![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1617182
X¼± ±¤ÀüÀÚ ºÐ±¤¹ý ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, À¯Çüº°, °ËÃâ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®X-ray Photoelectron Spectroscopy Market Forecasts to 2030 - Global Analysis By Component, Type, Detection Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è X¼± ±¤ÀüÀÚ ºÐ±¤¹ý ½ÃÀåÀº 2024³â 7¾ï 7,439¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 5.9% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï 9,228¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
X¼± ±¤ÀüÀÚ ºÐ±¤¹ýÀº Àç·áÀÇ Ç¥¸é ÈÇÐ ¿¬±¸¿¡ »ç¿ëµÇ´Â ºÐ¼® ±â¼úÀÔ´Ï´Ù. Àç·á¿¡ X¼±À» Á¶»çÇÏ¿© Ç¥¸é¿¡¼ ¹æÃâµÇ´Â ÀüÀÚÀÇ ¿îµ¿ ¿¡³ÊÁö¿Í ¼ö¸¦ ÃøÁ¤ÇÕ´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â Àç·á Ç¥¸éÀÇ »óÀ§ ¸î ³ª³ë¹ÌÅÍ ³» ¿øÀÚÀÇ ¿ø¼Ò Á¶¼º, ÈÇÐÀû »óÅ ¹× ÀüÀÚ »óÅ¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇϸç, XPS´Â °í°¨µµÀ̱⠶§¹®¿¡ ¹Ú¸·, ÄÚÆÃ ¹× ¿À¿° ¹°ÁúÀ» Á¤¹ÐÇÏ°Ô ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Bioinformatics Inc.°¡ ¹ßÇ¥ÇÑ ¿¬±¸Á¶»ç¿¡ µû¸£¸é, IMVÀÇ 2021³â Á¶»ç¿¡ µû¸£¸é ¹Ì±¹ º´¿ø ¿µ»óÀÇÇаú¿¡ ¼³Ä¡µÈ À̵¿Çü X¼± ÀåºñÀÇ ¾à 88.0%°¡ µðÁöÅÐ ±â¼úÀ» »ç¿ëÇϰí 12.0%°¡ CR Ä«¼¼Æ®/¾Æ³¯·Î±× ±â¼úÀ» »ç¿ëÇÑ´Ù°í °á·ÐÁö¾ú½À´Ï´Ù.
Ç¥¸é ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Ç¥¸é ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Ç¥¸é ¿øÀÚÀÇ ÈÇÐÀû Á¶¼º, ¿ø¼Ò ºÐÆ÷ ¹× ÈÇÐÀû »óÅ¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. ÀüÀÚ, Àç·á°úÇÐ, ÀÚµ¿Â÷, ÇコÄÉ¾î µîÀÇ »ê¾÷Àº Á¦Ç° ǰÁú Çâ»ó, ¼º´É Çâ»ó, ¾ö°ÝÇÑ ±ÔÁ¦ Áؼö¸¦ À§ÇØ Ç¥¸é Ư¼º Æò°¡¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Ç¥¸é ºÐ¼®À» À§ÇÑ Ã·´Ü ÅøÀ» ¿ä±¸ÇÔ¿¡ µû¶ó XPSÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ÇÑÁ¤µÈ ºÐ¼® ±íÀÌ
XPS´Â ½Ã·á¿¡¼ ±¤ÀüÀÚ°¡ ºüÁ®³ª°¡´Â ±íÀ̰¡ ¾è±â ¶§¹®¿¡ ÀϹÝÀûÀ¸·Î 1-10nm ±íÀÌÀÇ Àç·á Ç¥¸éÃþÀ» ÁÖ·Î ºÐ¼®ÇÕ´Ï´Ù. ½Éµµ ÀÖ´Â Àç·á ºÐ¼®À̳ª ³»ºÎ ±¸Á¶ÀÇ Æ¯¼º Æò°¡°¡ ÇÊ¿äÇÑ ÀÀ¿ë ºÐ¾ß¿¡¼´Â XPS°¡ ÃæºÐÇÏÁö ¾ÊÀ» ¼ö ÀÖÀ¸¸ç, º¸¿ÏÀûÀÎ ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÇѰè´Â ½ÉÃþ ºÐ¼® ¹× üÀû ºÐ¼®ÀÌ Áß¿äÇÑ »ê¾÷¿¡¼ XPSÀÇ ¸Å·ÂÀ» ¶³¾î¶ß¸®°í ½ÃÀå äÅðú ¼ºÀåÀ» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù.
