½ÃÀ庸°í¼­
»óǰÄÚµå
1636660

ÀÚÀ² ±â¾÷ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦°øº°, »ç¾÷ ±â´Éº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Autonomous Enterprise Market Forecasts to 2030 - Global Analysis By Offering, Business Function, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ÀÚÀ² ±â¾÷ ½ÃÀåÀº 2024³â 522¾ï 3,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 19.6%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â±îÁö 1,528¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÚµ¿È­, ¸Ó½Å·¯´×, ÀΰøÁö´É(AI), µ¥ÀÌÅÍ ºÐ¼®°ú °°Àº ÷´Ü ±â¼úÀ» Ȱ¿ëÇÏ¿© »ç¶÷ÀÇ µµ¿ò ¾øÀ̵µ ¿î¿µµÇ´Â Á¶Á÷À» ÀÚÀ²±â¾÷À̶ó°í ÇÕ´Ï´Ù. ÀÚÀ² ±â¾÷Àº ¿î¿µ ¹× °ø±Þ¸Á °ü¸®¿¡¼­ ÀÇ»ç°áÁ¤ ¹× °í°´ ¼­ºñ½º¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÎ¹®ÀÇ ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÏ¿© »ý»ê¼º, ¼Óµµ ¹× È®À强À» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

¼¼°è°æÁ¦Æ÷·³(WEF)¿¡ µû¸£¸é, AI¿Í ÀÚµ¿È­ ±â¼úÀÇ µµÀÔÀº ±â¾÷ÀÇ È¿À²¼º°ú »ý»ê¼º¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ 2030³â±îÁö ¼¼°è °æÁ¦¿¡ ÃÖ´ë 15Á¶ 7,000¾ï ´Þ·¯ÀÇ ±â¿©¸¦ ÇÒ ¼ö ÀÖ´Ù°í ÇÕ´Ï´Ù.

µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ °ü½É Áõ°¡

ÀÚµ¿È­ ±â¼úÀº ÇöÀç ÁøÇà ÁßÀÎ ±â¾÷ÀÇ µðÁöÅÐ Àüȯ¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº °í°´ °æÇèÀ» °³¼±Çϰí, ¾÷¹«¸¦ °£¼ÒÈ­Çϸç, ±â¼úÀûÀ¸·Î Áøº¸ÇÏ°í ºü¸£°Ô º¯È­ÇÏ´Â ¼¼»ó¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇØ Á¡Á¡ ´õ ¸¹Àº µðÁöÅÐ ÅøÀ» »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº Ŭ¶ó¿ìµå ±â¹Ý ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ¿© ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­Çϰí, µðÁöÅÐ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÀÚÀ²ÀûÀÎ ±â¾÷ ¿î¿µÀ» ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐ ¿î¿µÀ¸·ÎÀÇ ÀüȯÀ» ÅëÇØ ±â¾÷Àº ºü¸£°Ô ±Ô¸ð¸¦ È®ÀåÇϰí, ºÎ¼­ °£ Çù·ÂÀ» °­È­Çϸç, ²÷ÀÓ¾øÀÌ º¯È­ÇÏ´Â ½ÃÀå°ú °í°´ÀÇ ¿ä±¸¿¡ ´õ Àß ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù.

