½ÃÀ庸°í¼­
»óǰÄÚµå
1617218

RNA °£¼·(RNAi) ³ó¾à ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÀÛ¿ë±âÀüº°, ÀÛ¹° À¯Çüº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

RNA Interference (RNAi) Pesticides Market Forecasts to 2030 - Global Analysis By Type (Synthetic RNAi Pesticides and Natural RNAi Pesticides), Mode of Action (Gene Silencing and RNA Interference), Crop Type, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è RNA °£¼·(RNAi) ³ó¾à ½ÃÀåÀº 2024³â 14¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 11.92% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 27¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

RNA °£¼· ³ó¾àÀº RNA °£¼·ÀÇ ÀÚ¿¬Àû À¯ÀüÀÚ Ä§¹¬ ¸ÞÄ¿´ÏÁòÀ» Ȱ¿ëÇÑ ³ó¾÷ ÇØÃæ °ü¸®ÀÇ Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ÀÌ ³ó¾àÀº ÀÛÀº ÀÌÁß³ª¼± RNA ºÐÀÚ¸¦ »ç¿ëÇÏ¿© ÇØÃæÀÇ Áß¿äÇÑ À¯ÀüÀÚ ¹ßÇöÀ» Ç¥ÀûÀ¸·Î »ï°í ¾ïÁ¦ÇÏ¿© ÇØÃæÀ» Á×À̰ųª ¼ºÀåÀ» ¾ïÁ¦ÇÕ´Ï´Ù. ±âÁ¸ È­ÇÐ ³ó¾à°ú ´Þ¸® RNAi ±â¹Ý ¼Ö·ç¼ÇÀº ¸Å¿ì ƯÀÌÀûÀ̾ Ç¥Àû ÇØÃæ Á¾¿¡¸¸ ¿µÇâÀ» ¹ÌÄ¡¸ç, À¯ÀÍÇÑ °ïÃæÀ̳ª ÁÖº¯ »ýŰè¿Í °°Àº ºñÇ¥Àû »ý¹°¿¡ ´ëÇÑ ¼Õ»óÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

Journal of Agricultural and Food Chemistry Àú³Î¿¡ µû¸£¸é, RNAi ±â¹Ý ³ó¾àÀº °ïÃæ, ¼±Ãæ, °õÆÎÀ̸¦ Æ÷ÇÔÇÑ ±¤¹üÀ§ÇÑ ³ó¾÷ ÇØÃæ ¹æÁ¦¿¡ È¿°úÀûÀ̸ç, ÀÌµé »ý¹°ÀÇ Çʼö À¯ÀüÀÚ¸¦ ħ¹¬½ÃÅ´À¸·Î½á ÇØÃæÀÇ °³Ã¼¼ö¸¦ ÃÖ´ë 90%±îÁö °¨¼Ò½Ãų ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ÇØÃæ ¹æÁ¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

È­ÇÐ ³ó¾àÀÇ ±¤¹üÀ§ÇÑ »ç¿ë¿¡ ´ëÇÑ È¯°æÀû ¿ì·Á°¡ Ä¿Áö¸é¼­ Áö¼Ó°¡´ÉÇÑ ´ë¾È¿¡ ´ëÇÑ ¿ä±¸°¡ ±Þ°ÝÈ÷ Áõ°¡Çϰí ÀÖÀ¸¸ç, RNAi ³ó¾àÀº Á¾ ƯÀÌÀûÀ̱⠶§¹®¿¡ Ç¥Àû ÇØÃæ¸¸ ¹æÁ¦Çϰí ÀÍÃæ, Á¶·ù, ¼ö»ý »ý¹°°ú °°Àº ºñÇ¥Àû »ý¹°¿¡´Â ¿µÇâÀ» ¹ÌÄ¡Áö ¾Ê¾Æ ÀÌ·¯ÇÑ ¿ä±¸¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ÀÌ Á¤¹Ðµµ¸¦ ÅëÇØ Åä¾ç°ú ¼öÁú. ÀÌ·¯ÇÑ Á¤È®¼ºÀ¸·Î ÀÎÇØ Åä¾ç ¹× ¼öÁú ¿À¿°°ú »ýÅÂ°è ±³¶õÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, RNAi ³ó¾àÀº ³óºÎµé°ú ³ó¾÷ ±â¾÷µéÀÌ È¯°æ ģȭÀûÀÎ ¹æ¹ýÀ» µµÀÔÇØ¾ß ÇÏ´Â »óȲ¿¡¼­ Áö¼Ó°¡´É¼º°ú ÇØÃæ ¹æÁ¦ÀÇ ±ÕÇüÀ» ¸ÂÃß±â À§ÇÑ ÀϹÝÀûÀÎ ¹æ¹ýÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ºñ´ëÇÑ RNAi ³ó¾à »ý»ê ºñ¿ë