¿¬±¸°³¹ßÀÇ È°¼ºÈ
³ª³ë±â¼ú, Àç·á°úÇÐ, ¹ÝµµÃ¼, Á¦¾à µîÀÇ ºÐ¾ß¿¡¼ ¿¬±¸ °³¹ßÀÌ °ÈµÊ¿¡ µû¶ó Ç¥¸éÀÇ Á¤¹ÐÇÏ°í »ó¼¼ÇÑ Æ¯¼ºÈ¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, XPS´Â Àç·áÀÇ ÈÇÐÀû ±¸¼º°ú ÀüÀÚ »óÅ¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÏ¿© ÀÌ·¯ÇÑ ºÐ¾ßÀÇ ±â¼ú Çõ½Å¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ´Â XPS ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î À̾îÁ® º¸´Ù È¿À²ÀûÀ̰í, »ç¿ëÇϱ⠽±°í, ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¿¡ Àû¿ëµÉ ¼ö ÀÖ°Ô µÇ¾î ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Àåºñ ºñ¿ë
XPSÀÇ ³ôÀº Àåºñ ºñ¿ëÀº Á¤È®ÇÑ Ç¥¸é ºÐ¼®¿¡ ÇÊ¿äÇÑ º¹ÀâÇÑ ±â¼ú, °í±Þ ºÎǰ ¹× Á¤¹Ð ¿£Áö´Ï¾î¸µÀÌ ÁÖ¿ä ¿øÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡´Â °í°¡ÀÇ X¼± ¼Ò½º, °ËÃâ±â ¹× Áø°ø è¹ö°¡ Æ÷ÇԵǾî ÀÖ¾î Á¦Á¶ ¹× À¯Áöº¸¼ö ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¸·´ëÇÑ ¼±Çà ÅõÀÚ¿Í Áö¼ÓÀûÀÎ ¿î¿µ ºñ¿ëÀº ÀáÀçÀûÀÎ »ç¿ëÀÚÀÇ ¹ß¸ñÀ» Àâ°í ´Ù¾çÇÑ »ê¾÷¿¡ XPS ±â¼úÀÇ ±¤¹üÀ§ÇÑ Àû¿ëÀ» Áö¿¬½ÃŰ°í ½ÃÀå È®ÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â X¼± ±¤ÀüÀÚ ºÐ±¤¹ý ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ ÀåºñÀÇ Á¦Á¶ ¹× ³³Ç°ÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº ÀÇ·á, Á¦¾à ¹× Àç·á ¿¬±¸¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÌ°í ¾à¹° Á¦Á¦, ÀÇ·á±â±â ÄÚÆÃ ¹× Ç× ¹ÙÀÌ·¯½º Àç·á ºÐ¼®¿¡ ´ëÇÑ XPSÀÇ ±âȸ¸¦ âÃâÇß½À´Ï´Ù. »ê¾÷ÀÌ ¿ø°Ý ÀÛ¾÷¿¡ ÀûÀÀÇÔ¿¡ µû¶ó ÀÚµ¿È ¹× XPS¿Í °°Àº °í±Þ ºÐ¼® µµ±¸¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡ÇÏ¿© Àü¿°º´ ÀÌÈÄ Á¡ÁøÀûÀΠȸº¹°ú ½ÃÀå À缺ÀåÀ¸·Î À̾îÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÈÞ´ë¿ë XPS ºÐ¾ß°¡ °¡Àå Å« ºÐ¾ß°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÈÞ´ë¿ë XPS ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÈÞ´ë¿ë XPS´Â Ç¥¸é ÈÇÐ ºÐ¼®¿¡ »ç¿ëµÇ´Â ´Ù¸ñÀû ºÐ¼® ±â¼úÀÔ´Ï´Ù. Ç¥¸é ¼öÁØ¿¡¼ ¹°ÁúÀÇ ¿ø¼Ò Á¶¼º, ÈÇÐÀû »óÅ ¹× °áÇÕ ±¸Á¶¸¦ ÃøÁ¤ÇÕ´Ï´Ù. ÈÞ´ë¿ë XPS ½Ã½ºÅÛÀº »ùÇÃÀ» ½ÇÇè½Ç·Î ¿î¹ÝÇÏÁö ¾Ê°íµµ ºü¸£°í ºñÆÄ±«ÀûÀ¸·Î °Ë»çÇÏ´Â µ¥ À¯¿ëÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àç·á Ư¼º Æò°¡ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àç·á Ư¼ºÈ ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, X¼± ±¤ÀüÀÚ ºÐ±¤¹ýÀº Àç·á Ư¼ºÈ¿¡ ³Î¸® »ç¿ëµÇ´Â °·ÂÇÑ Ç¥¸é ºÐ¼® ±â¼ú·Î, X¼± Á¶»ç ÇÏ¿¡¼ ¹æÃâµÇ´Â ±¤ÀüÀÚÀÇ ¿îµ¿ ¿¡³ÊÁö¸¦ ÃøÁ¤ÇÏ¿© Àç·áÀÇ ¿ø¼Ò Á¶¼º, ÈÇÐÀû »óÅ ¹× ÀüÀÚ ±¸Á¶¸¦ ½Äº°ÇÕ´Ï´Ù. XPS´Â Ç¥¸é °¨µµ°¡ ³ô°í 1-10 ³ª³ë¹ÌÅÍ ±íÀ̱îÁö ºÐ¼®ÇÒ ¼ö