![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1603856
¼¼°èÀÇ WBG Àç·á ½ÃÀå Àü¸Á(-2030³â) : Àç·á À¯Çüº°, °ø±Þ¸Áº°, ÀåÄ¡ À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Wide Bandgap Materials Market Forecasts to 2030 - Global Analysis By Material Type (Silicon Carbide (SiC), Gallium Nitride (GaN), Aluminum Nitride (AlN), Diamond, and Other Materials), Supply Chain, Device Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è WBG Àç·á ½ÃÀåÀº 2024³â 3¾ï 2,023¸¸ ´Þ·¯, 2030³â¿¡´Â 7¾ï 4,847¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 15.2%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
±¤´ë ¿ª°¸(WBG) ¹ÝµµÃ¼´Â ½Ç¸®Äܰú °°Àº ±âÁ¸ ¹ÝµµÃ¼ Àç·áº¸´Ù ¹êµå°¸ÀÌ ³Ð±â ¶§¹®¿¡ ´õ ³ôÀº Àü¾Ð, Á֯ļö ¹× ¿Âµµ¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÁúȰ¥·ý(GaN)°ú źȱԼÒ(SiC)°¡ ´ëÇ¥ÀûÀÎ ¿¹À̸ç, WBG ¼ÒÀç ½ÃÀåÀº 5G Åë½Å, Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ, ƯÈ÷ Àü±âÂ÷¿¡¼ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÇ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â Àü·Â ¿ëµµ¿¡¼ ´õ ³ªÀº ¿ °ü¸®, ¿¡³ÊÁö ¼Õ½Ç °¨¼Ò ¹× ¼º´É Çâ»óÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
¿¡¸¯½¼¿¡ µû¸£¸é, 2022³â 1ºÐ±â 5G °è¾à °Ç¼ö´Â 7,000¸¸ °ÇÀÌ Áõ°¡ÇÏ¿© ¾à 6¾ï 2,000¸¸ °Ç¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
±¤´ë¿ª°¸ Àç·á ½ÃÀåÀ» ÁÖµµÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ¿¡³ÊÁö È¿À²ÀûÀÎ Àü·ÂÀüÀÚ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. »ê¾÷°è°¡ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¡³ÊÁö ¼Òºñ¸¦ ÁÙÀ̱â À§ÇØ ³ë·ÂÇÏ¸é¼ SiC ¹× GaN°ú °°Àº WBG Àç·á´Â ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý ¹ÝµµÃ¼º¸´Ù ¼º´ÉÀÌ ¿ì¼öÇϰí È¿À²ÀûÀ̱⠶§¹®¿¡ º¸´Ù È¿°úÀûÀÎ Àü·Â º¯È¯ ¹× °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á ´öºÐ¿¡ ´õ ÀÛ°í, ´õ °¡º±°í, ´õ È¿°úÀûÀÎ Àü·Â ½Ã½ºÅÛÀ» °³¹ßÇÒ ¼ö ÀÖ¾î ¸¹Àº ¿¡³ÊÁö¸¦ Àý¾àÇϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¾Ç¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.
