½ÃÀ庸°í¼­
»óǰÄÚµå
1625205

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ½Ã¹Ä·¹ÀÌ¼Ç À¯Çüº°, Ä¡·á¹ýº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

In Silico Clinical Trials Market Forecasts to 2030 - Global Analysis By Type, Simulation Type, Therapeutic, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀåÀº 2024³â¿¡ 36¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 8.4%·Î ¼ºÀåÇϸç, 200³â¿¡´Â 58¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀº ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ǰú ¸ðµ¨¸µÀ» ÅëÇØ Àΰ£ÀÇ »ý¹°ÇÐÀ» ÀçÇöÇϰí ÀÇ·á °³ÀÔÀÇ È¿°ú¸¦ ¿¹ÃøÇϱâ À§ÇØ ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ǰú ¸ðµ¨¸µÀ» »ç¿ëÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °¡»ó ½ÃÇèÀº ¹æ´ëÇÑ ¾çÀÇ È¯ÀÚ µ¥ÀÌÅÍ, »ý¹°ÇÐÀû ¸ðµ¨ ¹× °è»ê ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ¾à¹°, Ä¡·á¹ý ¹× ±â±â°¡ ½ÇÁ¦ ÀÓ»ó ȯ°æ¿¡¼­ ¾î¶»°Ô ÀÛ¿ëÇÏ´ÂÁö¸¦ ½Ã¹Ä·¹À̼ÇÇÕ´Ï´Ù. ±âÁ¸ÀÇ »ýü³» ½ÃÇèÀ» ´ëüÇϰųª ±× Çʿ伺À» °¨¼Ò½ÃÅ´À¸·Î½á, ÀνǸ®ÄÚ ½ÃÇèÀº ÀÓ»ó µµÀÔ Àü¿¡ Ä¡·áÁ¦ÀÇ ¾ÈÀü¼º°ú À¯È¿¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖ´Â º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀ̸ç À±¸®ÀûÀÎ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù.

À¯·´ÀǾàǰû(European Medicines Agency-European Union)¿¡ µû¸£¸é EU/EEA¿¡¼­´Â ¸Å³â 4,000°Ç ÀÌ»óÀÇ ÀÓ»ó½ÃÇèÀÌ ½ÂÀεǰí ÀÖÀ¸¸ç, ÀÌ Áß 60%´Â Á¦¾àȸ»ç°¡, 40%´Â ºñ»ó¾÷Àû ½ºÆù¼­°¡ ÈÄ¿øÇϰí ÀÖ½À´Ï´Ù. Àεµ ÀÓ»ó½ÃÇèµî·Ï±â°ü(CTRI)¿¡ µû¸£¸é 2021³â Àεµ¿¡¼­ ½ÂÀÎµÈ ±¹Á¦ ÀÓ»ó½ÃÇèÀº 100°ÇÀ» ³Ñ¾î 2013³â ÀÌÈÄ ÃÖ°íÄ¡¸¦ ±â·ÏÇß½À´Ï´Ù.

¾ÈÀüÇÑ ÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½ÃÀå °³¹ß¿¡¼­ º¸´Ù ¾ÈÀüÇÑ ÀǾàǰ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ´Â ¹è°æ¿¡´Â º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ̸ç À±¸®ÀûÀÎ ÀǾàǰ °³¹ß ÇÁ·Î¼¼½º¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÖ½À´Ï´Ù. ÷´Ü °è»ê ¸ðµ¨À» ÀÌ¿ëÇÑ ºñ½Ç¸®ÄÜ ÀÓ»ó½ÃÇèÀº ½ÇÁ¦ ÀÓ»ó½ÃÇè Àü¿¡ ¾à¹°ÀÇ È¿´É, µ¶¼º ¹× ȯÀÚ ¹ÝÀÀÀ» ¿¹ÃøÇÔÀ¸·Î½á ±âÁ¸ ÀÓ»ó½ÃÇè¿¡ ´ëÇÑ º¸´Ù ¾ÈÀüÇÑ ´ë¾ÈÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀº ÀǾàǰ ½ÂÀÎÀ» ½Å¼ÓÇÏ°Ô Ã³¸®Çϰí, À§ÇèÀ» ÁÙÀ̸ç, µ¿¹° ¹× ÀÎü ½ÇÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÃÖ¼ÒÈ­Çϰí, ±ÔÁ¦ ¹× °øÁß º¸°Ç ¸ñÇ¥¿¡ ºÎÇÕÇÕ´Ï´Ù.

