½ÃÀ庸°í¼­
»óǰÄÚµå
1636731

ȯÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå ¿¹Ãø(-2030³â) : ¸ðµ¨ À¯Çüº°, Á¾¾ç À¯Çüº°, ÀÌ½Ä ¹æ¹ýº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Patient-derived Xenograft Model Market Forecasts to 2030 - Global Analysis By Model Type, Tumor Type, Implantation Method, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ȯÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ¼¼°è ½ÃÀåÀº 2024³â 4¾ï 9,430¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 14.3%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 11¾ï 230¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ȯÀÚ À¯·¡ ÀÌÁ¾À̽Ä(PDX) ¸ðµ¨·Î ¾Ë·ÁÁø ½ÇÇè ½Ã½ºÅÛ¿¡¼­´Â Àΰ£ ȯÀÚÀÇ Á¾¾ç Á¶Á÷À» ¸é¿ª°áÇÌ ¸¶¿ì½º¿¡ À̽ÄÇÕ´Ï´Ù. ÀÌ ¸ðµ¨Àº ¿ø·¡ Á¾¾çÀÇ À¯ÀüÀû Ư¡°ú Ç¥ÇöÇüÀÌ À¯ÁöµÇ±â ¶§¹®¿¡ ¾Ï ¿¬±¸¿¡ À¯¿ëÇÑ µµ±¸ÀÔ´Ï´Ù. ±âÁ¸ ¼¼Æ÷ÁÖ ¸ðµ¨°ú ºñ±³ÇÏ¿© PDX ¸ðµ¨Àº Àΰ£ ¾ÏÀ» º¸´Ù »ç½ÇÀûÀ¸·Î ¹¦»çÇÏ¿© Á¾¾ç »ý¹°ÇÐ ¿¬±¸, Ä¡·áÁ¦ ½ÃÇè, ¸ÂÃãÇü ÀÇ·á Àü·« ¼ö¸³¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

Dana-Farber Cancer InstituteÀÇ ¿¬±¸¿¡ µû¸£¸é, ÁøÇ༺ À°Á¾ ȯÀÚ 29¸í Áß 16¸íÀÌ PDX ¸ðµ¨ È®¸³¿¡ ¼º°øÇß½À´Ï´Ù.

°³º°È­ ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ȯÀÚ À¯·¡ ÀÌÁ¾À̽Ä(PDX) ¸ðµ¨ ½ÃÀåÀº ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ȯÀÚ À¯·¡ ÀÌÁ¾À̽Ä(PDX) ¸ðµ¨ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, PDX ¸ðµ¨À» ÅëÇØ ¿¬±¸ÀÚµéÀº ȯÀÚ °íÀ¯ÀÇ ¾Ï »ý¹°ÇÐ ¹× ¾à¹° ¹ÝÀÀÀ» ¿¬±¸ÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â °³Àκ° À¯ÀüÀÚ ÇÁ·ÎÆÄÀÏ¿¡ ¸Â´Â Ä¡·á¹ýÀ» °³¹ßÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº Ä¡·á È¿°ú¸¦ ³ôÀÌ°í ºÎÀÛ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¾Ï ¹ßº´·üÀÇ Áõ°¡¿Í À¯ÀüüÇÐÀÇ ¹ßÀüÀº ¸ÂÃãÀÇ·áÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù.

°³¹ß ¹× À¯Áöº¸¼ö¿¡ ¼Ò¿äµÇ´Â ³ôÀº ºñ¿ë

PDX ¸ðµ¨À» È®¸³Çϰí À¯ÁöÇϱâ À§Çؼ­´Â ¸·´ëÇÑ Àç¿ø, Àü¹® Áö½Ä, °íµµÀÇ ÀÎÇÁ¶ó°¡ ÇÊ¿äÇÕ´Ï´Ù. Á¾¾ç ÀÌ½Ä ¹× À¯Áö¿¡ °ü·ÃµÈ º¹ÀâÇÑ °úÁ¤À¸·Î ÀÎÇØ ¼Ò±Ô¸ð ¿¬±¸±â°ü¿¡¼­´Â ÀÌ¿ëÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ, ¸é¿ª°áÇÌ µ¿¹° ¹× Àΰ£ Á¾¾ç »ùÇÃÀÇ ³ôÀº ºñ¿ëÀ¸·Î ÀÎÇØ ºñ¿ëÀÌ ´õ ¸¹ÀÌ µì´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮ÀÌ ³Î¸® äÅõǴ µ¥¿¡ ÀÖ¾î Àå¾Ö¹°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¾Ï ¿¬±¸ÀÇ ¹ßÀü

