![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1636657
SDA(Software-defined Automation) ½ÃÀå ¿¹Ãø(-2030³â) : ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Software-defined Automation Market Forecasts to 2030 - Global Analysis By Component (Software, Service and Other Components), Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è SDA(Software-defined Automation) ½ÃÀåÀº 2024³â 338¾ï ´Þ·¯ ±Ô¸ðÀ̸ç, ¿¹Ãø ±â°£ µ¿¾È 15.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 899¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
SDA(Software-defined Automation)´Â ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû, ¾ÖÇø®ÄÉÀ̼Ç, Áö´ÉÇü ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© IT ¹× ¿î¿µ ÇÁ·Î¼¼½º¸¦ °ü¸®ÇÏ´Â À¯¿¬ÇÑ ¹æ¹ý·ÐÀÔ´Ï´Ù. ³×Æ®¿öÅ© ÀÎÇÁ¶ó¸¦ ¿ø°ÝÀ¸·Î ¼³Á¤ÇÏ°í °ü¸®ÇÏ¿© ¼öµ¿ °³ÀÔ°ú º¹À⼺À» ÁÙ¿©ÁÖ´Â SDA´Â Á¾Á¾ AI, ¸Ó½Å·¯´×, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú °°Àº ±â¼úÀ» ÅëÇÕÇÏ¿© ¼º´ÉÀ» ÃÖÀûÈÇϰí Áö¼ÓÀûÀÎ °³¼±À» ÃËÁøÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. À̸¦ ÅëÇØ Á¶Á÷Àº ÀÏ»óÀûÀÎ ÀÛ¾÷À» ÀÚµ¿ÈÇϰí, ¹®Á¦°¡ ¹ß»ýÇϱâ Àü¿¡ ¹®Á¦¸¦ ¿¹ÃøÇϰí, ½Ã½ºÅÛ ¾ÈÁ¤¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© ¸Æ¶ô¿¡¼ SDA´Â ±âº» Çϵå¿þ¾î¸¦ Ãß»óÈÇÏ¿© º¸´Ù È¿À²ÀûÀÎ ¿î¿µ, È®Àå ¹× ¹Îø¼ºÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
º¹ÀâÇÑ ÀÛ¾÷ ¹× ÇÁ·Î¼¼½º ÀÚµ¿È¸¦ À§ÇÑ È¿À²¼º ¹× À¯¿¬¼º Çâ»ó
SDA(Software-defined Automation)´Â º¹ÀâÇÑ ÀÛ¾÷À» ÀÚµ¿ÈÇÏ°í ¼öµ¿ °³ÀÔ¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ã߸ç Àϰü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¸®¼Ò½º¸¦ Á¶Á¤Çϰí, ±¸¼ºÀ» ÃÖÀûÈÇϰí, Æ®·¡ÇÈÀ» °ü¸®ÇÏ¿© ÀÀ´ä ½Ã°£À» ´ÜÃàÇϰí 󸮷®À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀλçÀÌÆ®¸¦ Ȱ¿ëÇÏ¿© ÀÇ»ç°áÁ¤À» °¡¼ÓÈÇÏ°í ½ÃÀå ¼ö¿ä¿¡ ½Ç½Ã°£À¸·Î ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇöÀç ¼ö¿ä¿¡ µû¶ó ¸®¼Ò½º¸¦ µ¿ÀûÀ¸·Î ÇÒ´çÇÒ ¼ö ÀÖ°ÔÇÔÀ¸·Î½á ¸®¼Ò½º ÇÒ´çÀ» °³¼±Çϰí, ÃÖÀûÀÇ »ç¿ë°ú ³¶ºñ¸¦ ÁÙÀ̸ç, ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ
SDA(Software-defined Automation)¸¦ µµÀÔÇÏ´Â °ÍÀº ƯÈ÷ ÀڱݷÂÀÌ ºÎÁ·ÇÑ Áß¼Ò±â¾÷¿¡°Ô´Â ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû°ú °í±Þ ÅøÀ» ±¸ÀÔÇϰí Çϵå¿þ¾î¸¦ ¾÷±×·¹À̵åÇØ¾ß Çϸç, Àü¹® ±³À° ¹× ¿ÜºÎ ÄÁ¼³ÅÏÆ®¸¦ °í¿ëÇØ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. SDA¸¦ ·¹°Å½Ã ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ·Á¸é ±âÁ¸ ¾ÆÅ°ÅØÃ³¸¦ ´ë´ëÀûÀ¸·Î ¼öÁ¤Çϰųª Á¡°ËÇØ¾ß Çϱ⠶§¹®¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µé ¼ö ÀÖÀ¸¸ç, Àü¹® ±³À°À̳ª ¿ÜºÎ ÄÁ¼³ÅÏÆ®¸¦ °í¿ëÇØ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ÀÌ´Â Àüü ÇÁ·ÎÁ§Æ® ºñ¿ëÀ» Áõ°¡½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