°íǰÁú µ¥ÀÌÅÍ È®º¸°¡ ¾î·Á¿î °æ¿ì

½ÃÀå¿¡¼­ ÀÌ¿ëÇÒ ¼ö ÀÖ´Â ¾çÁúÀÇ µ¥ÀÌÅͰ¡ Á¦ÇÑÀûÀ̱⠶§¹®¿¡ ¿¹Ãø ¸ðµ¨ÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» ÀúÇØÇÏ´Â ¿äÀÎÀÌ µË´Ï´Ù. ºÒÃæºÐÇϰųª ÆíÇâµÈ µ¥ÀÌÅÍ´Â ½Ã¹Ä·¹À̼ǿ¡ °áÇÔÀ» ÃÊ·¡ÇÏ¿© ¾à¹°ÀÇ È¿´É, ¾ÈÀü¼º ¹× ȯÀÚ ¹ÝÀÀ¿¡ ´ëÇÑ À߸øµÈ ¿¹ÃøÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â ±âÁ¸ ¹æ½ÄÀ» ´ëüÇÒ ¼ö ÀÖ´Â ºñ½Ç¸®ÄÜ ÀÓ»ó½ÃÇèÀÇ °¡´É¼ºÀ» ÀúÇØÇϰí, ÀǾàǰ °³¹ßÀ» Áö¿¬½Ã۰í, À§ÇèÀ» Áõ°¡½Ã۸ç, »õ·Î¿î Ä¡·á¹ý¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ Áö¿¬ ¶Ç´Â ºÒ½ÂÀÎÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

ÄÄÇ»ÆÃ ¸ðµ¨¸µ°ú AIÀÇ ¹ßÀü

ÄÄÇ»ÆÃ ¸ðµ¨¸µ°ú AIÀÇ °³¹ßÀº ÀǾàǰ °³¹ßÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» ³ô¿© ½ÃÀå¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, AI ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ºÐ¼®ÇÏ¿© ¾à¹° »óÈ£ ÀÛ¿ë, ȯÀÚ ¹ÝÀÀ ¹× ÀáÀçÀû ºÎÀÛ¿ëÀ» ¿¹ÃøÇÕ´Ï´Ù. °³¼±µÈ °è»ê ¸ðµ¨Àº º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛÀ» ½Ã¹Ä·¹À̼ÇÇÏ¿© ±âÁ¸ ÀÓ»ó½ÃÇè¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãä´Ï´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº º¸´Ù ½Å¼ÓÇϰí Á¤È®ÇÑ ÀǾàǰ ½ÃÇèÀ» °¡´ÉÇÏ°Ô ÇÏ¿© ÀÓ»ó °á°ú¿Í ¾ÈÀü¼ºÀ» ÃÖÀûÈ­Çϰí, ºñ¿ëÀ» Àý°¨Çϸç, »õ·Î¿î Ä¡·á¹ý ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