±¤´ë¿ª°¸(WBG) Àç·á ½ÃÀå¿¡¼ ¿øÀÚÀç, ƯÈ÷ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í ÁúȰ¥·ý(GaN)°ú °°Àº Çʼö Àç·áÀÇ ºÎÁ·Àº Å« Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â ÃßÃâ ¹× °¡°øÀÌ ¾î·Æ°í, ±âÁ¸ ½Ç¸®Äܺ¸´Ù ´ú ÀϹÝÀûÀÔ´Ï´Ù. È¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º Á¦Á¶¸¦ À§Çؼ´Â °íǰÁú SiC¿Í GaNÀÌ ÇÊ¿äÇÏÁö¸¸, À̵é Àç·á´Â Èñ¼ÒÇÏ°í »ý»êÀÌ ¾î·Á¿ö Á¦Á¶ ºñ¿ëÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷, 5G, Àç»ý¿¡³ÊÁö µîÀÇ ºÐ¾ß¿¡¼ WBG ¼ÒÀçÀÇ Ã¤ÅÃÀº ÀÌ·¯ÇÑ °ø±Þ Á¦ÇÑÀ¸·Î ÀÎÇØ Áö¿¬µÉ ¼ö ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ Á¦Á¶ Áö¿¬, ºñ¿ë »ó½Â, °ø±Þ¸Á Ãë¾à¼ºÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
5G¿Í Åë½ÅÀÇ ¹ßÀü
GaNÀº °íÁÖÆÄ¿¡¼ÀÇ ¶Ù¾î³ ¼º´É, ³ôÀº Àü·Â ¹Ðµµ ¹× ¿ì¼öÇÑ È¿À²·Î ÀÎÇØ 5G ±âÁö±¹, ·¹ÀÌ´õ ½Ã½ºÅÛ ¹× RF Àü·Â ÁõÆø±â¿¡ ÀûÇÕÇϸç, WBG Àç·á´Â Åë½Å Àåºñ°¡ ´õ ºü¸£°í ¾ÈÁ¤ÀûÀÎ Åë½Å ³×Æ®¿öÅ©¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Åë½Å Àåºñ°¡ ´õ ³ôÀº µ¥ÀÌÅÍ Ã³¸®·®, ³·Àº Áö¿¬ ¹× ´õ ³ªÀº ³×Æ®¿öÅ© Ä¿¹ö¸®Áö¸¦ °ü¸®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ³×Æ®¿öÅ© Ä¿¹ö¸®Áö¸¦ °ü¸®ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Â÷¼¼´ë Åë½Å ÀÎÇÁ¶óÀÇ ¾ö°ÝÇÑ ¿ä±¸ »çÇ×À» ÃæÁ·Çϰí 5G ¹× ±× ³Ê¸ÓÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ» ÃËÁøÇϱâ À§ÇØ GaNÀº °í¿Â ¹× °íÀü¾Ð¿¡¼ È¿°úÀûÀ¸·Î ÀÛµ¿ÇØ¾ß ÇÕ´Ï´Ù.
º¹ÀâÇÑ Á¦Á¶ °øÁ¤
½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹× ÁúȰ¥·ý(GaN)°ú °°Àº WBG Àç·á´Â ƯÁ¤ ¹æ¹ý°ú °íÁ¤¹Ð ±â°è¸¦ »ç¿ëÇÏ¿© Á¦Á¶µË´Ï´Ù. ÃÖ°íÀÇ ÀåÄ¡ ¼º´ÉÀ» ´Þ¼ºÇϱâ À§Çؼ´Â ´ë±Ô¸ð °íǰÁú WBG °áÁ¤ ¼ºÀå°ú Á¤±³ÇÑ ¿¡ÇÇÅÃ¼È ¼ºÀå ±â¼úÀÇ °³¹ßÀÌ ÇʼöÀûÀ̸ç, WBG ÀåÄ¡ÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀº ÀÌ·¯ÇÑ º¹ÀâÇÑ Á¦Á¶ ÀýÂ÷·Î ÀÎÇØ Á¦¾àÀÌ ÀÖÀ» ¼ö ÀÖÀ¸¸ç, Á¦Á¶ ºñ¿ëµµ »ó½ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª WBG Àç·áÀÇ ÀáÀç·ÂÀ» ¿ÏÀüÈ÷ ½ÇÇöÇϱâ À§ÇØ Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ß ³ë·ÂÀº Á¦Á¶ °øÁ¤À» °ÈÇÏ°í ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ ÁýÁߵǰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 Àü¿°º´Àº WBG Àç·á ºÐ¾ß¿¡ °ø±Þ¸Á È¥¶õ°ú »ý»ê Áö¿¬À» °¡Á®¿Ô½À´Ï´Ù. ¿¬±¸ °³¹ß ³ë·ÂÀº ¹æÇظ¦ ¹Þ¾Ò°í, »ê¾÷ ¿î¿µÀº °¢ Áö¿ª¿¡¼ ½ÃÇàµÈ ¿î¿µ Áߴܰú Á¦ÇÑÀ¸·Î ÀÎÇØ ¿µÇâÀ» ¹Þ¾Ò½À´Ï´Ù. ±×·¯³ª ÀÌ Àü¿°º´Àº ¶ÇÇÑ °í¼º´É ¹× ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ WBG ÀåÄ¡¿Í °°Àº ÷´Ü ±â¼úÀÇ °³¹ßÀ» °¡¼ÓÈÇß½À´Ï´Ù. °æÁ¦°¡ ȸº¹µÇ°í »ê¾÷°è°¡ »õ·Î¿î Á¤»ó¿¡ ÀûÀÀÇÔ¿¡ µû¶ó WBG Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ²ÙÁØÈ÷ Áõ°¡Çß½À´Ï´Ù. ±× ¹è°æ¿¡´Â µ¥ÀÌÅͼ¾ÅÍ, Àç»ý °¡´É ¿¡³ÊÁö ½Ã½ºÅÛ ¹× Àü±âÀÚµ¿Â÷ÀÇ È®ÀåÀÌ ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