ÀÖ¾î ÄÚÆÃ, ¹Ú¸· ¹× Ç¥¸é °³Áú ¿¬±¸¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀüÀÚ, Àç·á°úÇÐ, ÇコÄɾî, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀϺ», Áß±¹, Çѱ¹°ú °°Àº ±¹°¡µéÀº ³ª³ë±â¼ú, ¹ÝµµÃ¼ Á¦Á¶ ¹× Ç¥¸é Ư¼ºÈ ºÐ¾ßÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ÁÖ¿ä ±â¿©±¹À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í Ç¥¸é ºÐ¼®¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ ÀÌ Áö¿ª¿¡¼ XPS ±â¼ú äÅÃÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â Á¦¾à, Àç·á °úÇÐ, ÀüÀÚ, ȯ°æ ¿¬±¸ ¹× ±âŸ ºÐ¾ßÀÇ °·ÂÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù°¡ ÁÖ¿ä Ç÷¹À̾îÀ̸ç, ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Ç¥¸é ºÐ¼® ±â¼úÀÌ ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ȯ°æ ±ÔÁ¦ÀÇ Áõ°¡¿Í Á¦Á¶ °øÁ¤ÀÇ Ç°Áú °ü¸®ÀÇ Çʿ伺ÀÌ ºÏ¹Ì¿¡¼ XPS ½Ã½ºÅÛÀÇ Ã¤ÅÃÀ» È®´ëÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global X-ray Photoelectron Spectroscopy Market is accounted for $774.39 million in 2024 and is expected to reach $1092.28 million by 2030 growing at a CAGR of 5.9% during the forecast period. X-ray photoelectron spectroscopy is an analytical technique used to study the surface chemistry of materials. By irradiating a material with X-rays, it measures the kinetic energy and number of electrons ejected from the surface. These data provide detailed information about the elemental composition, chemical states, and electronic states of atoms within the top few nanometers of a material's surface. XPS is highly sensitive, allowing precise analysis of thin films, coatings, and contaminants.
According to research study published by Bioinformatics Inc., in 2021, the IMV's 2021 survey concluded that about 88.0% of mobile X-ray units installed in the U.S. hospital radiology departments use digital technology and 12.0% use CR cassettes/analog technology.
Rising demand for surface analysis
The rising demand for surface analysis offers detailed insights into the chemical composition, elemental distribution, and chemical states of surface atoms. Industries such as electronics, materials science, automotive, and healthcare increasingly rely on surface characterization to improve product quality, enhance performance, and ensure compliance with stringent regulations. As industries seek advanced tools for surface analysis, XPS adoption expands, driving market growth globally.