RNA °£¼·(RNAi) ±â¼ú¿¡ ÇʼöÀûÀÎ ÀÌÁß³ª¼± RNA(dsRNA) ºÐÀÚÀÇ ³ôÀº »ý»êºñ¿ëÀº RNAi ³ó¾à ½ÃÀåÀ» °¡·Î¸·´Â Å« À庮 Áß ÇϳªÀÔ´Ï´Ù. ´ë±Ô¸ð RNA ºÐÀÚ ÇÕ¼ºÀ» À§Çؼ­´Â °íµµÀÇ »ý¸í°øÇÐ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇϸç, ÀÌ´Â ±âÁ¸ È­ÇÐ ³ó¾à¿¡ ºñÇØ ³ôÀº ºñ¿ëÀ¸·Î À̾îÁö´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ƯÈ÷ ½ÅÈï±¹°ú °°ÀÌ ºñ¿ë¿¡ ¹Î°¨ÇÑ ½ÃÀå¿¡¼­´Â ÀÌ·¯ÇÑ °æÁ¦Àû À庮ÀÌ RNAi ³ó¾àÀÇ º¸±ÞÀ» °¡·Î¸·°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý»ê ±Ô¸ð¸¦ È®´ëÇÏ°í »ý»ê ±â¼úÀ» ÃÖÀûÈ­Çϱâ À§ÇÑ Áö¼ÓÀûÀÎ ³ë·ÂÀÌ ÁøÇàµÇ°í ÀÖÁö¸¸, ÀÌ·¯ÇÑ ºñ¿ëÀÌ Å©°Ô °¨¼ÒÇϱâ Àü±îÁö´Â äÅÃÀÌ Á¦ÇÑÀûÀÏ ¼ö ÀÖ½À´Ï´Ù.

Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ °ü½É Áõ°¡

Àü ¼¼°èÀûÀ¸·Î ȯ°æ º¸È£¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ RNA °£¼·(RNAi) ³ó¾àÀº ¸¹Àº ±âȸ¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ È­ÇÐ ³ó¾àÀÌ Åä¾ç, ¹°, À¯ÀÍÇÑ »ý¹°À» Æ÷ÇÔÇÑ »ýŰ迡 ÇØ·Î¿î ¿µÇâÀ» ¹ÌÄ¡¸é¼­ ³óºÎ, Á¤ºÎ ¹× ¼ÒºñÀÚ´Â ´ëü ³ó¾àÀ» ã°í ÀÖÀ¸¸ç, RNAi ³ó¾àÀº »ýŰ踦 °ÅÀÇ ¹æÇØÇÏÁö ¾Ê°í Á¾¿¡ ƯȭµÈ Ç¥ÀûÈ­ µÈ ¼Ö·ç¼ÇÀ» Á¦°øÇϱ⠶§¹®¿¡ ÀÌ·¯ÇÑ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, RNAi ±â¼úÀÇ °Å´ëÇÑ ½ÃÀåÀº Áö¼Ó°¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ƯÈ÷ ȯ°æ °ü·Ã ¹ý±Ô°¡ ¾ö°ÝÇÑ Áö¿ª°ú ȯ°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ôÀº ¼ÒºñÀÚÃþ¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À ³ó¾à ¹× À¯¸í ³ó¾à°úÀÇ °æÀï