³ôÀº ½ºÅ¸Æ®¾÷ ºñ¿ë

Àå±âÀûÀÎ ÀÌÁ¡Àº ºÐ¸íÇÏÁö¸¸, ÀÚµ¿È­ ¹× ÀÚÀ² ½Ã½ºÅÛ µµÀÔ¿¡ ÇÊ¿äÇÑ Ãʱâ ÅõÀÚºñ¿ëÀÌ ¸¸¸¸Ä¡ ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. Áß¼Ò±â¾÷(SME)Àº ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î, Á÷¿ø ±³À° ¹× ½Ã½ºÅÛ ÅëÇÕ°ú °ü·ÃµÈ ºñ¿ëÀÌ ºü¸£°Ô Áõ°¡Çϱ⠶§¹®¿¡ ÀÚÀ² ½Ã½ºÅÛ ±¸¸Å ¹× ÅëÇÕ¿¡ µå´Â Ãʱ⠺ñ¿ëÀÌ ºÎ´ã½º·´´Ù°í ´À³¥ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ÀçÁ¤Àû À庮À¸·Î ÀÎÇØ ¸¹Àº Á¶Á÷ÀÌ ÇâÈÄ ºñ¿ë Àý°¨ °¡´É¼º¿¡µµ ºÒ±¸Çϰí ÀÚÀ² ±â¼úÀ» µµÀÔÇÏ´Â °ÍÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿È­ ¹× AI ±â¼ú °³¹ß

ÀÚµ¿È­, ¸Ó½Å·¯´×, ÀΰøÁö´É(AI) ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ±â¾÷µéÀº Á¡Á¡ ´õ º¹ÀâÇϰí È¿°úÀûÀÎ ÀÚÀ² ½Ã½ºÅÛÀ» µµÀÔÇÒ ¼ö ÀÖ´Â Å« ±âȸ¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. AI ±â¹Ý µµ±¸¿Í Áö´ÉÇü ÀÚµ¿È­ Ç÷§ÆûÀÇ ÃâÇöÀº ±ÝÀ¶, Á¦Á¶, ¹°·ù, ÇコÄÉ¾î µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ¾÷¹« ÀÚµ¿È­¸¦ À§ÇÑ »õ·Î¿î ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ±ÝÀ¶, Á¦Á¶, ¹°·ù, ÇコÄÉ¾î µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ »õ·Î¿î ÀÛ¾÷ ÀÚµ¿È­ ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI ¾Ë°í¸®ÁòÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ÀÚÀ²ÀûÀÎ ºñÁî´Ï½º°¡ »ý»ê¼ºÀ» ³ôÀ̰í Àΰ£ÀÇ °³ÀÔÀ» ÁÙÀÏ ¼ö ÀÖ´Â °¡´É¼ºÀ» ³ô¿© ºñÁî´Ï½ºÀÇ °æÀï·Â°ú À¯¿¬¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