±ÔÁ¦¿Í À±¸®ÀÇ ºÒÈ®½Ç¼º

½ÃÀå¿¡¼­ÀÇ ±ÔÁ¦¿Í À±¸®ÀÇ ºÒÈ®½Ç¼ºÀº º¸±Þ¿¡ Å« µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀǾàǰ °Ë»ç¿¡¼­ °è»ê ¸ðµ¨ »ç¿ë¿¡ ´ëÇÑ ¸íÈ®ÇÑ °¡À̵å¶óÀÎÀÌ ¾ø±â ¶§¹®¿¡ ½ÂÀÎ ÀýÂ÷°¡ Áö¿¬µÇ°í ÄÄÇöóÀ̾𽺠¸®½ºÅ©°¡ ³ô¾ÆÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, ȯÀÚ µ¿ÀÇ, ¸ðµ¨ Åõ¸í¼º¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á´Â ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ ½Å·Ú¸¦ ÀúÇØÇϰí ÁøÀüÀ» Áö¿¬½Ã۸ç, ±âÁ¸ ÀÓ»ó½ÃÇè ¹æ¹ýÀ» ´ëüÇÒ °¡´É¼ºÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº º¸´Ù ½Å¼ÓÇϰí È¿À²ÀûÀÎ ÀǾàǰ °³¹ß ¹æ¹ýÀÇ Çʿ伺À» ºÎ°¢½ÃÄ×°í, ÀνǸ®ÄÚ ÀÓ»ó½ÃÇèÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ÀüÅëÀûÀÎ ÀÓ»ó½ÃÇèÀÌ ÁߴܵǸ鼭 ½Å¼ÓÇÑ ¾à¹° ½ÃÇè°ú ¹é½Å °³¹ßÀ» À§ÇØ °è»ê ¸ðµ¨Àº ÇʼöÀûÀÎ ¿ä¼Ò°¡ µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ÀÓ»ó½ÃÇèÀÇ ÀÏÁ¤, ºñ¿ë ¹× ¹°¸®Àû »óÈ£ ÀÛ¿ë¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ´Â °¡»ó ½Ã¹Ä·¹À̼ÇÀÇ ÀÌÁ¡À» °­Á¶ÇÏ¿© ½ÃÀå¿¡ ´ëÇÑ Ãß°¡ ÅõÀÚ¿Í Çõ½ÅÀ» ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀüÀÓ»ó½ÃÇè ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀüÀÓ»ó½ÃÇè ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ °¡»ó ½ÃÇèÀ» ÅëÇØ ¿¬±¸ÀÚµéÀº ¾àÈ¿, ¾ÈÀü¼º, ¾àµ¿ÇÐÀ» ¿¹ÃøÇϰí ÀáÀçÀûÀÎ À§Çè, ºÎÀÛ¿ë ¹× ÃÖÀûÀÇ º¹¿ë·®À» ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖÀ¸¸ç, AI, ¸Ó½Å·¯´× ¹× ±âŸ ¿¹Ãø ±â¼úÀ» Ȱ¿ëÇÏ¿© ºñ½Ç¸®ÄÜ ÀüÀÓ»ó½ÃÇèÀº ÀüÅëÀûÀÎ µ¿¹° ¹× Àΰ£ ½ÇÇè°ú °ü·ÃµÈ ºñ¿ë, ½Ã°£, À±¸®Àû ¿ì·Á¸¦ ÁÙÀÔ´Ï´Ù, À±¸®Àû ¿ì·Á¸¦ ÁÙÀ̰í, ÀǾàǰ °³¹ßÀ» °¡¼ÓÈ­Çϸç, ¼º°ø·üÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸Ó½Å·¯´× ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸Ó½Å·¯´× ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ µ¥ÀÌÅͼ¼Æ®¸¦ ó¸®ÇÏ¿© ȯÀÚÀÇ ¹ÝÀÀÀ» ¿¹ÃøÇϰí, ÃÖÀûÀÇ Åõ¿© Àü·«À» ½Äº°Çϰí, ½ÃÇè °á°ú¸¦ ½Ã¹Ä·¹À̼ÇÇÏ¿© ½Ã°£À» Å©°Ô ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ¶ÇÇÑ ÀÇ»ç°áÁ¤À» °­È­Çϰí, ½ÃÇèÀÇ Á¤È®¼ºÀ» Çâ»ó½Ã۸ç, °³ÀÎÈ­µÈ ÀǷḦ Áö¿øÇÕ´Ï´Ù. °á°úÀûÀ¸·Î MLÀº ÀǾàǰ °³¹ßÀ» °¡¼ÓÈ­ÇÏ°í º¸´Ù È¿À²ÀûÀÌ°í µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÓ»ó ¿¬±¸ ¹æ¹ýÀ» ¹ßÀü½ÃŰ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ÅøÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