RNA °£¼·(RNAi) ³ó¾à ½ÃÀå¿¡¼­´Â ±âÁ¸ È­ÇÐ ³ó¾à°ú Àß ¾Ë·ÁÁø »ý¹° ³ó¾àÀÌ Ä¡¿­ÇÑ °æÀïÀ» ¹úÀ̰í ÀÖ½À´Ï´Ù. È­ÇÐ ³ó¾àÀÌ ½ÃÀåÀ» Áö¹èÇϰí ÀÖ´Â ÀÌÀ¯´Â ±¤¹üÀ§ÇÑ °¡¿ë¼º, Àú·ÅÇÑ °¡°Ý, ¼ö½Ê ³â µ¿¾È ÀÔÁõµÈ È¿°ú ¶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀΰú ģȯ°æÀûÀΠƯ¼ºÀ¸·Î ÀÎÇØ ¹Ì»ý¹°À̳ª ½Ä¹° ÃßÃâ¹°°ú °°Àº õ¿¬ ÀÚ¿øÀ¸·Î ¸¸µç »ý¹°ÇÐÀû ³ó¾àÀÇ ÀαⰡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ³ó¾àÀº °ø±Þ¸ÁÀÌ Àß ±¸ÃàµÇ¾î ÀÖ°í º¸±Þ·üÀÌ ³ô±â ¶§¹®¿¡ RNAi ³ó¾àÀÌ ½ÃÀå¿¡ ÁøÀÔÇÏ¿© È¿°úÀûÀ¸·Î °æÀïÇÏ´Â °ÍÀº ¸Å¿ì ¾î·Æ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

RNA °£¼·(RNAi) ³ó¾à ½ÃÀå¿¡ ´ëÇÑ COVID-19 ÆÒµ¥¹ÍÀÇ ¿µÇâÀº »ó¹ÝµÈ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ, ³ëµ¿·Â ºÎÁ· ¹× ¹°·ùÀÇ ¾î·Á¿òÀ¸·Î ÀÎÇØ RNAi ³ó¾àÀÇ Á¦Á¶ ¹× À¯ÅëÀÌ Áö¿¬µÇ¾î ³ó¾÷ ºÐ¾ß¿¡¼­ÀÇ »ç¿ëÀ» ¿¬±âÇß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹Í ±â°£ µ¿¾È °æÁ¦ ºÒ¾ÈÀ¸·Î ÀÎÇØ RNAi ±â¼ú°ú °°Àº ³ó¾÷ Çõ½Å¿¡ ´ëÇÑ ÅõÀÚ°¡ °¨¼ÒÇß½À´Ï´Ù. ±× °á°ú, ³óÀÛ¹°À» º¸È£ÇÏ´Â È¿°úÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ¹æ¹ýÀ¸·Î RNAi ³ó¾à¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁ³°í, °æÁ¦°¡ ȸº¹µÇ°í ³ó¾÷ »ê¾÷ÀÌ È¸º¹·Â°ú Çõ½Å¿¡ ³ôÀº ¿ì¼±¼øÀ§¸¦ µÎ°Ô µÇ¸é ÇâÈÄ È®ÀåÀÇ ±æÀ» ¿­°Ô µÉ °ÍÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇÕ¼º RNAi ³ó¾à ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇÕ¼º RNA °£¼·(RNAi) ³ó¾à ºÎ¹®Àº RNA °£¼·(RNAi) ³ó¾à ½ÃÀå¿¡¼­ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ½ÃÀåÀÇ Æ¯Â¡Àº ÇØÃæÀÇ À¯ÀüÀÚ¸¦ ƯÀÌÀûÀ¸·Î Ç¥ÀûÀ¸·Î »ï´Â ÇÕ¼º RNA ºÐÀÚ¸¦ ¸¸µé¾î »ç¿ëÇÔÀ¸·Î½á ÇØ´ç À¯ÀüÀÚ¸¦ È¿°úÀûÀ¸·Î ħ¹¬½ÃÄÑ È®»êÀ» ¸·´Â °ÍÀÔ´Ï´Ù. ÇÕ¼º RNAi ³ó¾àÀº ±âÁ¸ÀÇ È­ÇÐ ³ó¾àÀ» ´ëüÇÒ ¼ö ÀÖ´Â º¸´Ù Á¤È®Çϰí ģȯ°æÀûÀÎ ³ó¾àÀ» Á¦°øÇϱ⠶§¹®¿¡ Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇà¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÌ ½ÃÀåÀ» À̲ô´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥Àû ¿Ü ¿µÇâÀ» ÃÖ¼ÒÈ­Çϰí ÇØÃæÀÌ ³»¼ºÀ» °¡Áú °¡´É¼ºÀ» ³·ÃãÀ¸·Î½á ±âÁ¸ ÇØÃæ ¹æÁ¦ ±â¼úÀÇ ÁÖ¿ä ¹®Á¦¸¦ ÇØ°áÇϰí ÀÖ½À´Ï´Ù.