ºÒÃæºÐÇÑ »óÈ£¿î¿ë¼º ¹× Ç¥ÁØÈ­

ÀÚÀ²ÁÖÇà ±â¼ú¿¡´Â Ç¥ÁØÈ­µÈ ÇÁ·¹ÀÓ¿öÅ©°¡ Á¸ÀçÇÏÁö ¾Ê±â ¶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ºü¸£°Ô ¼ö¿ëµÇ´Â °úÁ¤¿¡¼­ ¾î·Á¿òÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. »óÈ£¿î¿ë¼º ¹®Á¦´Â ÀÚÀ² ½Ã½ºÅÛÀÌ ¾î¶»°Ô »óÈ£ ÀÛ¿ëÇϰí, Åë½ÅÇϰí, ÀÛµ¿ÇØ¾ß ÇÏ´ÂÁö¿¡ ´ëÇÑ ¸íÈ®ÇÑ °¡À̵å¶óÀÎÀÌ ¾øÀ» ¶§ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ´Ù¾çÇÑ º¥´õÀÇ ¼¾¼­, ·Îº¿, °ü¸® ¼ÒÇÁÆ®¿þ¾î°¡ ½º¸¶Æ® ÆÑÅ丮¿¡¼­ Á¶È­·Ó°Ô ÀÛµ¿ÇÏÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Ç¥ÁØÈ­ ºÎÁ·À¸·Î ÀÎÇØ ÀÚÀ² ½Ã½ºÅÛ µµÀÔÀÌ ´õ¿í ¾î·Á¿öÁö°í, ¿À·ù, ºñÈ¿À²¼º, ¿î¿µ ºñ¿ë »ó½ÂÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19 ÆÒµ¥¹ÍÀº ÀÚÀ² ±â¾÷ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, ±â¾÷µéÀº ¿î¿µ Áß´ÜÀ» ÃÖ¼ÒÈ­Çϰí Àΰ£¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß¸ç ºÀ¼â ±â°£ µ¿¾È ¿î¿µÀ» À¯ÁöÇϱâ À§ÇØ ÀÚµ¿È­ ¹× ÀÚÀ² ±â¼ú äÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ¶ÇÇÑ, ¿ø°Ý ±Ù¹«°¡ º¸ÆíÈ­µÊ¿¡ µû¶ó ±â¾÷µéÀº »ý»ê¼ºÀ» ³ôÀ̰í, °ø±Þ¸ÁÀ» ÃÖÀûÈ­Çϰí, Á÷¿øµéÀÌ ¹ÙÀÌ·¯½º¿¡ ³ëÃâµÉ °¡´É¼ºÀ» ÁÙÀ̱â À§ÇØ AI ±â¹Ý ¼Ö·ç¼Ç, ·Îº¿ °øÇÐ, ÀÚÀ² ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ °æÁ¦Àû ºÒ¾ÈÀ¸·Î ÀÎÇØ ÀϺΠ±â¾÷µéÀº ¿¹»êÀÇ Á¦¾àÀ¸·Î ÀÎÇØ ½Å±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿¬±âÇϰųª Ãà¼ÒÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °øÁ¤ ÀÚµ¿È­ ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚÀ² ±â¾÷ ½ÃÀåÀº Á¦Á¶, ¹°·ù, ±ÝÀ¶, °í°´ ¼­ºñ½º µîÀÇ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇ´Â ÇÁ·Î¼¼½º ÀÚµ¿È­ ºÎ¹®ÀÌ ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÚÀ² ½Ã½ºÅÛÀº µ¥ÀÌÅÍ ÀÔ·Â ¹× Àç°í °ü¸®¿¡¼­ º¹ÀâÇÑ ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º¿¡ À̸£±â±îÁö ¸ðµç °ÍÀ» °ü¸®ÇÕ´Ï´Ù. ÀΰøÁö´É(AI), ·Îº¿°øÇÐ, ¸Ó½Å·¯´× µîÀÇ ±â¼úÀ» Ȱ¿ëÇÏ¿© ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­Çϰí, ¾÷¹«¸¦ °£¼ÒÈ­Çϸç, ´Ù¾çÇÑ ¾÷¹« ±â´ÉÀÇ È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â °ÍÀÌ ÀÚÀ² ±â¾÷ °³³äÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ¶ÇÇÑ ¿öÅ©Ç÷ο츦 ÀÚµ¿È­ÇÔÀ¸·Î½á ±â¾÷Àº ÀÎÀû ¿À·ù¸¦ ÁÙÀÌ°í ¿î¿µ ºñ¿ëÀ» Àý°¨Çϸç ÀÇ»ç°áÁ¤ °úÁ¤À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÇコÄÉ¾î ºÎ¹®

ÀÚÀ² ±â¾÷ ½ÃÀå¿¡¼­ ÇコÄÉ¾î ºÐ¾ß´Â °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇコÄÉ¾î »ê¾÷¿¡¼­ ÀÚÀ² ±â¼ú µµÀÔÀº ÀÇ·á ¼­ºñ½º Á¦°øÀÚµéÀÌ ºñ¿ë Àý°¨, ¾÷¹« È¿À²¼º Çâ»ó, ȯÀÚ Ä¡·á °³¼± µîÀ» À§ÇØ ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐ, ÇÁ·Î¼¼½º ÀÚµ¿È­, AI ±â¹Ý ½Ã½ºÅÛÀº ȯÀÚ ¸ð´ÏÅ͸µ, Áø´Ü, »ç¹«, ¼ö¼ú µîÀÇ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¿öÅ©Ç÷ο찡 °£¼ÒÈ­µÇ°í, ÀÎÀû ¿À·ù´Â °¨¼ÒÇϸç, ÀÇ·áÁøÀº ÀÚÀ² ±â¼ú ´öºÐ¿¡ ´õ ¾î·Á¿î ¾÷¹«¿¡ ÁýÁßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÚÀ² ÀÇ·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â COVID-19 »çÅÂ¿Í ¿ø°ÝÀÇ·á ¹× ¿ø°ÝÁø·á¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ä±¸·Î ÀÎÇØ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

