![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1636792
Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±¸¼º¿ä¼Òº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Terahertz Technology Market Forecasts to 2030 - Global Analysis By Type (Terahertz Time Domain Spectroscopy, Terahertz Frequency Domain Spectroscopy, Terahertz Imaging and Other Types), Component, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, Å×¶óÇ츣Ã÷ ±â¼ú ¼¼°è ½ÃÀåÀº 2024³â 6¾ï 7,000¸¸ ´Þ·¯ ±Ô¸ðÀ̸ç, 2030³â¿¡´Â 22¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 21.8%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Å×¶óÇ츣Ã÷ ±â¼úÀº ¸¶ÀÌÅ©·Î¿þÀ̺ê¿Í Àû¿Ü¼±ÀÇ Áß°£¿¡ À§Ä¡ÇÑ 0.1-10THzÀÇ Å×¶óÇ츣Ã÷ Á֯ļö ´ë¿ªÀÇ ÀüÀÚÆÄ¸¦ ÀÌ¿ëÇÏ´Â ±â¼úÀÔ´Ï´Ù. Å×¶óÇ츣Ã÷ÆÄ´Â °íÇØ»óµµ À̹Ì¡, ºÐ±¤, Åë½Å µî ÷´Ü ¾ÖÇø®ÄÉÀ̼ÇÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Å×¶óÇ츣Ã÷ÆÄ´Â ºñÀÌ¿ÂȵǾî ÀǺ¹, Æ÷Àå, »ýü Á¶Á÷ µîÀÇ ¹°ÁúÀ» Åõ°úÇÒ ¼ö ÀÖ¾î º¸¾È, ÀÇ·á, »ê¾÷ ºÐ¾ß¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
ij³ª´Ù Åë°èû(Statistique Canada)¿¡ µû¸£¸é, 2024³â 7¿ù ij³ª´ÙÀÇ 8°³ ÁÖ¿ä °øÇ׿¡¼ ¿î¿µ ÁßÀΠüũÆ÷ÀÎÆ®¿¡¼ ž½Â Àü º¸¾È°Ë»öÀ» Åë°úÇÑ ½Â°´Àº 560¸¸ ¸íÀ¸·Î 2023³â 7¿ù ´ëºñ 3.3% Áõ°¡Çß´Ù°í ¹àÇû½À´Ï´Ù.
ºñÆÄ±« °Ë»ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Å×¶óÇ츣Ã÷ÆÄ´Â °Ë»ç ´ë»ó¹°À» ¼Õ»ó½ÃŰÁö ¾Ê°í °íÇØ»óµµ À̹Ì¡°ú Àç·á ºÐ¼®À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÀüÀÚ, Á¦Á¶ µîÀÇ »ê¾÷¿¡¼ ¹ÝµµÃ¼, ÄÚÆÃ, º¹ÇÕÀç·á µî Á¦Ç°ÀÇ Ç°Áú °ü¸®, ¾ÈÀü °Ë»ç, °áÇÔ °ËÃâÀ» À§ÇØ Å×¶óÇ츣Ã÷ ±â¼úÀ» Á¡Á¡ ´õ ¸¹ÀÌ Ã¤ÅÃÇϰí ÀÖ½À´Ï´Ù. Àç·áÀÇ ¹«°á¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í Á¦Á¶ÀÇ ¿©·¯ ´Ü°è¿¡¼ °Ë»çÇÒ ¼ö ÀÖ¾î È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨Çϸç Á¦Ç°ÀÇ ½Å·Ú¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.
Å×¶óÇ츣Ã÷ÆÄ ¹ß»ý ¹× °ËÃâÀÇ ±â¼úÀû °úÁ¦
Å×¶óÇ츣Ã÷ÆÄ ¹ß»ý ¹× °ËÃâÀÇ ±â¼úÀû °úÁ¦´Â Å×¶óÇ츣Ã÷ÆÄÀÇ È¿À²ÀûÀÎ ¹ß»ý ¹× °ËÃâÀÇ ¾î·Á¿ò¿¡ ±âÀÎÇÕ´Ï´Ù. ±âÁ¸ÀÇ ÀüÀÚºÎǰÀº Å×¶óÇ츣Ã÷ Á֯ļö¿¡¼ ÀÛµ¿ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ°í ÀÖÀ¸¸ç, ÀÌ´Â ³·Àº Ãâ·Â°ú Á¦ÇÑµÈ °¨Áö °¨µµ·Î À̾îÁý´Ï´Ù. ¶ÇÇÑ, Å×¶óÇ츣Ã÷ Á֯ļö¸¦ ó¸®Çϱâ À§Çؼ´Â Ư¼öÇÑ Àç·á¿Í º¹ÀâÇÑ Àåºñ°¡ ÇÊ¿äÇØ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº ÀåÄ¡ÀÇ ¼º´ÉÀ» Á¦ÇÑÇϰí Á¦Á¶ ºñ¿ëÀ» Áõ°¡½ÃÄÑ Å×¶óÇ츣Ã÷ ±â¼úÀÇ È®À强À» ÀúÇØÇÏ°í º¸±ÞÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
ÀÇ·á¿ë À̹Ì¡ ºÐ¾ß·ÎÀÇ Àû¿ë È®´ë
Å×¶óÇ츣Ã÷ÆÄ´Â »ýü Á¶Á÷À» ¼Õ»ó½ÃŰÁö ¾Ê°í Åõ°úÇϱ⠶§¹®¿¡ ¾Ï, ƯÈ÷ ÇǺξϰú °°Àº Áúº´À» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¶Á÷ÀÇ ¼öºÐ º¸Ãæ, ¼¼Æ÷ ±¸Á¶ ¸ð´ÏÅ͸µ, ´Ù¾çÇÑ Àå±âÀÇ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ´Â µ¥µµ µµ¿òÀÌ µË´Ï´Ù. ÀÇ·á ½Ã½ºÅÛÀÌ Å×¶óÇ츣Ã÷ ±â¹Ý Áø´Ü µµ±¸¸¦ äÅÃÇÔ¿¡ µû¶ó ÀÌ ±â¼úÀº ¿µ»ó Áø´ÜÀÇ Á¤È®µµ¸¦ ³ôÀÌ°í ½Ç½Ã°£À¸·Î °á°ú¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñħ½ÀÀûÀÌ°í ¾ÈÀüÇϰí Á¤È®ÇÑ ÀÇ·á ¿µ»ó Áø´Ü ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå È®´ë°¡ °¡¼Óȵǰí ÀÇ·á ºÐ¾ßÀÇ Çõ½ÅÀÌ ÃËÁøµÉ °ÍÀÔ´Ï´Ù.
´ë¾È ±â¼ú°úÀÇ °æÀï