ºÏ¹Ì´Â ÄÄÇ»ÆÃ ¸ðµ¨¸µ, ÀΰøÁö´É, ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ °¡»ó ½Ã¹Ä·¹À̼ÇÀº È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨Çϸç À§ÇèÀ» ÃÖ¼ÒÈ­ÇÔÀ¸·Î½á ÀǾàǰ °³¹ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹ÀÇ ¼ö¿ë¼º È®´ë, ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡ µîÀÇ ÁÖ¿ä ¿äÀÎÀÌ ÀÌ Áö¿ª ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¾Æ½Ã¾ÆÅÂÆò¾çÀº ÄÄÇ»ÆÃ ¸ðµ¨ÀÇ ¹ßÀü¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), ºòµ¥ÀÌÅͰ¡ ºñ½Ç¸®ÄÜ ÀÓ»ó½ÃÇè ½ÃÀå¿¡ ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ´õ ³ªÀº ¿¹Ãø ¸ðµ¨À» °¡´ÉÇÏ°Ô Çϰí, ½ÃÇèÀÇ Á¤È®µµ¸¦ Çâ»ó½Ã۸ç, °³¹ß ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¹ÙÀÌ¿À º¥Ã³ ±â¾÷ Áõ°¡¿Í ÇコÄÉ¾î ºÐ¾ßÀÇ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. :

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : À¯Çüº°

  • ÀüÀÓ»ó ½ÃÇè
  • ÀÓ»ó½ÃÇè
  • ½ÃÆÇ ÈÄ ½ÃÇè
  • ±ÔÁ¦ ÄÄÇöóÀ̾𽺠½ÃÇè
  • Áúȯ ¸ðµ¨ ½ÃÇè
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ½Ã¹Ä·¹ÀÌ¼Ç À¯Çüº°

  • »ý¸®ÇÐÀû ½Ã¹Ä·¹À̼Ç
  • µ¶¼ºÇÐ ½Ã¹Ä·¹À̼Ç
  • Áúȯ ¸ðµ¨
  • Àα¸ ±â¹Ý ½Ã¹Ä·¹À̼Ç
  • °¡»ó ȯÀÚ ½Ã¹Ä·¹À̼Ç

Á¦7Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Ä¡·á¹ýº°

  • Á¾¾çÇÐ
  • °¨¿°Áõ
  • ½ÉÀ庴ÇÐ
  • ½Å°æÇÐ
  • ´ç´¢º´
  • ±âŸ Ä¡·á¹ý

Á¦8Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ±â¼úº°

  • °è»ê»ý¹°ÇÐ
  • ÀΰøÁö´É
  • ±â°èÇнÀ
  • ½Ã½ºÅÛ »ý¹°ÇÐ
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ¿ëµµº°

  • Drug Discovery¿Í °³¹ß
  • ÀÇ·á±â±â °³¹ß
  • µðÁöÅÐ Çコ Å×Å©³î·¯Áö
  • ¸ÂÃãÇü ÀÇ·á
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • Çмú±â°ü
  • °è¾à Á¶»ç±â°ü(CRO)
  • ±ÔÁ¦±â°ü
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ÀνǸ®ÄÚ ÀÓ»ó½ÃÇè ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕº´»ç¾÷
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Novadiscovery
  • Dassault Systemes
  • GNS Healthcare
  • Clarivate
  • Evotec
  • Abzena Ltd.
  • PerkinElmer Inc.
  • Schrodinger, Inc.
  • Selvita
  • Tracxn Technologies
  • WuXi AppTec
  • Hoffmann-La Roche
  • Mars
  • PYC Therapeutics
  • Immatics
KSA 25.01.23

According to Stratistics MRC, the Global In Silico Clinical Trials Market is accounted for $3.6 billion in 2024 and is expected to reach $5.8 billion by 200 growing at a CAGR of 8.4% during the forecast period. In silico clinical trials are the use of computer simulations and modeling to replicate human biology and predict the effects of medical interventions. These virtual trials use vast amounts of patient data, biological models, and computational algorithms to simulate how drugs, therapies, or devices would perform in real-world clinical settings. By replacing or reducing the need for traditional in vivo trials, in silico trials offer a faster, cost-effective, and ethical alternative for evaluating the safety and efficacy of treatments before clinical implementation.

According to the European Medicines Agency - European Union, in the EU / EEA, more than 4,000 clinical trials are authorised each year, of which 60% of clinical trials are sponsored by the pharma industry and 40% by non-commercial sponsors. As per the Clinical Trials Registry India (CTRI), India approved over 100 global clinical trials in 2021, the highest since 2013.