ºÏ¹Ì´Â źźÇÑ ±â¼ú ÀÎÇÁ¶ó, ³ôÀº ¼öÁØÀÇ µðÁöÅÐÈ­, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ºü¸¥ ÀÚµ¿È­ µµÀÔÀ¸·Î ÀÎÇØ ÀÚÀ² ±â¾÷ ½ÃÀå¿¡¼­ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀΰøÁö´É, ·Îº¿°øÇÐ, °øÁ¤ ÀÚµ¿È­ ºÐ¾ßÀÇ ÁÖ¿ä ±â¾÷µéÀÌ ¹Ì±¹¿¡ º»»ç¸¦ µÎ°í ÀÖ¾î ÀÚÀ² ½Ã½ºÅÛ ±â¼ú Çõ½ÅÀÇ Áß¿äÇÑ Áß½ÉÁö°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹ÌÀÇ Áö¹èÀû ÁöÀ§´Â µðÁöÅÐ Çõ½Å, ºñ¿ë È¿À²¼º, ¿î¿µ ¹Îø¼ºÀ» Áß½ÃÇÏ´Â ±â¾÷ÀÇ Áõ°¡¿Í ±â¼ú ¹ßÀüÀ» Àå·ÁÇÏ´Â Á¤ºÎ Áö¿ø Á¤Ã¥ÀÇ ¿µÇâµµ ¹Þ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

ÀÚÀ² ±â¾÷ ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº »ê¾÷È­ ¼Óµµ °¡¼ÓÈ­, µðÁöÅÐ ±â¼ú »ç¿ë È®´ë, ¹°·ù, ÇコÄɾî, Á¦Á¶ µî ÁÖ¿ä »ê¾÷¿¡¼­ ÀÚµ¿È­¸¦ Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», Çѱ¹ ¹× ±âŸ ±¹°¡µéÀº ¾÷¹« È¿À²¼ºÀ» ³ôÀÌ°í »ý»ê¼ºÀ» Çâ»ó½ÃŰ¸ç ¼¼°è °æÀï¿¡¼­ ½Â¸®Çϱâ À§ÇØ ÀΰøÁö´É(AI), ·Îº¿ °øÇÐ ¹× °øÁ¤ ÀÚµ¿È­¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½º¸¶Æ® ÆÑÅ丮, ÀÚÀ²ÁÖÇàÂ÷, ±â¾÷ Àü¹ÝÀÇ µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ÀÚÀ² ±â¾÷ ±â¼úÀÇ ¼ºÀå·üÀÌ °¡Àå ³ôÀº ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°è ÀÚÀ² ±â¾÷ ½ÃÀå : Á¦°øº°

  • ¼Ö·ç¼Ç
    • ·Îº¸Æ½ ÇÁ·Î¼¼½º ÀÚµ¿È­
    • ÀÚÀ² ³×Æ®¿öÅ©
    • ¾îÄ«¿îÆ® ÀÚµ¿È­
    • º¸¾È ÀÚµ¿È­
    • ÀÚÀ² ¿¡ÀÌÀüÆ®
    • ±âŸ ¼Ö·ç¼Ç
  • ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ÀÚÀ² ±â¾÷ ½ÃÀå : »ç¾÷ ±â´Éº°