CRISPR ±â¹Ý À¯ÀüÀÚ ÆíÁý, AI ±â¹Ý µ¥ÀÌÅÍ ºÐ¼®, Àΰ£È­ PDX ¸ðµ¨°ú °°Àº Çõ½ÅÀº ÀüÀÓ»ó ¿¬±¸ÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» Çâ»ó½Ã۰í, ¾Ï ¿¬±¸ÀÇ ¹ßÀüÀº PDX ¸ðµ¨ ½ÃÀå¿¡ ±âȸ¸¦ °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¿¬±¸ÀÚµéÀÌ »õ·Î¿î Ä¡·á Ç¥ÀûÀ» ã°í, ¹ÙÀÌ¿À¸¶Ä¿ Ž»öÀ» °³¼±Çϸç, ÀǾàǰ °³¹ß ÇÁ·Î¼¼½º¸¦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, Á¾¾çÇÐ ¿¬±¸¿¡ ´ëÇÑ °ø°ø ¹× ¹Î°£ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ PDX ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

À±¸®Àû ¿ì·Á¿Í ±ÔÁ¦Àû °úÁ¦

À±¸®Àû ¿ì·Á¿Í ±ÔÁ¦ À̽´´Â PDX ¸ðµ¨ ½ÃÀåÀÇ ¼ºÀåÀ» À§ÇùÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸¿¡¼­ÀÇ µ¿¹° »ç¿ëÀº À±¸®Àû ¹®Á¦¸¦ ¾ß±âÇÏ°í ¿¬±¸¸¦ Áö¿¬½ÃŰ°Å³ª Á¦ÇÑÇÏ´Â ¾ö°ÝÇÑ ÁöħÀ¸·Î À̾îÁö¸ç, FDA¿Í °°Àº ±ÔÁ¦ ±â°üÀº µ¿¹° ¸ðµ¨¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇÑ Á¶Ä¡¸¦ µµÀÔÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµÀüÀº º¹ÀâÇÑ ÇÁ·ÎÅäÄÝÀ» ÁؼöÇØ¾ß Çϰí, ¿¬±¸±â°üÀÇ ¿î¿µ ºñ¿ë°ú ½Ã°£À» Áõ°¡½Ãŵ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19´Â ½ÇÇè½Ç ¿î¿µ, °ø±Þ¸Á, ¿¬±¸ ÀÚ±ÝÀÇ È¥¶õÀ¸·Î ÀÎÇØ PDX ¸ðµ¨ ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, COVID-19 ¿¬±¸¿¡ ÀÚ¿øÀÌ ÁýÁߵǸ鼭 ¸¹Àº Á¾¾çÇÐ ¿¬±¸°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª COVID-19´Â ¸ÂÃãÇü ÀÇ·áÀÇ Á߿伺À» °­Á¶Çϰí, ¾Ï ¿¬±¸¿¡¼­ PDX ¸ðµ¨ÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±ÔÁ¦°¡ ¿ÏÈ­µÇ¸é¼­ Çõ½ÅÀûÀÎ ¾Ï Ä¡·á¿¡ ´ëÇÑ °ü½ÉÀÌ ´Ù½Ã ÁýÁߵǸ鼭 ¼ö¿ä°¡ ȸº¹µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸¶¿ì½º ¸ðµ¨ ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸¶¿ì½º ¸ðµ¨ ºÐ¾ß°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸¶¿ì½º´Â Àΰ£°ú À¯ÀüÀûÀ¸·Î À¯»çÇϰí, ´Ù·ç±â ½±°í, ´Ù¸¥ µ¿¹°¿¡ ºñÇØ ºñ¿ë È¿À²ÀûÀ̱⠶§¹®¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¸¶¿ì½º´Â in vivo¿¡¼­ Á¾¾ç ¼ºÀå, ¾àÈ¿, ³»¼º ¸ÞÄ¿´ÏÁòÀ» ¿¬±¸ÇÒ ¼ö ÀÖ´Â °ß°íÇÑ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù. ¸¶¿ì½º ±â¹Ý PDX ¸ðµ¨¿¡´Â È®¸³µÈ ÇÁ·ÎÅäÄÝÀÌ ÁغñµÇ¾î ÀÖ¾î ÀüÀÓ»ó Á¾¾çÇÐ ¿¬±¸¿¡¼­ÀÇ ¿ìÀ§¸¦ ´õ¿í µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹ÙÀÌ¿À¹ðÅ© ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹ÙÀÌ¿À¹ðÅ© ºÐ¾ß´Â ÇâÈÄ »ç¿ëÀ» À§ÇØ È¯ÀÚ À¯·¡ Á¾¾ç »ùÇÃÀ» ÀúÀåÇÏ´Â ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹ÙÀÌ¿À¹ðÅ©´Â ¿¬±¸ÀÚµéÀÌ »õ·Î¿î PDX ¸ðµ¨ °³¹ß ¹× ÈÄÇâÀû ¿¬±¸¸¦ À§ÇØ ´Ù¾çÇÑ Á¾¾ç Ç¥º»¿¡ Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ ±â´ÉÀº ½ÇÇèÀÇ ÀçÇö¼ºÀ» º¸ÀåÇϸ鼭 ½Å¾à °³¹ß °úÁ¤À» °¡¼ÓÈ­ÇÕ´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ÀüÀÓ»ó ¿¬±¸ ÀÎÇÁ¶óÀÇ ÇʼöÀûÀÎ ¿ä¼Ò·Î¼­ ¹ÙÀÌ¿À¹ðÅ© ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ôÀº ¾Ï ¹ßº´·ü, ³ôÀº ¼öÁØÀÇ ÀÇ·á ÀÎÇÁ¶ó, ¾Ï ¿¬±¸¿¡ ´ëÇÑ °ø°ø ¹× ¹Î°£ ºÎ¹®ÀÇ ¸·´ëÇÑ ÅõÀÚ µîÀÌ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä »ê¾÷ ±â¾÷ÀÇ Á¸Àç´Â ºÏ¹Ì°¡ PDX ¸ðµ¨ äÅÃÀÇ ¼±µÎÁÖÀڷμ­ÀÇ ÀÔÁö¸¦ ´õ¿í È®°íÈ÷ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥µµ ÀÌ °°Àº ÀåÁ¡¿¡ Å« ±â¿©¸¦ Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, ÀÇ·áºñ ÁöÃâ Áõ°¡, ¾Ï ¹ßº´·ü Áõ°¡·Î ÀÎÇØ ÀÌ Áö¿ª¿¡¼­ PDX ¸ðµ¨°ú °°Àº ÷´Ü ¿¬±¸ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Çö´ëÀû ÀÇ·á ¼­ºñ½º·ÎÀÇ ÀüȯÀº ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ÁÖ¿ä ¼ºÀå °ÅÁ¡À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡µéÀº »ý¸í°øÇÐ ¹× ÀǾàǰ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ °³¿ä
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤Ä¡, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : ¸ðµ¨ À¯Çüº°

