºÐ¾ßÀÇ ±â¼ú ¹ßÀüÀÌ AUV °³¹ßÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁøÈÇÏ´Â À§ÇùÀ¸·ÎºÎÅÍ ÇØ¾È ¹× ÇØÀú ±¹°æÀ» º¸È£Çϱâ À§ÇÑ ¹«ÀÎ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä´Â ±¹¹æ ºÐ¾ß¿¡¼ ½ÃÀå ¼ºÀåÀ» °ÈÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¹¹æ, ÇØ¾ç ¿¡³ÊÁö ¹× °úÇÐ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº ±º, °¨½Ã ¹× ȯ°æ ¸ð´ÏÅ͸µ ¿ëµµ·Î AUV¸¦ Àû±ØÀûÀ¸·Î °³¹ßÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¹æ´ëÇÑ ÇØ¾È¼±°ú ÇØ¾ç ¼®À¯ ¹× °¡½º Ž»ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â AUVÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¼ú ¹ßÀü°ú ÇØ¾ç Á¶»ç ±¸»óÀÇ È®´ë°¡ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎÀÇ ÇØ¾ç ¾Èº¸¿Í Áö¼Ó°¡´ÉÇÑ ÀÚ¿ø °ü¸®¿¡ ´ëÇÑ °ü½Éµµ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AUV ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
ÃßÁ¤ ¹× ¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ±¹¹æ, »ó¾÷ ¹× °úÇÐ ºÐ¾ßÀÇ °·ÂÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±ºÀÌ ÇØ±º ¹æ¾î, Á¤º¸ ¼öÁý ¹× °¨½Ã¸¦ À§ÇØ AUV¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Ä³³ª´Ù¿Í ¹Ì±¹ÀÇ ¼®À¯ ¹× °¡½º »ê¾÷Àº ÇØ¾ç Ž»ç ¹× ÀÎÇÁ¶ó Á¡°ËÀ» À§ÇØ AUV¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ Ã·´Ü ±â¼ú ÀÎÇÁ¶ó, ¿¬±¸ ±â°ü, AI ¹× ¸Ó½Å·¯´× ºÐ¾ßÀÇ ±â¼ú Çõ½ÅÀº AUVÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÏ¿© ÀÌ Áö¿ªÀ» ¼¼°è AUV ½ÃÀåÀÇ ¼±µÎÁÖÀÚ·Î ¸¸µé°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Autonomous Underwater Vehicle (AUV) Market is accounted for $2.11 billion in 2024 and is expected to reach $5.65 billion by 2030 growing at a CAGR of 17.9% during the forecast period. An Autonomous Underwater Vehicle (AUV) is an unmanned, self-propelled submersible robot used for underwater tasks without direct human control. Equipped with sensors, cameras, sonar, and communication systems, AUVs can navigate autonomously to collect data, map seafloors, inspect underwater structures, and conduct research. Widely applied in military, commercial and scientific fields, AUVs operate at various depths to perform tasks like environmental monitoring, surveillance, and resource exploration in challenging underwater environments.
Increased defense and security investments
Increased defense and security investments and governments worldwide prioritize AUVs for strategic applications and mine detection, which enhance situational awareness and operational effectiveness. As defense budgets grow, military organizations adopt advanced AUV technology for more autonomous, stealthy, and reliable underwater missions. These investments aim to enhance naval capabilities, reduce reliance on manned vessels in high-risk areas, and maintain technological superiority. With rising geopolitical tensions and the need to secure maritime borders, defense budgets increasingly allocate funds for autonomous systems, which further accelerate AUV adoption for diverse defense operations globally.
Limited battery life and range
Limited battery life and range often rely on energy-dense batteries that, while improving, still limit the operational duration and depth they can reach. For deep-sea exploration and long-duration missions, AUVs face constraints in staying operational for extended periods without requiring frequent recharging or battery replacements. This restricts their utility in remote or inaccessible areas, where missions are longer or more complex. Additionally, the need for larger, heavier batteries can reduce maneuverability and increase operational costs. While advancements in battery technology are ongoing, these limitations still pose challenges, slowing the adoption of AUVs in some industries and limiting their potential applications.
Advances in AI and machine learning
AI-driven algorithms allow AUVs to analyze data in real-time, optimize navigation, avoid obstacles, and make decisions without human intervention, making them ideal for complex missions. AI-driven object detection and classification algorithms allow AUVs to identify and track marine life, underwater structures, and anomalies with greater accuracy. Machine learning enhances pattern recognition in sonar and imaging data, providing more accurate mapping and target identification. These innovations reduce operational costs, improve mission efficiency, and expand AUV applications across defense, commercial, and research sectors, fuelling market growth and demand.