  • ȸ°è
  • ÆÄÀ̳½½º
  • ÀÎÀç
  • ¼¼ÀÏÁ¸¶ÄÉÆÃ
  • °ø±Þ¸Á¡¤¿ÀÆÛ·¹À̼Ç

Á¦7Àå ¼¼°èÀÇ ÀÚÀ² ±â¾÷ ½ÃÀå : ±â¼úº°

  • ÀΰøÁö´É(AI)
  • ¸Ó½Å·¯´×(ML)
  • ÇÏÀÌÆÛ¿ÀÅä¸ÞÀ̼Ç

Á¦8Àå ¼¼°èÀÇ ÀÚÀ² ±â¾÷ ½ÃÀå : ¿ëµµº°

  • ÇÁ·Î¼¼½º ÀÚµ¿È­
  • °í°´¡¤Á÷¿ø Âü¿©
  • ÁÖ¹® °ü¸®
  • ½Å¿ë Æò°¡¡¤°ü¸®
  • ¿¹Áöº¸Àü
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ ÀÚÀ² ±â¾÷ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • BFSI(ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè)
  • IT¡¤ITeS
  • Åë½Å
  • ¼Ò¸Å¾÷¡¤E-Commerce
  • ¹Ìµð¾î¡¤¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ÇコÄɾî
  • ¿î¼Û¡¤¹°·ù
  • Á¦Á¶¾÷
  • Á¤ºÎ¡¤¹æÀ§
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦10Àå ¼¼°èÀÇ ÀÚÀ² ±â¾÷ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • IBM Corporation
  • Microsoft Corporation
  • Amazon Web Services, Inc.(Amazon.com, Inc.)
  • Palo Alto Networks
  • Check Point Software Technologies Ltd.
  • Oracle Corporation
  • ATOSS Software SE
  • Cisco Systems, Inc.
  • NICE
  • Fetch.ai
  • SAP SE
  • Blue Prism Inc
  • Hewlett Packard Enterprise Company
  • Mendix Inc
  • Pegasystems Inc.
KSM 25.03.04

According to Stratistics MRC, the Global Autonomous Enterprise Market is accounted for $52.23 billion in 2024 and is expected to reach $152.87 billion by 2030 growing at a CAGR of 19.6% during the forecast period. An organization that uses cutting-edge technologies, like automation, machine learning, artificial intelligence (AI), and data analytics, to function with little assistance from humans is known as an autonomous enterprise. An autonomous business can increase productivity, speed, and scalability by automating processes in a variety of departments, from operations and supply chain management to decision-making and customer service.

According to the World Economic Forum (WEF), the adoption of AI and automation technologies could contribute up to USD 15.7 trillion to the global economy by 2030, with significant impacts on enterprise efficiency and productivity.

Market Dynamics:

Driver:

Enhanced attention to digital transformation

Automation technologies are becoming essential to the ongoing digital transformation of businesses. Businesses are using digital tools more and more to improve customer experiences, streamline operations, and stay competitive in a technologically advanced, fast-paced world. Businesses can use cloud-based systems, optimize workflows, and align operations with digital initiatives with autonomous enterprises. Additionally, businesses can scale quickly, enhance cross-functional cooperation, and better meet the constantly shifting needs of the market and customers owing to this move to digital operations.

Restraint:

High start-up cost

The initial investment needed to implement automation and autonomous systems can be significant, even though the long-term benefits are obvious. Small and medium-sized businesses (SMEs) may find the upfront costs of purchasing and integrating autonomous systems prohibitive, as costs associated with software, hardware, employee training, and system integration can quickly mount up. Furthermore, this financial barrier keeps many organizations from implementing autonomous technologies, even though they have the potential to save money in the future.

Opportunity:

Development of automation and AI technologies

Businesses have a great chance to implement increasingly complex and effective autonomous systems as automation, machine learning, and artificial intelligence (AI) technologies advance. These developments give businesses the ability to automate difficult decision-making, streamline processes, and extract more insightful information from data. The emergence of AI-powered tools and intelligent automation platforms creates new opportunities for task automation in a variety of sectors, including finance, manufacturing, logistics, and healthcare. Moreover, the potential for autonomous businesses to increase productivity and decrease human intervention will increase with ongoing advancements in AI algorithms, giving businesses the chance to become more competitive and flexible.