°úÀÏ ¹× ä¼Ò ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»ó

RNA °£¼·(RNAi) ³ó¾à ½ÃÀåÀÇ °úÀÏ ¹× ä¼Ò ºÎ¹®Àº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ó¾à ÀÜ·ù·®À» ÁÙÀÌ´Â È¿À²ÀûÀÎ ÇØÃæ ¹æÁ¦ ¹æ¹ý¿¡ ´ëÇÑ ¿ä±¸¿Í ½Å¼±ÇÏ°í °Ç°­ÇÑ ³ó»ê¹°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿å±¸ Áõ°¡°¡ ÀÌ ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. °úÀϰú ä¼Ò´Â °íºÎ°¡°¡Ä¡ ÀÛ¹°À̱⠶§¹®¿¡ ³óºÎµéÀº ȯ°æ ģȭÀûÀÌ°í Æ¯Á¤ ÇØÃæÀ» ´ë»óÀ¸·Î ÀÛ¿ëÇÏ´Â RNAi ³ó¾à°ú °°Àº ÃÖ÷´Ü ÇØÃæ ¹æÁ¦ ±â¼úÀ» »ç¿ëÇϵµ·Ï Àå·ÁµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¹°ÇÐÀû ³ó¾àÀÌ ±âÁ¸ È­ÇÐÁ¦Ç°º¸´Ù ¿ì¼öÇÏ´Ù´Â ÀνÄÀÌ È®»êµÇ°í Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀ» ÁöÁöÇÏ´Â ±ÔÁ¦ µ¿Çâµµ ÀÌ ºÎ¹®ÀÇ ¼ºÀå¿¡ ±â¿©ÇÏ´Â ¿äÀÎÀÔ´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª:

RNA °£¼·(RNAi) ³ó¾à ½ÃÀåÀº ³ó¾÷¿¡¼­ Áúº´ °ü¸® ¹× ÇØÃæ ¹æÁ¦¸¦ À§ÇÑ RNAi ±â¼ú Ȱ¿ëÀÌ È®´ëµÇ¸é¼­ ºÏ¹Ì°¡ ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº Á¤±³ÇÑ ³ó¾÷ »ê¾÷, ´ë±Ô¸ð »ý¸í°øÇÐ ÅõÀÚ, ½ÅÈï ³ó¾÷ ±â¼ú¿¡ ´ëÇÑ ¿ìÈ£ÀûÀÎ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©·Î ÀÎÇØ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù. ȯ°æ ģȭÀûÀ̰í Áö¼Ó°¡´ÉÇÑ ÇØÃæ ¹æÁ¦ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¼ö¿ä´Â RNAi ±â¹Ý Á¦Ç°ÀÌ ºñÇ¥Àû »ý¹°¿¡ ÇØ¸¦ ³¢Ä¡Áö ¾Ê°í ƯÁ¤ ÇØÃæ¿¡ ÃÊÁ¡À» ¸ÂÃá´Ù´Â Á¡¿¡¼­ ÀÌ Áö¿ª ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀÇ ½ÃÀå ¿ªÇÐÀº °úÀÏ, ä¼Ò, °î¹°°ú °°Àº ÀÛ¹°¿¡¼­ RNAiÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