  • ¸¶¿ì½º ¸ðµ¨
    • NOD SCID ¸ðµ¨
    • NSG ¸ðµ¨
    • ±âŸ ¸é¿ª°áÇÌ ¸ðµ¨
  • ·¡Æ® ¸ðµ¨
    • ¸é¿ª°áÇÌ ·¡Æ® ¸ðµ¨
    • Àΰ£È­ ·¡Æ® ¸ðµ¨

Á¦6Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : Á¾¾ç À¯Çüº°

  • ¼ÒÈ­°ü Á¾¾ç
  • ºÎÀΰú Á¾¾ç
  • È£Èí±â Á¾¾ç
  • À¯¹æ¾Ï Á¾¾ç
  • Ç÷¾× Á¾¾ç
  • ºñ´¢±â Á¾¾ç
  • ½Å°æ Á¾¾ç
  • ±âŸ Á¾¾ç À¯Çü

Á¦7Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : ÀÌ½Ä ¹æ¹ýº°

  • ÇÇÇÏ
  • Á¤¼Ò¼º
    • ¿Ü°úÀû ÀÓÇöõÆ®
    • ºñ¿Ü°úÀû ÀÓÇöõÆ®

Á¦8Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : ¿ëµµº°

  • ÀüÀÓ»ó ÀǾàǰ °³¹ß
  • ¹ÙÀÌ¿À¸¶Ä¿ ºÐ¼®
  • ¹ÙÀÌ¿À¹ðÅ©
  • Áß°³ ¿¬±¸

Á¦9Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • Çмú¡¤¿¬±¸±â°ü
  • °è¾à ¿¬±¸±â°ü

Á¦10Àå ¼¼°èÀÇ È¯ÀÚ À¯·¡ ÀÌÁ¾ÀÌ½Ä ¸ðµ¨ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • Champions Oncology
  • Charles River Laboratories
  • Crown Bioscience
  • EPO Berlin-Buch
  • Hera BioLabs
  • Horizon Discovery Group
  • Inotiv
  • JSR Corporation
  • Oncodesign Precision Medicine
  • Pharmatest Services
  • Taconic Biosciences
  • The Jackson Laboratory
  • Urolead
  • WuXi AppTec
  • Xenopat
  • Xentech
ksm 25.02.07