Threat:

Insufficient interoperability and standardization

The absence of standardized frameworks for autonomous technologies poses difficulties as they are quickly embraced by various industries. Interoperability problems may arise in the absence of explicit guidelines for how autonomous systems should interact, communicate, and function, especially in complex settings where several technologies must cooperate. For instance, sensors, robots, and management software from various vendors might not work together harmoniously in a smart factory. Additionally, deploying autonomous systems becomes more difficult due to this lack of standardization, which can also result in errors, inefficiencies, and higher operating expenses.

Covid-19 Impact:

The COVID-19 pandemic had a major effect on the market for autonomous enterprises, hastening the adoption of automation and autonomous technologies as companies looked to minimize operational disruptions, lessen their reliance on humans, and maintain operations during lockdowns. Furthermore, businesses have resorted to AI-driven solutions, robotics, and autonomous systems as remote work has become more common in order to improve productivity, optimize supply chains, and reduce the possibility of employee virus exposure. Economic uncertainty brought on by the pandemic, however, also caused some businesses to postpone or reduce their investments in new technologies because of budgetary limitations.

The Process Automation segment is expected to be the largest during the forecast period

The autonomous enterprise market is expected to be dominated by the process automation segment, which is widely used in industries like manufacturing, logistics, finance, and customer service, where autonomous systems manage everything from data entry and inventory management to complex decision-making processes. Using technologies like artificial intelligence (AI), robotics, and machine learning to automate repetitive tasks, streamline operations, and improve efficiency across various business functions is central to the concept of an autonomous enterprise. Moreover, by automating workflows, companies can reduce human errors, cut operational costs, and accelerate decision-making processes.

The Healthcare segment is expected to have the highest CAGR during the forecast period

In the market for autonomous enterprises, the healthcare segment is anticipated to grow at the highest CAGR. Autonomous technology adoption in the healthcare industry is growing quickly as providers look to lower costs, increase operational effectiveness, and improve patient care. Robotics, process automation, and AI-driven systems are being used in fields like patient monitoring, diagnostics, administrative work, and even surgery. Workflows are streamlined, human error is reduced, and healthcare workers can concentrate on more difficult tasks owing to autonomous technologies. Additionally, the need for autonomous healthcare solutions is also fueled by the COVID-19 pandemic and the continued need for telemedicine and remote care.

Region with largest share:

Due to its robust technological infrastructure, sophisticated digitization, and early adoption of automation across a range of industries, the North American region is anticipated to hold the largest share of the autonomous enterprise market. Leading firms in artificial intelligence, robotics, and process automation are headquartered in the United States, making it a significant center for innovation in autonomous systems. Furthermore, North America's dominant position is also influenced by businesses increasing emphasis on digital transformation, cost-effectiveness, and operational agility, as well as supportive government policies that encourage technological advancements.

Region with highest CAGR:

The autonomous enterprise market is anticipated to grow at the highest CAGR in the Asia Pacific region. This expansion is being driven by the quickening pace of industrialization, the growing use of digital technologies, and government programs encouraging automation in important industries like logistics, healthcare, and manufacturing. To increase operational efficiency, boost productivity, and compete globally, nations like China, India, Japan, and South Korea are making significant investments in artificial intelligence (AI), robotics, and process automation. Moreover, APAC is the market with the highest rate of growth for autonomous enterprise technologies due to the region's growing demand for smart factories, autonomous vehicles, and digital transformation across businesses.

Key players in the market

Some of the key players in Autonomous Enterprise market include IBM Corporation, Microsoft Corporation, Amazon Web Services, Inc. (Amazon.com, Inc.), Palo Alto Networks, Check Point Software Technologies Ltd., Oracle Corporation, ATOSS Software SE, Cisco Systems, Inc., NICE, Fetch.ai, SAP SE, Blue Prism Inc, Hewlett Packard Enterprise Company, Mendix Inc and Pegasystems Inc.

Key Developments:

In December 2024, Amazon Web Services, Inc. (AWS), an Amazon.com, Inc. company and TP ICAP Group, announced a major agreement to streamline and scale TP ICAP's technology infrastructure. A key focus of this multifaceted agreement is to accelerate the development of Fusion, TP ICAP's flagship digital platform.