RNA °£¼·(RNAi) ³ó¾à ½ÃÀå¿¡¼­ ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ¿Í °°ÀÌ ³ó¾÷ÀÌ °æÁ¦¿¡ ÇʼöÀûÀÎ ±¹°¡¿¡¼­´Â ³ó¾÷ Ȱµ¿ÀÇ È®´ë·Î ÀÎÇØ È¿À²ÀûÀÎ ÇØÃæ °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ Áö¿ªÀÇ Ä£È¯°æ ÇØÃæ ¹æÁ¦ ±â¼ú¿¡ ´ëÇÑ Á߿伺°ú Áö¼Ó°¡´ÉÇÑ ³ó¾÷ °üÇàÀ» Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥¿¡ ÈûÀÔ¾î RNAi ±â¼ú äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ãß¼¼¸¦ µÞ¹ÞħÇÏ´Â °ÍÀº ³óºÎµéÀÌ RNAi ³ó¾àÀÇ Ç¥ÀûÈ­ È¿°ú¿Í ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Àû´Ù´Â ÀåÁ¡¿¡ ´ëÇÑ ³óºÎµéÀÇ ÀνÄÀÌ ³ô¾ÆÁø °Íµµ ÇÑ ¸òÀ» Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : À¯Çüº°

  • ÇÕ¼º RNAi ³ó¾à
  • õ¿¬ RNAi ³ó¾à

Á¦6Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : ÀÛ¿ë±âÀüº°

  • À¯ÀüÀÚ Ä§¹¬
  • RNA °£¼·

Á¦7Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : ÀÛ¹° À¯Çüº°

  • ¿Á¼ö¼ö
  • ´ëµÎ
  • ÄÚÆ°
  • °úÀϰú ¾ßä
  • ±âŸ ÀÛ¹°

Á¦8Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : ¿ëµµº°

  • ¿±¸é »ìÆ÷Á¦
  • Á¾ÀÚ Ã³¸®
  • Åä¾ç ó¸®

Á¦9Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ³ó¾÷ ºÐ¾ß
  • ¿Â½Ç
  • ¿ø¿¹

Á¦10Àå ¼¼°èÀÇ RNA °£¼·(RNAi) ³ó¾à ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • Vestaron Corporation
  • Trillium AG
  • Thermo Fisher Scientific
  • Syngenta AG
  • Sumitomo Chemical
  • Qiagen NV
  • Phio Pharmaceuticals Corp.
  • Pebble Labs Inc
  • Merck & Co. Inc
  • Ionis Pharmaceuticals Inc.
  • GreenLight Biosciences
  • Elemental Enzymes, Inc
  • Dicerna Pharmaceuticals(Novo Nordisk A/S)
  • Bayer AG
  • Arrowhead Pharmaceuticals
ksm 25.01.08

According to Stratistics MRC, the Global RNA Interference (RNAi) Pesticides Market is accounted for $1.40 billion in 2024 and is expected to reach $2.75 billion by 2030 growing at a CAGR of 11.92% during the forecast period. RNA interference pesticides represent an innovative approach in agricultural pest management, leveraging the natural gene-silencing mechanism of RNA interference. Small double-stranded RNA molecules are used in these pesticides to target and inhibit the expression of vital genes in pests, resulting in their death or stunted growth. In contrast to conventional chemical pesticides, RNAi-based solutions are extremely specific, limiting damage to non-target organisms such as beneficial insects and the surrounding ecosystem while only affecting the targeted pest species.

According to the Journal of Agricultural and Food Chemistry, RNAi-based pesticides have shown effectiveness in controlling a wide range of agricultural pests, including insects, nematodes, and fungi, by silencing essential genes in these organisms, leading to a reduction in pest populations by up to 90%.

Market Dynamics:

Driver:

Demand for targeted and sustainable pest control solutions

The need for sustainable alternatives has increased dramatically as environmental concerns over the widespread use of chemical pesticides have grown. Because RNAi pesticides are species-specific, they meet this need by only destroying the targeted pests and leaving non-target organisms like beneficial insects, birds, or aquatic species unaffected. This accuracy lessens soil and water contamination and ecological disturbances. Additionally, RNAi pesticides are becoming a popular way to strike a balance between sustainability and pest control as farmers and agricultural enterprises face more pressure to implement eco-friendly methods.

Restraint:

Exorbitant RNAi pesticide production costs

The high cost of producing the double-stranded RNA (dsRNA) molecules that are essential to RNA interference (RNAi) technology is one of the major barriers to the market for RNAi pesticides. Large-scale RNA molecule synthesis necessitates sophisticated biotechnology infrastructure, which frequently contributes to higher costs when compared to conventional chemical pesticides. Particularly in cost-sensitive markets like developing nations, this financial barrier prevents RNAi pesticides from being widely adopted. Furthermore, continuous efforts are being made to scale up manufacturing and optimize production techniques, but their adoption may be limited until these costs are drastically decreased.