»õ·Î¿î ±â¼ú°úÀÇ ÅëÇÕ
AI¿Í MLÀ» ½º¸¶Æ® µ¥ÀÌÅÍ ºÐ¼®(SDA)°ú ÅëÇÕÇϸé Áö´ÉÇü ÀÚµ¿È°¡ °¡´ÉÇØÁ® ½Ã½ºÅÛÀÌ µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÏ°í ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀûÀÀÇÒ ¼ö ÀÖÀ¸¸ç, AI ±â¹Ý ÀÚµ¿È´Â ÀÌ»ó °¨Áö, À¯Áöº¸¼ö ¿¹Ãø, ÀûÀÀÇü ¸®¼Ò½º ÇÒ´ç µîÀ» ÅëÇØ ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÅëÇØ ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ¶ÇÇÑ, AI¿Í MLÀº ÀÚ°¡ ÃÖÀûÈ ¹× ÀÚ°¡ º¹±¸¸¦ ÅëÇØ ½Ã½ºÅÛÀÌ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ¿î¿µÀ» Á¶Á¤Çϰí ÀÚÀ²ÀûÀ¸·Î ¹®Á¦¸¦ °¨ÁöÇϰí ÇØ°áÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.
µµÀÔ ½Ã°£ ¿¬Àå
µµÀÔ¿¡ ½Ã°£ÀÌ ¿À·¡ °É¸®¸é ¿î¿µ È¿À²¼º, ºñ¿ë Àý°¨, È®À强 µî ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ÀÚµ¿È(SDA)¸¦ ÅëÇØ ¾òÀ» ¼ö ÀÖ´Â ÇýÅÃÀÇ ½ÇÇöÀÌ ´Ê¾îÁö°í Àü¹ÝÀûÀÎ ROI°¡ °¨¼ÒÇÕ´Ï´Ù. ±â¾÷Àº ·¹°Å½Ã ½Ã½ºÅÛÀ̳ª ºñÈ¿À²ÀûÀÎ ¼öµ¿ ÇÁ·Î¼¼½º¸¦ °è¼Ó »ç¿ëÇÏ¸é¼ ÀáÀçÀûÀÎ ÀÌÁ¡À» ³õÄ¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µµÀÔÀÌ ´Ê¾îÁö¸é ÁÂÀý°¨°ú µ¿±âºÎ¿©°¡ ÀúÇϵǾî Á÷¿øµéÀÇ »ç±â¿Í »ç³» ÆÀ¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌÇØ°ü°èÀÚÀÇ ³»ºÎ ÀúÇ×°ú ÀÌÅ»µµ ÇÁ·Î¼¼½º¸¦ ¹æÇØÇϰí SDA µµÀÔÀÇ Àü¹ÝÀûÀÎ ¼º°øÀ» ´õ¿í ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ±â¾÷µéÀÌ ¾÷¹« È¿À²¼ºÀ» ³ôÀ̰í, ºÀ¼â ±â°£ µ¿¾È ¼öÀÛ¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ SDA(Software-defined Automation)ÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ¿ø°Ý ±Ù¹«, °ø±Þ¸Á ´ÜÀý, ¹ÎøÇÑ IT ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÚµ¿È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇß½À´Ï´Ù. ±×·¯³ª ÀϺΠ±â¾÷µéÀº ¿¹»ê »è°¨, ÀÚ¿ø ºÎÁ·, Àη ºÎÁ·À¸·Î ÀÎÇØ SDA µµÀÔÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾î·Á¿ò¿¡µµ ºÒ±¸Çϰí, ÆÒµ¥¹ÍÀº ºñÁî´Ï½º ¿¬¼Ó¼ºÀ» À§ÇÑ ÀÚµ¿ÈÀÇ Á߿伺À» ºÎ°¢½ÃÄ×°í, ±â¾÷µéÀÌ µðÁöÅÐ ÀüȯÀ» µµÀÔÇÔ¿¡ µû¶ó SDA ½ÃÀåÀÇ Àå±âÀûÀÎ ¼ºÀåÀ» ÃËÁøÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ºÐ»êµÈ ½Ã½ºÅÛ ¹× ÀÎÇÁ¶ó¸¦ Áß¾Ó¿¡¼ °ü¸®Çϰí ÀÚµ¿È ¿öÅ©Ç÷ο츦 ½Ç½Ã°£À¸·Î ±¸¼º, ¸ð´ÏÅ͸µ ¹× °ü¸®ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â »ç¿ëÀÚ°¡ ÀÚµ¿È ¿öÅ©Ç÷ο츦 ½Ç½Ã°£À¸·Î ±¸¼º, ¸ð´ÏÅ͸µ, °ü¸®ÇÒ ¼ö ÀÖ´Â ¼ÒÇÁÆ®¿þ¾î ÀÎÅÍÆäÀ̽º¸¦ ÅëÇØ ÀÌ·ç¾îÁý´Ï´Ù. ¿¹¸¦ µé¾î, SDNÀº ³×Æ®¿öÅ© Æ®·¡ÇÈ, ¶ó¿ìÆÃ, º¸¾È Á¤Ã¥À» Áß¾Ó¿¡¼ °ü¸®ÇÒ ¼ö ÀÖ¾î ¿î¿µ È¿À²¼ºÀ» ³ôÀÌ°í °ü¸®¸¦ °£¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ³×Æ®¿öÅ© ÀÚµ¿È ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
³×Æ®¿öÅ© ÀÚµ¿È ºÎ¹®Àº ¼öµ¿ ÀÛ¾÷°ú ¿î¿µÀÇ º¹À⼺À» ÁÙ¿© ³×Æ®¿öÅ© °ü¸®¸¦ ¼öÇàÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â IT, ºñÁî´Ï½º ÇÁ·Î¼¼½º ¹× ÀÎÇÁ¶ó °ü¸®ÀÇ ÀÚµ¿È¶ó´Â SDAÀÇ ¸ñÀû¿¡ ºÎÇÕÇÕ´Ï´Ù. ³×Æ®¿öÅ© ¼³Á¤, Æ®·¡ÇÈ °ü¸®, ½Ç½Ã°£ ¿ä±¸»çÇ׿¡ ±â¹ÝÇÑ µ¿Àû ¸®¼Ò½º ÇÒ´çÀ» ÅëÇØ ±â¾÷Àº ´Ù¸¥ ÀÚµ¿È ÇÁ·Î¼¼½º¿¡ ¸®¼Ò½º¸¦ ÇÒ´çÇÏ¿© SDA ¼Ö·ç¼ÇÀÇ ¹èÆ÷¸¦ °¡¼ÓÈÇÒ ¼ö ÀÖ´Â ¹ÎøÇÑ È¯°æÀ» Á¶¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºÏ¹Ì, ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù´Â SDA(Software-defined Automation) ½ÃÀåÀÇ ¼ºÀå¿¡ ÇʼöÀûÀÎ AI, ML, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, IoT¿Í °°Àº ½ÅÈï ±â¼úÀ» äÅÃÇÏ´Â ¼±±¸ÀÚ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ SDA ½Ã½ºÅÛÀ» ºü¸£°Ô ¹èÆ÷Çϰí È®ÀåÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Á¤ÀÇ ³×Æ®¿öÅ·, Ŭ¶ó¿ìµå ±â¹Ý ÀÚµ¿È, ¿§Áö ÄÄÇ»ÆÃ°ú °°Àº ±â¼ú ÅëÇÕ ¹®È°¡ ÀÌ Áö¿ª¿¡ »Ñ¸®³»¸®°í ÀÖ´Â °Íµµ SDA ±â¼úÀÇ ºü¸¥ ¹ßÀü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤Ã¥Àû Àμ¾Æ¼ºê, º¸Á¶±Ý, ÀÚ±Ý Áö¿øÀ» ÅëÇÑ µðÁöÅÐ Çõ½Å°ú SDA(Software-defined Automation)·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ¿Í °°Àº ±¹°¡µéÀº ÀÚµ¿È, AI, 5G ±â¼ú Çõ½ÅÀ» ÃËÁøÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ÇöÁö ±â¾÷µéÀÌ ÀÚµ¿È ¼Ö·ç¼ÇÀ» °³¹ßÇϵµ·Ï Àå·ÁÇϰí ÀÖÀ¸¸ç, SDA ½ÃÀåÀÌ È°¼ºÈµÇ°í ÀÖ½À´Ï´Ù. º¥Ã³ ijÇÇÅаú ÁÖ¿ä ÇÏÀÌÅ×Å© ±â¾÷ÀÇ ÀÚ±Ý Áö¿ø µî ÀÚµ¿È ±â¼ú¿¡ ´ëÇÑ ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚµµ Áõ°¡Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ÇÉÅ×Å©, ÇコÄɾî, ¹°·ù »ê¾÷¿¡¼ ÀÚµ¿È ±â¼ú¿¡ ´ëÇÑ ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Software-defined Automation Market is accounted for $33.8 billion in 2024 and is expected to reach $89.9 billion by 2030 growing at a CAGR of 15.1% during the forecast period. Software-defined automation (SDA) is a flexible method of managing IT and operational processes using software platforms, applications, and