According to Stratistics MRC, the Global Patient-derived Xenograft Model Market is accounted for $494.3 million in 2024 and is expected to reach $1102.3 million by 2030 growing at a CAGR of 14.3% during the forecast period. An experimental system known as a patient-derived xenograft (PDX) model involves implanting tumor tissues from human patients into immunocompromised mice. This model is a useful tool for cancer research because it maintains the original tumor's genetic and phenotypic features. Compared to conventional cell line models, PDX models provide a more realistic depiction of human cancer and are utilized to investigate tumor biology, test therapeutic medications, and create personalized medicine strategies.

According to Dana-Farber Cancer Institute study, 16 out of 29 patients with advanced sarcoma successfully established PDX models.

Market Dynamics:

Driver:

Rising demand for personalized medicine

The rising demand for personalized medicine is driving the patient-derived xenograft (PDX) model market. PDX models enable researchers to study patient-specific cancer biology and drug responses, making them essential for tailoring treatments to individual genetic profiles. This approach improves therapeutic efficacy and reduces adverse effects, aligning with the growing focus on precision oncology. The increasing prevalence of cancer and advancements in genomics further amplify the need for personalized medicine.

Restraint:

High costs of development and maintenance

Establishing and sustaining PDX models require significant financial resources, specialized expertise, and advanced infrastructure. The complex processes involved in tumor implantation and maintenance limit accessibility for smaller research organizations. Additionally, the high cost of immunodeficient animals and human tumor samples further increases expenses. These financial barriers pose challenges to widespread adoption.

Opportunity:

Advancements in cancer research

Advancements in cancer research are creating opportunities for the PDX model market. Innovations such as CRISPR-based gene editing, AI-driven data analysis and humanized PDX models are enhancing the accuracy and efficiency of preclinical studies. These advancements allow researchers to explore novel therapeutic targets, improve biomarker discovery, and accelerate drug development processes. Additionally, increasing public and private investments in oncology research are driving demand for advanced PDX models.

Threat:

Ethical concerns and regulatory challenges

Ethical concerns and regulatory challenges threaten the growth of the PDX model market. The use of animals in research raises ethical issues, leading to stringent guidelines that can delay or restrict studies. Regulatory agencies like the FDA have introduced measures to reduce reliance on animal models, potentially affecting market dynamics. These challenges necessitate compliance with complex protocols, increasing operational costs and timeframes for research organizations.

Covid-19 Impact:

The COVID-19 pandemic negatively impacted the PDX model market due to disruptions in laboratory operations, supply chains, and research funding. Many oncology studies were delayed as resources were diverted toward COVID-19 research. However, the pandemic underscored the importance of personalized medicine, highlighting the relevance of PDX models in cancer research. As restrictions eased, demand rebounded with renewed focus on innovative cancer therapies.

The mice models segment is expected to be the largest during the forecast period

The mice models segment is expected to account for the largest market share during the forecast period. Mice are widely used due to their genetic similarity to humans, ease of handling, and cost-effectiveness compared to other animals. They provide a robust platform for studying tumor growth, drug efficacy, and resistance mechanisms in vivo. The availability of well-established protocols for mice-based PDX models further supports their dominance in preclinical oncology research.

The biobanking segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the biobanking segment is expected to witness the highest CAGR due to its role in preserving patient-derived tumor samples for future use. Biobanks enable researchers to access diverse tumor specimens for developing new PDX models and conducting retrospective studies. This capability accelerates drug discovery processes while ensuring reproducibility in experiments. The growing emphasis on personalized medicine drives demand for biobanking services as an essential component of preclinical research infrastructure.

Region with largest share:

The North America region is anticipated to account for the largest market share during the forecast period. Factors such as a high prevalence of cancer, advanced healthcare infrastructure, and significant public-private investments in oncology research drive regional growth. The presence of key industry players further strengthens North America's position as a leader in PDX model adoption. Additionally, government initiatives supporting precision medicine also contribute significantly to this dominance.

Region with highest CAGR:

The Asia Pacific region is anticipated to register the highest growth rate over the forecast period. Rapid urbanization, increasing healthcare expenditure, and rising cancer incidence drive demand for advanced research tools like PDX models in this region. The shift toward modern healthcare practices positions Asia Pacific as a key growth hub. Furthermore, countries like China and India are investing heavily in biotechnology and pharmaceutical R&D, fostering market expansion.