Opportunity:

Growing interest in sustainable farming methods

The emphasis on environmental preservation and sustainability around the world presents RNA interference (RNAi) pesticides with a lot of opportunities. The detrimental effects of conventional chemical pesticides on ecosystems, including soil, water, and beneficial organisms, have prompted farmers, governments, and consumers to look for alternatives. Since RNAi pesticides offer a species-specific, targeted solution with little ecological disturbance, they are ideal for achieving these goals. Moreover, a huge market for RNAi technologies is created by the rising demand for sustainable farming methods, particularly in areas with stringent environmental laws and environmentally conscious consumer populations.

Threat:

Competition from bio pesticides and well-known pesticides

Traditional chemical pesticides and well-known biopesticides are fierce competitors in the RNA interference (RNAi) pesticide market. The market is dominated by chemical pesticides because of their extensive availability, affordable prices, and decades of demonstrated effectiveness. Furthermore, because of their regulatory approval and environmentally friendly characteristics, biopesticides made from natural sources-such as microbial or botanical extracts-are becoming more and more popular. Due to their established supply chains and greater rates of adoption, both options make it extremely difficult for RNAi pesticides to enter the market and effectively compete.

Covid-19 Impact:

There were conflicting effects of the COVID-19 pandemic on the market for RNA interference (RNAi) pesticides. Global supply chain disruptions, a shortage of labor, and logistical difficulties, on the one hand, slowed down the manufacturing and distribution of RNAi pesticides, postponing their use in the agricultural industry. Additionally, investments in agricultural innovations, such as RNAi technologies, were decreased as a result of the economic uncertainty during the pandemic. Increased interest in RNAi pesticides as an effective and sustainable way to protect crops resulted from this, opening the door for future expansion as economies recover and the agricultural industry places a higher priority on resilience and innovation.

The Synthetic RNAi Pesticides segment is expected to be the largest during the forecast period

The synthetic RNA interference (RNAi) pesticides segment is expected to hold the largest share in the RNA interference (RNAi) pesticides market. This market is distinguished by the creation and use of synthetic RNA molecules that specifically target pest genes, effectively silencing them and stopping their spread. Since synthetic RNAi pesticides provide a more accurate and eco-friendly substitute for conventional chemical pesticides, the increasing demand for sustainable agricultural practices is a major factor propelling this market. Moreover, they solve major issues with traditional pest control techniques by minimizing off-target effects and lowering the chance of pests becoming resistant.

The Fruits & Vegetables segment is expected to have the highest CAGR during the forecast period

The fruits and vegetables segment of the RNA Interference (RNAi) pesticides market is anticipated to grow at the highest CAGR. The need for efficient pest control methods that reduce pesticide residues and the growing consumer desire for fresh, healthful produce are the main drivers of this growth. Farmers are encouraged to use cutting-edge pest management technologies, like RNAi pesticides, which provide targeted action against particular pests while being environmentally friendly, because fruits and vegetables are high-value crops. Additionally, growing awareness of the advantages of using biopesticides over traditional chemicals and regulatory trends supporting sustainable agricultural practices are also factors contributing to the segment's growth.

Region with largest share:

The market for RNA interference (RNAi) pesticides is expected to be dominated by the North American region due to the growing use of RNAi technology in agriculture for disease management and pest control. Because of its sophisticated agricultural industry, large biotechnology investments, and supportive regulatory framework for emerging agricultural technologies, the United States in particular makes a substantial contribution. The continuous need for environmentally friendly and sustainable pest control solutions, which RNAi-based products provide by focusing on particular pests without harming non-target organisms, is driving the region's market expansion. Moreover, market dynamics in this area are further enhanced by the growing use of RNAi in crops like fruits, vegetables, and cereals.

Region with highest CAGR:

In the market for RNA interference (RNAi) pesticides, the Asia-Pacific region is anticipated to grow at the highest CAGR. In nations like China and India, where agriculture is vital to the economy, there is a growing need for efficient pest management solutions due to the expansion of agricultural activities. The adoption of RNAi technology is being driven by the region's emphasis on environmentally friendly pest control techniques as well as government programs encouraging sustainable agricultural practices. Furthermore, supporting this trend is farmers increasing awareness of the advantages of RNAi pesticides, such as their targeted action and less environmental impact.

Key players in the market

Some of the key players in RNA Interference (RNAi) Pesticides market include Vestaron Corporation, Trillium AG, Thermo Fisher Scientific, Syngenta AG, Sumitomo Chemical, Qiagen NV, Phio Pharmaceuticals Corp., Pebble Labs Inc, Merck & Co. Inc, Ionis Pharmaceuticals Inc., GreenLight Biosciences, Elemental Enzymes, Inc, Dicerna Pharmaceuticals (Novo Nordisk A/S), Bayer AG and Arrowhead Pharmaceuticals.

Key Developments:

In October 2024, Vestaron Corporation is pleased to announce a long-term strategic agreement with ADM for the production of Vestaron peptide-based crop protection products. This collaboration marks a significant milestone in Vestaron's mission to meet the growing global demand for sustainable and effective crop protection solutions.

In February 2024, Syngenta Crop Protection and Lavie Bio Ltd., a subsidiary of Evogene Ltd, announced an agreement for the discovery and development of new biological insecticidal solutions. The collaboration will leverage Lavie Bio's unique technology platform to rapidly identify and optimize bio-insecticide candidates, as well as Syngenta's extensive global research, development and commercialization capabilities.

In February 2023, Thermo Fisher Scientific Inc. entered into a definitive agreement to acquire CorEvitas, a provider of regulatory-grade, real-world evidence for approved medical treatments and therapies, from Audax Private Equity, for $912.5 million in cash. CorEvitas will become part of Thermo Fisher's Laboratory Products and Biopharma Services segment. The transaction is expected to be completed by the end of 2023.

Types Covered:

  • Synthetic RNAi Pesticides
  • Natural RNAi Pesticides

Mode of Actions Covered:

  • Gene Silencing
  • RNA Interference

Crop Types Covered:

  • Corn
  • Soybean
  • Cotton
  • Fruits & Vegetables
  • Other Crop Types

Applications Covered:

  • Foliar Spray
  • Seed Treatment
  • Soil Treatment

End Users Covered:

  • Agricultural Fields
  • Greenhouses
  • Horticulture

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global RNA Interference (RNAi) Pesticides Market, By Type

  • 5.1 Introduction
  • 5.2 Synthetic RNAi Pesticides
  • 5.3 Natural RNAi Pesticides

6 Global RNA Interference (RNAi) Pesticides Market, By Mode of Action

  • 6.1 Introduction
  • 6.2 Gene Silencing
  • 6.3 RNA Interference

7 Global RNA Interference (RNAi) Pesticides Market, By Crop Type

  • 7.1 Introduction
  • 7.2 Corn
  • 7.3 Soybean
  • 7.4 Cotton
  • 7.5 Fruits & Vegetables
  • 7.6 Other Crop Types

8 Global RNA Interference (RNAi) Pesticides Market, By Application

  • 8.1 Introduction
  • 8.2 Foliar Spray
  • 8.3 Seed Treatment
  • 8.4 Soil Treatment

9 Global RNA Interference (RNAi) Pesticides Market, By End User

  • 9.1 Introduction
  • 9.2 Agricultural Fields
  • 9.3 Greenhouses
  • 9.4 Horticulture

10 Global RNA Interference (RNAi) Pesticides Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Vestaron Corporation
  • 12.2 Trillium AG
  • 12.3 Thermo Fisher Scientific
  • 12.4 Syngenta AG
  • 12.5 Sumitomo Chemical
  • 12.6 Qiagen NV
  • 12.7 Phio Pharmaceuticals Corp.
  • 12.8 Pebble Labs Inc
  • 12.9 Merck & Co. Inc
  • 12.10 Ionis Pharmaceuticals Inc.
  • 12.11 GreenLight Biosciences
  • 12.12 Elemental Enzymes, Inc
  • 12.13 Dicerna Pharmaceuticals (Novo Nordisk A/S)
  • 12.14 Bayer AG
  • 12.15 Arrowhead Pharmaceuticals
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