Market Dynamics:

Driver:

Growing demand for safer drugs

The growing demand for safer drugs in the market is driven by the need for more efficient, cost-effective, and ethical drug development processes. In silico trials, using advanced computational models, offer a safer alternative to traditional clinical trials by predicting drug efficacy, toxicity, and patient responses before real-world testing. This approach accelerates drug approval, reduces risks, and minimizes the reliance on animal and human testing, aligning with regulatory and public health goals.

Restraint:

Limited availability of high-quality data

The limited availability of high-quality data in the market hampers the accuracy and reliability of predictive models. Inadequate or biased data can lead to flawed simulations, resulting in incorrect predictions about drug efficacy, safety, or patient responses. This undermines the potential of in silico trials to replace traditional methods, slowing down drug development, increasing risks, and potentially leading to delayed or failed regulatory approvals for new treatments.

Opportunity:

Advances in computational modeling and AI

Advances in computational modeling and AI are revolutionizing market by enhancing the accuracy and efficiency of drug development. AI algorithms analyze vast datasets to predict drug interactions, patient responses, and potential side effects. Improved computational models simulate complex biological systems, reducing reliance on traditional trials. These innovations enable faster, more precise drug testing, optimizing clinical outcomes and safety while lowering costs and accelerating time-to-market for new treatments.

Threat:

Regulatory and ethical uncertainty

Regulatory and ethical uncertainty in the market poses a significant challenge to widespread adoption. The lack of clear guidelines on the use of computational models in drug testing can delay approval processes and increase compliance risks. Additionally, ethical concerns about data privacy, patient consent, and model transparency may hinder trust in these technologies, slowing progress and limiting their potential to replace traditional clinical trial methods effectively.

Covid-19 Impact:

The COVID-19 pandemic accelerated the adoption of In Silico Clinical Trials by highlighting the need for faster, more efficient drug development methods. With traditional trials facing disruptions, computational models became crucial for rapid drug testing and vaccine development. The pandemic emphasized the benefits of virtual simulations in reducing trial timelines, costs, and reliance on physical interactions, driving further investment and innovation in the market.

The preclinical trials segment is expected to be the largest during the forecast period

The preclinical trials segment is expected to account for the largest market share during the projection period. These virtual trials enable researchers to predict drug efficacy, safety, and pharmacokinetics, helping to identify potential risks, side effects, and optimal dosages. By utilizing AI, machine learning, and other predictive technologies, in silico preclinical trials reduce the cost, time, and ethical concerns associated with traditional animal and human studies, accelerating drug development and improving success rates.

The machine learning segment is expected to have the highest CAGR during the forecast period

The machine learning segment is expected to have the highest CAGR during the extrapolated period. These algorithms process vast datasets to predict patient responses, identify optimal dosing strategies, and simulate trial outcomes, significantly reducing the time. This technology also enhances decision-making, improves trial accuracy, and supports personalized medicine. As a result, ML is becoming a crucial tool in accelerating drug development and advancing more efficient, data-driven clinical research methodologies.

Region with largest share:

North America region is projected to account for the largest market share during the forecast period driven by advancements in computational modeling, artificial intelligence, and big data analytics. These virtual simulations are revolutionizing drug development by enhancing efficiency, reducing costs, and minimizing risks. Key factors such as increasing regulatory acceptance, a rising demand for personalized medicine, and a growing focus on precision healthcare contribute to the market's expansion in the region.

Region with highest CAGR:

Asia Pacific is expected to register the highest growth rate over the forecast period driven by advancements in computational models. Artificial Intelligence (AI), Machine Learning (ML), and Big Data are being increasingly integrated into the in silico clinical trials market. These technologies enable better prediction models, improve trial accuracy, and reduce development costs. Additionally, the rise in biotech startups, along with government support for digital transformation in healthcare, is helping the market grow.

Key players in the market

Some of the key players in In Silico Clinical Trials market include Novadiscovery, Dassault Systemes, GNS Healthcare, Clarivate, Evotec, Abzena Ltd., PerkinElmer Inc., Schrodinger, Inc., Selvita, Tracxn Technologies, WuXi AppTec, Hoffmann- La Roche, Mars, PYC Therapeutics and Immatics.