Key players in the market

Some of the key players in Patient-derived Xenograft Model Market include Champions Oncology, Charles River Laboratories, Crown Bioscience, EPO Berlin-Buch, Hera BioLabs, Horizon Discovery Group, Inotiv, JSR Corporation, Oncodesign Precision Medicine, Pharmatest Services, Taconic Biosciences, The Jackson Laboratory, Urolead, WuXi AppTec, Xenopat and Xentech.

Key Developments:

In December 2024, Can-Fite BioPharma Ltd. recently announced that its work titled The Liver Protective Effect of the Anti-Cancer Drug Candidate Namodenoson is mediated via Adiponectin will be presented at the 2025 ASCO Gastrointestinal Cancers Symposium to take place at San Francisco & On Line, January 23-25.

In October 2019, Crown Bioscience announced the launch of a new tumor organoid drug development platform with the potential to significantly improve the predictivity and speed of preclinical drug discovery. The initial phase of the platform launch features the first commercially available 3D in vitro PDX-derived organoid (PDXO) models generated from CrownBio's uniquely-characterized library of 2500+ patient-derived xenograft (PDX) models.

In May 2015, Taconic Biosciences and Cellaria Biosciences have entered into a scientific collaboration designed to improve the utility of patient-derived xenografts (PDXs) in animal models for oncology and immuno-oncology research. Cellaria's novel methodologies for generating cells from patient tumors will complement Taconic's industry-leading portfolio of tissue humanized mouse models, which are said to be well suited as hosts for PDXs.

Model Types Covered:

  • Mice Models
  • Rat Models

Tumor Types Covered:

  • Gastrointestinal Tumors
  • Gynecological Tumors
  • Respiratory Tumors
  • Breast Cancer Tumors
  • Hematological Tumors
  • Urological Tumors
  • Neurological Tumors
  • Other Tumor Types

Implantation Methods Covered:

  • Subcutaneous
  • Orthotopic

Applications Covered:

  • Preclinical Drug Development
  • Biomarker Analysis
  • Biobanking
  • Translational Research

End Users Covered:

  • Pharmaceutical & Biotechnology Companies
  • Academic & Research Institutions
  • Contract Research Organizations

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Patient-derived Xenograft Model Market, By Model Type

  • 5.1 Introduction
  • 5.2 Mice Models
    • 5.2.1 NOD SCID Models
    • 5.2.2 NSG Models
    • 5.2.3 Other Immunodeficient Models
  • 5.3 Rat Models
    • 5.3.1 Immunodeficient Rat Models
    • 5.3.2 Humanized Rat Models

6 Global Patient-derived Xenograft Model Market, By Tumor Type

  • 6.1 Introduction
  • 6.2 Gastrointestinal Tumors
  • 6.3 Gynecological Tumors
  • 6.4 Respiratory Tumors
  • 6.5 Breast Cancer Tumors
  • 6.6 Hematological Tumors
  • 6.7 Urological Tumors
  • 6.8 Neurological Tumors
  • 6.9 Other Tumor Types

7 Global Patient-derived Xenograft Model Market, By Implantation Method

  • 7.1 Introduction
  • 7.2 Subcutaneous
  • 7.3 Orthotopic
    • 7.3.1 Surgical Implantation
    • 7.3.2 Non-surgical Implantation

8 Global Patient-derived Xenograft Model Market, By Application

  • 8.1 Introduction
  • 8.2 Preclinical Drug Development
  • 8.3 Biomarker Analysis
  • 8.4 Biobanking
  • 8.5 Translational Research

9 Global Patient-derived Xenograft Model Market, By End User

  • 9.1 Introduction
  • 9.2 Pharmaceutical & Biotechnology Companies
  • 9.3 Academic & Research Institutions
  • 9.4 Contract Research Organizations

10 Global Patient-derived Xenograft Model Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Champions Oncology
  • 12.2 Charles River Laboratories
  • 12.3 Crown Bioscience
  • 12.4 EPO Berlin-Buch
  • 12.5 Hera BioLabs
  • 12.6 Horizon Discovery Group
  • 12.7 Inotiv
  • 12.8 JSR Corporation
  • 12.9 Oncodesign Precision Medicine
  • 12.10 Pharmatest Services
  • 12.11 Taconic Biosciences
  • 12.12 The Jackson Laboratory
  • 12.13 Urolead
  • 12.14 WuXi AppTec
  • 12.15 Xenopat
  • 12.16 Xentech
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