SiC(½Ç¸®ÄÜ Ä«¹ÙÀ̵å) ºÎ¹®Àº ±âÁ¸ ½Ç¸®ÄÜ¿¡ ºñÇØ ´õ ³ôÀº Àü¾Ð, ¿Âµµ ¹× Á֯ļö¿¡¼ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀåÀ¸·Î ÃßÁ¤µÇ¸ç, SiC´Â ¿ÀüµµÀ²ÀÌ ³ô°í Àü·Â È¿À²ÀÌ ³ô¾Æ »ê¾÷¿ë ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, Àç»ý °¡´É ¿¡³ÊÁö ½Ã½ºÅÛ, Àü±âÀÚµ¿Â÷(EV)¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̰í ÃæÀü±â, ÀιöÅÍ ¹× Àü·Â º¯È¯±âÀÇ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö Àֱ⠶§¹®¿¡ º¸´Ù Áö¼Ó °¡´ÉÇϰí È¿À²ÀûÀÎ ¿î¿µÀ» À§ÇØ ¾÷°è Àü¹Ý¿¡¼ SiC¸¦ äÅÃÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÚµ¿Â÷ ºÐ¾ß
ÀÚµ¿Â÷ ºÐ¾ß´Â ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµÇ¸ç, SiCÀÇ °í¿Â ¹× °íÀü¾Ð¿¡¼ÀÇ Å¹¿ùÇÑ È¿À²¼ºÀº Â÷·®¿ë ÃæÀü±â, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ ¹× EV ÆÄ¿öÆ®·¹ÀÎ °³¼±¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖÇà°Å¸® ¿¬Àå, ¿¡³ÊÁö ¼Õ½Ç °¨¼Ò, Àü±âÀÚµ¿Â÷ÀÇ Àü¹ÝÀûÀÎ È¿À²¼º Çâ»ó µî WBG ¼ÒÀç´Â »ý»êÀÚµéÀÌ Áö¼Ó°¡´É¼º°ú ¿¡³ÊÁö È¿À²¿¡ ÁýÁßÇÏ´Â °¡¿îµ¥ ÀÚµ¿Â÷ ºÎ¹®ÀÇ º¯ÈÇÏ´Â ¿ä±¸ »çÇ×À» ÃæÁ·½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
Àç»ý °¡´É ¿¡³ÊÁöÀÇ »ç¿ë Áõ°¡, Àü±âÀÚµ¿Â÷(EV) ¼ö¿ä Áõ°¡, ±Þ¼ÓÇÑ »ê¾÷È·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í ÁúȰ¥·ý(GaN)Àº Áß±¹, ÀϺ», Çѱ¹À» Æ÷ÇÔÇÑ ±¹°¡¿¡¼ Àü·ÂÀüÀÚ, Àü±âÀÚµ¿Â÷ ÀÎÇÁ¶ó, Åë½Å¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ģȯ°æ ±â¼ú ¹× ¿¡³ÊÁö È¿À²À» Áö¿øÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥Àº WBG Àç·áÀÇ »ç¿ëÀ» °¡¼ÓÈÇÏ¿© ÀÌ Áö¿ª ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
°í¼º´É ÆÄ¿öÀÏ·ºÆ®·Î´Ð½º, Àç»ý¿¡³ÊÁö ¹× Àü±âÀÚµ¿Â÷(EV)¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºÏ¹Ì°¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. 5G Åë½Å, ž籤 ÀιöÅÍ, EV ÆÄ¿öÆ®·¹Àο¡¼ ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í ÁúȰ¥·ý(GaN)ÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷, Åë½Å, »ê¾÷¿ëµµ µî ´Ù¾çÇÑ »ê¾÷¿¡ WBG ¼ÒÀçÀÇ ÅëÇÕÀº ºÏ¹ÌÀÇ Áö¼Ó°¡´É¼º, ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °Á¶, ģȯ°æ ±â¼ú¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿¡ ÀÇÇØ µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Wide Bandgap Materials Market is accounted for $320.23 million in 2024 and is expected to reach $748.47 million by 2030 growing at a CAGR of 15.2% during the forecast period. Wide Bandgap (WBG) semiconductors may function at greater voltages, frequencies, and temperatures because they have a wider bandgap than traditional semiconductor materials like silicon. Gallium nitride (GaN) and silicon carbide (SiC) are important examples. The market for WBG materials is driven by factors such as 5G telecommunications, renewable energy systems, and the increasing need for energy-efficient power electronics, particularly in EVs. Better thermal management, decreased energy loss, and increased performance are made possible by these materials in power applications.
According to Ericsson, the number of 5G subscriptions increased by 70 million during the first quarter of 2022, reaching about 620 million.