Key Developments:

In October 2024, Dassault Systemes announced the availability of the world's first guide for the medical device industry that outlines how to use virtual twins to accelerate clinical trials. The in silico clinical trial "ENRICHMENT Playbook" marks a significant advancement in the integration of virtual twins into the regulatory process in response to needs for improved patient safety, regulatory compliance, and pace of innovation.

In July 2024, Clarivate Plc announced the launch of its new OFF-X platform. It delivers critical drug and target safety information to proactively identify risks. Integrated with Cortellis Drug Discovery Intelligence(TM), OFF-X(TM) provides a comprehensive, one-stop resource for drug safety information, streamlining processes, increasing efficiencies and delivering a competitive advantage.

Types Covered:

  • Preclinical Trials
  • Clinical Trials
  • Post-Market Trials
  • Regulatory Compliance Trials
  • Disease Modeling Trials
  • Other Types

Simulation Types Covered:

  • Physiological Simulations
  • Toxicology Simulations
  • Disease Models
  • Population-Based Simulations
  • Virtual Patient Simulations

Therapeutics Covered:

  • Oncology
  • Infectious Disease
  • Cardiology
  • Neurology
  • Diabetes
  • Other Therapeutics

Technologies Covered:

  • Computational Biology
  • Artificial Intelligence
  • Machine Learning
  • Systems Biology
  • Other Technologies

Applications Covered:

  • Drug Discovery and Development
  • Medical Device Development
  • Digital Health Technologies
  • Personalized Medicine
  • Other Applications

End Users Covered:

  • Pharmaceutical and Biotechnology Companies
  • Academic Institutions
  • Contract Research Organizations (CROs)
  • Regulatory Authorities
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global In Silico Clinical Trials Market, By Type

  • 5.1 Introduction
  • 5.2 Preclinical Trials
  • 5.3 Clinical Trials
  • 5.4 Post-Market Trials
  • 5.5 Regulatory Compliance Trials
  • 5.6 Disease Modeling Trials
  • 5.7 Other Types

6 Global In Silico Clinical Trials Market, By Simulation Type

  • 6.1 Introduction
  • 6.2 Physiological Simulations
  • 6.3 Toxicology Simulations
  • 6.4 Disease Models
  • 6.5 Population-Based Simulations
  • 6.6 Virtual Patient Simulations

7 Global In Silico Clinical Trials Market, By Therapeutic

  • 7.1 Introduction
  • 7.2 Oncology
  • 7.3 Infectious Disease
  • 7.4 Cardiology
  • 7.5 Neurology
  • 7.6 Diabetes
  • 7.7 Other Therapeutics

8 Global In Silico Clinical Trials Market, By Technology

  • 8.1 Introduction
  • 8.2 Computational Biology
  • 8.3 Artificial Intelligence
  • 8.4 Machine Learning
  • 8.5 Systems Biology
  • 8.6 Other Technologies

9 Global In Silico Clinical Trials Market, By Application

  • 9.1 Introduction
  • 9.2 Drug Discovery and Development
  • 9.3 Medical Device Development
  • 9.4 Digital Health Technologies
  • 9.5 Personalized Medicine
  • 9.6 Other Applications

10 Global In Silico Clinical Trials Market, By End User

  • 10.1 Introduction
  • 10.2 Pharmaceutical and Biotechnology Companies
  • 10.3 Academic Institutions
  • 10.4 Contract Research Organizations (CROs)
  • 10.5 Regulatory Authorities
  • 10.6 Other End Users

11 Global In Silico Clinical Trials Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Novadiscovery
  • 13.2 Dassault Systemes
  • 13.3 GNS Healthcare
  • 13.4 Clarivate
  • 13.5 Evotec
  • 13.6 Abzena Ltd.
  • 13.7 PerkinElmer Inc.
  • 13.8 Schrodinger, Inc.
  • 13.9 Selvita
  • 13.10 Tracxn Technologies
  • 13.11 WuXi AppTec
  • 13.12 Hoffmann- La Roche
  • 13.13 Mars
  • 13.14 PYC Therapeutics
  • 13.15 Immatics
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