intelligent algorithms. It allows for remote configuration and management of network infrastructure, reducing manual intervention and complexity. SDA often integrates technologies like AI, machine learning, and cloud computing to optimize performance and drive continuous improvements. This allows organizations to automate routine tasks, predict issues before they occur, and improve system reliability. In the context of networks, SDA can enable more efficient operations, scaling, and agility by abstracting underlying hardware.
Increased efficiency and flexibility to automate complex tasks and processes
Software-defined automation automates complex tasks, reducing reliance on manual intervention and improving consistency. It can adjust resources, optimize configurations, and manage traffic, leading to faster response times and higher throughput. It also allows for faster decision-making, leveraging data-driven insights for real-time responses to market demands. It also improves resource allocation by allowing dynamic allocation of resources based on current demands, leading to optimal utilization, reduced waste boosting them market growth.
High initial investment
Software-defined automation (SDA) implementation can be costly, especially for small and medium-sized enterprises (SMEs) with limited financial resources. It requires purchasing new software platforms, advanced tools, and upgrading hardware. Specialized training or hiring external consultants may also be required. Integrating SDA into legacy systems can be costly, as it requires extensive modifications or overhauls of existing architecture. This can increase the overall project cost hampering the market growth.
Integration with emerging technologies
The integration of AI and ML with smart data analytics (SDA) enables intelligent automation, enabling systems to learn from data and adapt over time. AI-powered automation improves system performance by detecting anomalies, predicting maintenance, and adaptive resource allocation. Additionally, AI and ML enable self-optimization and self-healing, allowing systems to adjust operations based on real-time data and detect and resolve issues autonomously, reducing downtime and enhancing reliability propelling the growth of the market.