Increasing demand for energy-efficient power electronics
A key factor propelling the market for wide bandgap materials is the growing need for energy-efficient power electronics. More effective power conversion and management solutions are becoming more and more necessary as industries work to cut carbon emissions and consume less energy. WBG materials, such as SiC and GaN, are perfect for power electronics applications because they perform better and are more efficient than conventional silicon-based semiconductors. Smaller, lighter, and more effective power systems can be developed thanks to these materials, which will save a lot of energy and have a less negative effect on the environment.
Limited availability of raw materials
In the Wide Bandgap (WBG) Materials market, a major obstacle is the scarcity of raw materials, especially for essential materials like silicon carbide (SiC) and gallium nitride (GaN). These materials are more difficult to extract and process, and they are less common than conventional silicon. The fabrication of efficient power electronics requires high-quality SiC and GaN, but these materials are scarce and difficult to manufacture, which raises production costs. The adoption of WBG materials in sectors including electric vehicles, 5G, and renewable energy may be slowed down by this supply limitation, which might result in manufacturing delays, increased costs, and supply chain vulnerabilities.
Advancements in 5G and telecommunications
GaN is perfect for 5G base stations, radar systems, and RF power amplifiers due to its exceptional performance at high frequencies, high power densities, and great efficiency. WBG materials allow telecom equipment to manage higher data throughput, lower latency, and better network coverage as the need for quicker, more dependable communication networks increases. In order to meet the demanding requirements of next-generation telecommunications infrastructure and promote wider use in 5G and beyond, GaN must be able to function effectively at high temperatures and voltages.
Complex manufacturing processes
WBG materials, like silicon carbide (SiC) and gallium nitride (GaN), are made using specific methods and highly accurate machinery. To achieve the best device performance, large-scale, high-quality WBG crystal growth and the development of sophisticated epitaxial growth techniques are crucial. The extensive use of WBG devices may be constrained by these intricate manufacturing procedures, which may also raise production costs. To fully realize the promise of WBG materials, however, continuous research and development efforts are concentrated on enhancing manufacturing processes and cutting expenses.