In July 2024, IBM announced that it has secured a five-year contract with $26 million in initial funding from the U.S. Agency for International Development (USAID) to support its Cybersecurity Protection and Response (CPR) program aimed to expand and enhance the agency's cybersecurity response support for host governments in the Europe and Eurasia (E&E) region.

In June 2024, Microsoft Corp. and Hitachi Ltd. announced anticipated multibillion-dollar collaboration over the next three years that will accelerate social innovation with generative AI. Through this strategic alliance, Hitachi will propel growth of the Lumada business, with planned revenue of 2.65 trillion yen, and will promote operational efficiency and productivity improvements for Hitachi Group's 270,000 employees.

Offerings Covered:

  • Solutions
  • Services

Business Functions Covered:

  • Accounting
  • Finance
  • Human Resource
  • Sales and Marketing
  • Supply Chain and Operations

Technologies Covered:

  • Artificial Intelligence (AI)
  • Machine Learning (ML)
  • Hyper-automation

Applications Covered:

  • Process Automation
  • Customer and Employee Engagement
  • Order Management
  • Credit Evaluation and Management
  • Predictive Maintenance
  • Other Applications

End Users Covered:

  • BFSI (Banking, Financial Services, and Insurance)
  • IT & ITeS
  • Telecom
  • Retail & Ecommerce
  • Media & Entertainment
  • Healthcare
  • Transportation & Logistics
  • Manufacturing
  • Government & Defence
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Autonomous Enterprise Market, By Offering

  • 5.1 Introduction
  • 5.2 Solutions
    • 5.2.1 Robotic Process Automation
    • 5.2.2 Autonomous Networks
    • 5.2.3 Accounts Automation
    • 5.2.4 Security Automation
    • 5.2.5 Autonomous Agents
    • 5.2.6 Other Solutions
  • 5.3 Services
    • 5.3.1 Professional Services
    • 5.3.2 Managed Services

6 Global Autonomous Enterprise Market, By Business Function

  • 6.1 Introduction
  • 6.2 Accounting
  • 6.3 Finance
  • 6.4 Human Resource
  • 6.5 Sales and Marketing
  • 6.6 Supply Chain and Operations

7 Global Autonomous Enterprise Market, By Technology

  • 7.1 Introduction
  • 7.2 Artificial Intelligence (AI)
  • 7.3 Machine Learning (ML)
  • 7.4 Hyper-automation

8 Global Autonomous Enterprise Market, By Application

  • 8.1 Introduction
  • 8.2 Process Automation
  • 8.3 Customer and Employee Engagement
  • 8.4 Order Management
  • 8.5 Credit Evaluation and Management
  • 8.6 Predictive Maintenance
  • 8.7 Other Applications

9 Global Autonomous Enterprise Market, By End User

  • 9.1 Introduction
  • 9.2 BFSI (Banking, Financial Services, and Insurance)
  • 9.3 IT & ITeS
  • 9.4 Telecom
  • 9.5 Retail & Ecommerce
  • 9.6 Media & Entertainment
  • 9.7 Healthcare
  • 9.8 Transportation & Logistics
  • 9.9 Manufacturing
  • 9.10 Government & Defence
  • 9.11 Other End Users

10 Global Autonomous Enterprise Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 IBM Corporation
  • 12.2 Microsoft Corporation
  • 12.3 Amazon Web Services, Inc. (Amazon.com, Inc.)
  • 12.4 Palo Alto Networks
  • 12.5 Check Point Software Technologies Ltd.
  • 12.6 Oracle Corporation
  • 12.7 ATOSS Software SE
  • 12.8 Cisco Systems, Inc.
  • 12.9 NICE
  • 12.10 Fetch.ai
  • 12.11 SAP SE
  • 12.12 Blue Prism Inc
  • 12.13 Hewlett Packard Enterprise Company
  • 12.14 Mendix Inc
  • 12.15 Pegasystems Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