Extended deployment time
Extended deployment time can delay the realization of benefits from Software Deployment Automation (SDA), such as operational efficiency, cost reduction, and scalability, reducing overall ROI. Businesses may continue using legacy systems or inefficient manual processes, missing out on potential gains. Additionally, prolonged deployment can lead to frustration and decreased motivation, affecting employee morale and internal teams. Internal resistance or disengagement from stakeholders may also hinder the process, further hindering the overall success of SDA implementation.
Covid-19 Impact
The COVID-19 pandemic accelerated the adoption of Software-Defined Automation (SDA) as businesses sought to enhance operational efficiency and reduce reliance on manual labor during lockdowns. Remote work, supply chain disruptions, and the need for agile IT infrastructure spurred demand for automated solutions. However, some companies faced delays in SDA implementation due to budget cuts, resource shortages, and workforce constraints. Despite challenges, the pandemic highlighted the importance of automation for business continuity, driving long-term growth in the SDA market as companies embrace digital transformation.
The software segment is expected to be the largest during the forecast period
The software segment is expected to be the largest share during the forecast period owing to centralized control across dispersed systems and infrastructure, enabling real-time configuration, monitoring, and management of automation workflows. This is achieved through software interfaces that enable users to configure, monitor, and manage automation workflows in real time. For instance, SDN enables centralized management of network traffic, routing, and security policies, enhancing operational efficiency and simplifying management.
The network automation segment is expected to have the highest CAGR during the forecast period
The network automation segment is predicted to have the highest CAGR during the forecast period due to network management by reducing manual tasks and operational complexity. This aligns with SDA's objectives of automating IT, business processes, and infrastructure management. By dynamically configuring network settings, managing traffic, and allocating resources based on real-time needs, businesses can free up resources for other automation processes, creating an agile environment that accelerates the deployment of SDA solutions.
North America is anticipated to hold the largest market share during the forecast period, North America, particularly the US and Canada, has been a pioneer in adopting emerging technologies like AI, ML, cloud computing, and IoT, which are crucial to the growth of the Software-Defined Automation (SDA) market. This has led to faster deployment and scaling of SDA systems across various industries. The region's strong culture of technological integration, including software-defined networking, cloud-based automation, and edge computing, has also contributed to the rapid evolution of SDA technologies.
Asia Pacific is anticipated to register the highest CAGR over the forecast period owing to digital transformation and software-defined automation through policy incentives, subsidies, and funding. Countries like China and India are investing in R&D to foster innovation in automation, AI, and 5G. This encourages local companies to develop automation solutions, boosting the SDA market. Private sector investment in automation technologies, including venture capital and funding from large tech firms, is also increasing, particularly in fintech, healthcare, and logistics industries.
Key players in the market
Some of the key players in Software-defined Automation market include Asiasoft Solutions, Beckhoff Automation GmbH & Co. KG, Bosch Rexroth Corporation, Cisco Systems, Inc., Dell, Doosan Corporation, Emerson Electric Co., Hewlett Packard Enterprise (HPE), IBM Corporation, Intel Corporation, Juniper Networks, Mitsubishi Electric India Pvt.Ltd, NEC Corporation, Nutanix, Rockwell Automation, Inc., Siemens AG, Wipro and Yokagawa India Ltd.
In December 2024, Emerson announced the release of the Rosemount(TM) 470XA Gas Chromatograph, designed to simplify natural gas analysis in custody transfer and other process applications. As natural gas sources have evolved to include sustainable and renewable sources, such as landfill gas and biogas, the need to provide greater gas chromatograph flexibility.
In November 2024, Cisco, announced an expanded partnership to transform how global enterprises access wireless connectivity. Historically, connectivity has focused on connecting office environments through landlines.
In November 2024, Cisco and LTIMindtree expanded partnership to deliver next-generation secure access globally. Extending its networking partnership with Cisco, LTIMindtree now offers next-generation SSE to its global clients via Cisco Secure Access.