Covid-19 Impact
The COVID-19 epidemic caused supply chain disruptions and production delays in the wide bandgap materials sector. Research and development efforts were hampered and industrial operations were affected by lockdowns and limitations implemented in different regions. But the epidemic also hastened the development of cutting-edge technologies, such as WBG devices, to meet the growing need for high-performance and energy-efficient solutions. Demand for WBG materials steadily rose as economies recovered and industry adjusted to the new normal. This was due in part to the expansion of data centers, renewable energy systems, and electric vehicles.
The silicon carbide (SiC) segment is expected to be the largest during the forecast period
The silicon carbide (SiC) segment is estimated to be the largest, due to its ability to operate at higher voltages, temperatures, and frequencies compared to traditional silicon. Due to its high thermal conductivity and power efficiency, SiC is perfect for industrial power electronics, renewable energy systems, and electric vehicles (EVs). Its potential to lower energy losses and enhance performance in chargers, inverters, and power converters is also encouraging adoption across industries looking to operate more sustainably and efficiently.
The automotive segment is expected to have the highest CAGR during the forecast period
The automotive segment is anticipated to witness the highest CAGR during the forecast period, due to the rising demand for hybrid and electric automobiles. SiC's exceptional efficiency at high temperatures and voltages is essential for improving on-board chargers, battery management systems, and EV powertrains. It enhances range, lowers energy loss, and boosts electric cars' overall efficiency. WBG materials are crucial for satisfying the changing demands of the automobile sector as producers concentrate on sustainability and energy efficiency.
Asia Pacific is expected to have the largest market share during the forecast period due to increasing use of renewable energy sources, expanding demand for electric vehicles (EVs), and fast industrialization. Silicon carbide (SiC) and gallium nitride (GaN) are widely used in power electronics, electric vehicle infrastructure, and telecommunications in nations including China, Japan, and South Korea. Furthermore, government programs that support green technology and energy efficiency are speeding up the use of WBG materials, which is propelling the region's market expansion.
North America is projected to witness the highest CAGR over the forecast period, owing to the rising need for high-performance power electronics, renewable energy sources, and electric vehicles (EVs). The market is expanding because to the increasing use of silicon carbide (SiC) and gallium nitride (GaN) in 5G telecommunications, solar inverters, and EV powertrains. Furthermore, the integration of WBG materials into a variety of industries, such as automotive, telecommunications, and industrial applications, is supported by North America's emphasis on sustainability, energy efficiency, and government incentives for green technologies.
Key players in the market
Some of the key players profiled in the Wide Bandgap Materials Market include Infineon Technologies AG, ON Semiconductor Corporation, STMicroelectronics N.V., Texas Instruments Incorporated, ROHM Semiconductor, NXP Semiconductors N.V., Qorvo, Inc., Schaefer, Inc., General Electric Company (GE), Analog Devices, Inc., Macom Technology Solutions, Applied Materials, Inc., Mitsubishi Electric Corporation, II-VI Incorporated, Toshiba Corporation, Broadcom Inc, Norstel AB, Sumitomo Electric Industries, Ltd., and Samsung Electronics Co., Ltd.
In June 2023, Infineon launched its next-generation 1200V SiC MOSFETs designed to offer higher power efficiency and lower switching losses. These MOSFETs cater to a variety of applications, including electric vehicles (EVs) and renewable energy systems.
In May 2023, STMicroelectronics introduced a new series of Gallium Nitride (GaN) power transistors for high-efficiency power systems, addressing the growing demand for fast-charging infrastructure, 5G, and data centers.
In January 2023, Rohm introduced new 1200V SiC MOSFETs aimed at the electric vehicle (EV) market, delivering superior power density and thermal performance. These devices help enhance the efficiency of EV powertrains and charging stations.