Cybersecurity risks
Cybersecurity risks rely heavily on communication systems, sensors, and data storage that are vulnerable to cyber-attacks. Malicious hacking or unauthorized access to AUVs can compromise mission data, disrupt operations, or even lead to the loss of expensive equipment. The risk of cyber interference in sensitive military or commercial operations, adds an additional layer of complexity to AUV deployment. As the market expands, companies must invest in robust cybersecurity measures, which can increase operational costs and complicate integration with existing systems. These cybersecurity concerns can delay adoption and hinder the growth of AUVs, especially in high-stakes applications.
Covid-19 Impact
The COVID-19 pandemic impacted the autonomous underwater vehicle (AUV) market by disrupting supply chains, delaying project timelines, and reducing demand in sectors like offshore oil and gas due to economic slowdowns. Defense and scientific research sectors maintained some momentum, but travel restrictions and resource limitations affected deployment and operations. However, as industries recover, demand for AUVs in environmental monitoring and underwater inspection is expected to rise, driven by renewed investments in energy and increasing focus on remote and automated solutions.
The cameras segment is expected to be the largest during the forecast period
The cameras segment is projected to account for the largest market share during the projection period, by enhanced data accuracy, inspection, and exploration capabilities. High-resolution cameras enable precise imaging for seafloor mapping, underwater infrastructure inspection, and marine research. Advanced cameras, often combined with sonar, provide detailed visuals that support navigation, object detection, and species identification. As camera technology evolves-offering better clarity and depth range-it expands AUV applications in deeper and more challenging environments, driving growth across commercial, defense, and scientific markets.
The military & defense segment is expected to have the highest CAGR during the forecast period
The military & defense segment is projected to have the highest CAGR in the market during the extrapolated period, due to intelligence and mine countermeasure capabilities. AUVs perform critical tasks such as anti-submarine warfare, reconnaissance, and mapping for naval operations, offering a strategic advantage with reduced risk to human operators. Increasing government investments in maritime security and technological advancements in stealth and autonomy propel AUV development. Additionally, the demand for unmanned systems to secure coastal and underwater borders against evolving threats strengthens the market's growth in defense applications.
The Asia Pacific region is projected to account for the largest market share during the forecast period due to raised investments in defense, offshore energy, and scientific research. Countries like China, India, Japan, and South Korea are actively developing AUVs for military, surveillance, and environmental monitoring applications. The region's extensive coastline and increasing demand for offshore oil and gas exploration further fuel AUV adoption. Additionally, advancements in technology and the expansion of marine research initiatives drive the market. Governments' focus on maritime security and sustainable resource management are key factors propelling AUV market growth in Asia-Pacific.
During the estimation period, the North America region is forecasted to record the highest growth rate, driven by strong demand across defense, commercial, and scientific sectors. The U.S. military's investment in AUVs for naval defense, intelligence gathering, and surveillance is a key driver. Additionally, the oil and gas industry in Canada and the U.S. relies on AUVs for offshore exploration and infrastructure inspection. North America's advanced technological infrastructure, research institutions, and innovation in AI and machine learning further propel AUV adoption, making the region a leader in the global AUV market.
Key players in the market
Some of the key players profiled in the Autonomous Underwater Vehicle (AUV) Market include Kongsberg Maritime, Teledyne Marine, Saab AB, General Dynamics Mission Systems, Fugro N.V., Lockheed Martin Corporation, BAE Systems, L3Harris Technologies, Inc., ECA Group, Ocean Infinity, Atlas Elektronik GmbH, International Submarine Engineering (ISE) Ltd., Oceaneering International, Inc., EdgeTech, RE2 Robotics, Sea Robotics Corporation and Seebyte Ltd.
In October 2024, Kongsberg signed a teaming agreement with BAE Systems to integrate the Integrated Combat Solution (ICS) into U.S. defense platforms. The ICS is a transformative tool designed for combat vehicles to provide enhanced battlefield situational awareness, linking sensors, video feeds, and metadata for faster decision-making.
In August 2024, BAE Systems signed a five-year collaboration agreement with Siemens to accelerate digital innovation. This partnership focuses on leveraging Siemens' advanced digital technologies, including NX and Team center software, for engineering and manufacturing processes. It aims to enhance sustainability, industrial digitalization, and supply chain modernization within BAE's operations.
In February 2024, Saab UK partnered with Abbey Group to manufacture Barracuda Mobile Camouflage System (MCS) components in the UK. This partnership strengthens British manufacturing and contributes to the production of MCS for the British Army's Ajax armored fighting vehicles.