X¼± À̹Ì¡, Àû¿Ü¼± ºÐ±¤¹ý, ¸¶ÀÌÅ©·ÎÆÄ ±â¹Ý ½Ã½ºÅÛ°ú °°Àº ±â¼úÀº ÀÌ¹Ì ÀÇ·á À̹Ì¡, º¸¾È, ǰÁú °ü¸®¿Í °°Àº »ê¾÷¿¡ ¼º°øÀûÀ¸·Î Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ±â¼úµéÀº À¯»çÇÑ ±â´ÉÀ» ´õ ³·Àº ºñ¿ëÀ¸·Î, ¶Ç´Â ´õ ÀûÀº ±â¼úÀû ¹®Á¦·Î Á¦°øÇÏ´Â °æ¿ì°¡ ¸¹±â ¶§¹®¿¡ »ê¾÷°è°¡ »õ·Î¿î °í°¡ÀÇ Å×¶óÇ츣Ã÷ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÒ À¯ÀÎÀ» ¶³¾î¶ß¸®°í ÀÖ½À´Ï´Ù. ÀÌ´Â Å×¶óÇ츣Ã÷ ±â¼úÀÇ Ã¤ÅÃÀ» Áö¿¬½ÃŰ°í ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ´Â °á°ú¸¦ ÃÊ·¡ÇÕ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Å×¶óÇ츣Ã÷ ±â¼ú ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °ø±Þ¸Á Áߴܰú ½ÇÇè½Ç Á¢±Ù Á¦ÇÑÀ¸·Î ÀÎÇØ ¿¬±¸ °³¹ßÀÌ Áö¿¬µÈ ¹Ý¸é, ÀÇ·á ¹× º¸¾È ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ Å×¶óÇ츣Ã÷ À̹Ì¡°ú °°Àº ºñħ½ÀÀû Áø´Ü µµ±¸¿¡ ´ëÇÑ ¼ö¿ä´Â Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, ÆÒµ¥¹ÍÀº ÀÇ·á ¹× ¾ÈÀü ºÐ¾ß¿¡¼ ÷´Ü ±â¼úÀÇ Çʿ伺À» ºÎ°¢½ÃÄÑ ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª °æÁ¦ ºÒ¾ÈÀ¸·Î ÀÎÇØ ÆÒµ¥¹Í Ãʱ⿡´Â ½Å±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ÀúÁ¶Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àç·á Ư¼º Æò°¡ ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àç·á Ư¼ºÈ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àç·á Ư¼ºÈ¿¡¼ Å×¶óÇ츣Ã÷ ±â¼úÀº ¼Õ»ó ¾øÀÌ Àç·áÀÇ Æ¯¼ºÀ» ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ´Â Æú¸®¸Ó, ¹ÝµµÃ¼ ¹× ÄÚÆÃÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ Àç·áÀÇ ±¸Á¶, µÎ²², ±¸¼º ¹× ¹Ðµµ¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù. °úÇÐÀÚµéÀº Å×¶óÇ츣Ã÷ÆÄ¸¦ »ç¿ëÇÏ¿© ÀüÀÚ, Ç×°ø¿ìÁÖ, Á¦Á¶ ¹× ±âŸ »ê¾÷¿¡¼ °áÇÔÀ» °¨ÁöÇÏ°í ¼öºÐ ÇÔ·®À» ÃøÁ¤Çϸç Àç·áÀÇ Ç°ÁúÀ» Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¼ÒºñÀÚ °¡Àü ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ÒºñÀÚ¿ë ÀüÀÚÁ¦Ç° ºÐ¾ß´Â ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Å×¶óÇ츣Ã÷ ±â¼úÀº µð¹ÙÀ̽º ¼º´ÉÀ» Çâ»ó½Ã۰í Çõ½ÅÀûÀÎ ±â´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ¾î ¼ÒºñÀÚ ÀüÀÚ±â±â ºÐ¾ß¿¡¼ ¸¹Àº ÁöÁö¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. Å×¶óÇ츣Ã÷´Â ¹ÝµµÃ¼ ¹× Àμâȸ·Î±âÆÇ°ú °°Àº ÀüÀÚºÎǰÀÇ Ç°ÁúÀ» º¸ÀåÇϱâ À§ÇØ Á¦Á¶ ½Ã ºñÆÄ±« °Ë»ç¿¡ »ç¿ëµË´Ï´Ù. ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°ÀÇ ¹ßÀü°ú ÇÔ²² Å×¶óÇ츣Ã÷ ±â¼úÀº ºÎǰÀÇ ¼ÒÇüÈ ¹× ÀåÄ¡ ±â´É Çâ»ó¿¡ À¯¸ÁÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» Á¦°øÇÔÀ¸·Î½á ¾÷°èÀÇ ¹ßÀüÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌµé ±¹°¡´Â ÀÇ·á ¿µ»ó, º¸¾È °Ë»ç, Åë½Å, Á¦Á¶ ǰÁú °ü¸® µîÀÇ ¿ëµµ·Î Å×¶óÇ츣Ã÷ ±â¼úÀ» Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀüÀÚ, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ µîÀÇ »ê¾÷¿¡¼ ÷´Ü Åë½Å ½Ã½ºÅÛ ¹× ºñÆÄ±« °Ë»ç ¹æ¹ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
ºÏ¹Ì´Â ¿¬±¸¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ, ±â¼ú ¹ßÀü, ÇコÄɾî, º¸¾È, Åë½Å µî ´Ù¾çÇÑ ºÐ¾ßÀÇ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº ÀÇ·á ¿µ»ó, ǰÁú °ü¸®, ºñÆÄ±« °Ë»ç µîÀÇ ºÐ¾ß¿¡¼ ÀÌ Áö¿ªÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. °í¼Ó Åë½Å ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í Çõ½ÅÀûÀÎ º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Terahertz Technology Market is accounted for $0.67 billion in 2024 and is expected to reach $2.26 billion by 2030 growing at a CAGR of 21.8% during the forecast period. Terahertz technology refers to the use of electromagnetic waves in the terahertz frequency range, typically between 0.1 to 10 THz, which lies between microwave and infrared radiation. It enables advanced applications such as high-resolution imaging, spectroscopy, and communication. Terahertz waves are non-ionizing and can penetrate materials like clothing, packaging, and biological tissues, making them ideal for security, medical, and industrial applications.