Limited analysis depth
XPS primarily analyzes the surface layers of materials, typically to a depth of 1-10 nm, due to the shallow nature of photoelectron escape from the sample. In applications requiring deep material analysis or characterization of internal structures, XPS may not be sufficient, leading to the need for complementary techniques. This limitation reduces its appeal for industries where deep or volumetric analysis is critical, potentially slowing market adoption and growth.
Growing research & development activities
As R&D efforts intensify in fields like nanotechnology, materials science, semiconductors and pharmaceuticals, the need for precise and detailed characterization of surfaces increases. XPS provides valuable insights into the chemical composition and electronic states of materials, essential for innovations in these sectors. Additionally, investments in R&D lead to continuous advancements in XPS technology, making it more efficient, accessible, and applicable across a wider range of applications, further boosting market growth.
High equipment cost
The high equipment cost of XPS is primarily due to its complex technology, sophisticated components, and precision engineering required for accurate surface analysis. These systems involve high-cost X-ray sources, detectors, and vacuum chambers, making them expensive to manufacture and maintain. The significant upfront investment and ongoing operational expenses deter potential users, slowing the broader application of XPS technology across various industries and limiting market expansion.
Covid-19 Impact
The covid-19 pandemic significantly impacted the X-ray photoelectron spectroscopy market. Disruptions in global supply chains delayed equipment manufacturing and delivery. However, the pandemic heightened focus on healthcare, pharmaceuticals, and materials research, creating opportunities for XPS in analyzing drug formulations, medical device coatings, and antiviral materials. As industries adapted to remote operations, interest in automation and advanced analytical tools like XPS grew, leading to a gradual recovery and renewed market growth post-pandemic.
The portable XPS segment is expected to be the largest during the forecast period
The portable XPS segment is predicted to secure the largest market share throughout the forecast period. Portable XPS is a versatile analytical technique used for surface chemistry analysis. It measures the elemental composition, chemical state, and bonding structure of materials at the surface level. Portable XPS systems are valuable for quick, non-destructive testing of samples without the need for transporting them to a lab.
The material characterization segment is expected to have the highest CAGR during the forecast period
The material characterization segment is anticipated to witness the highest CAGR during the forecast period. X-ray photoelectron spectroscopy is a powerful surface analysis technique widely used in material characterization. It identifies elemental composition, chemical states, and electronic structure of materials by measuring the kinetic energy of photoelectrons emitted under X-ray irradiation. XPS is highly surface-sensitive, analyzing depths of 1-10 nanometers, making it ideal for studying coatings, thin films, and surface modifications.
Asia Pacific is expected to register the largest market share during the forecast period due to increasing demand in industries such as electronics, materials science, healthcare, and automotive. Countries like Japan, China, and South Korea are key contributors, driven by advancements in nanotechnology, semiconductor manufacturing, and surface characterization. The growing focus on environmental sustainability, coupled with increasing awareness of surface analysis, further boosts the adoption of XPS technology in the region.
North America is projected to witness the highest CAGR over the forecast period driven by strong demand from sectors such as pharmaceuticals, materials science, electronics, and environmental research. The United States and Canada are key players, with increased investments in R&D and advancements in surface analysis technologies. Additionally, rising environmental regulations and the need for quality control in manufacturing processes contribute to the expanding adoption of XPS systems in North America.
Key players in the market
Some of the key players profiled in the X-ray Photoelectron Spectroscopy Market include Thermo Fisher Scientific, PerkinElmer, Kratos Analytical, Bruker Corporation, Ametek Surface Analysis, Agilent Technologies, JEOL Limited, ULVAC-PHI, Horiba Limited, Oxford Instruments, Specs Surface Analysis, Scienta Omicron, BaseTech Instruments, Riber S.A., Veeco Instruments Inc., Omicron NanoTechnology GmbH, Applied Materials, Rigaku Corporation, Picosun Limited and Princeton Instruments.
In November 2024, Thermo Fisher launched a new series of XPS instruments, designed to enhance the accuracy and efficiency of surface analysis. These devices are integrated with advanced technologies that use monochromatic X-ray sources to improve the detection and analysis of elements at surfaces.
In October 2024, Kratos Analytical introduced an advanced XPS (X-ray Photoelectron Spectroscopy) system designed to meet the growing demand for hyphenated technologies. This system, known for its high-resolution capabilities, is focused on surface chemistry and elemental composition analysis, particularly valuable in materials science, electronics, and catalysis.