According to Statistique Canada, in July 2024, 5.6 million passengers passed through pre-board security screening at checkpoints operated at Canada's eight largest airports, an increase of 3.3% from July 2023.
Rising demand for non-destructive testing
Terahertz waves enable high-resolution imaging and material analysis without damaging the object being examined. Industries such as aerospace, automotive, electronics and manufacturing are increasingly adopting terahertz technology for quality control, safety inspections, and defect detection in products like semiconductors, coatings, and composite materials. The ability to inspect materials at various stages of production without compromising their integrity improves efficiency, reduces costs, and enhances product reliability, propelling market growth.
Technical challenges in terahertz wave generation and detection
Technical challenges in terahertz wave generation and detection stem from the difficulty in efficiently producing and detecting terahertz radiation. Traditional electronic components struggle to operate at terahertz frequencies, leading to low power outputs and limited detection sensitivity. Additionally, specialized materials and complex equipment are required to handle terahertz waves, increasing costs. These challenges hamper widespread adoption by limiting device performance and increasing production costs, which hinders the scalability of terahertz technology.
Growing applications in medical imaging
Terahertz waves can penetrate biological tissues without damaging them, enabling early detection of diseases like cancer, particularly skin cancer. They also help in monitoring tissue hydration, cellular structure, and detecting anomalies in a range of organs. As healthcare systems increasingly adopt terahertz-based diagnostic tools, the technology enhances imaging precision and provides real-time results. This rise in demand for non-invasive, safe, and accurate diagnostic methods in medical imaging accelerates market expansion and fosters innovation within the healthcare sector.
Competition from alternative technologies
Technologies such as X-ray imaging, infrared spectroscopy, and microwave-based systems are already well-integrated into industries like medical imaging, security, and quality control. These alternatives often provide similar functionalities at lower costs or with fewer technical challenges, reducing the incentive for industries to invest in new, expensive terahertz solutions. As a result, the adoption of terahertz technology faces delays, limiting its market expansion.
Covid-19 Impact
The covid-19 pandemic had a mixed impact on the terahertz technology market. While research and development slowed due to supply chain disruptions and restricted access to laboratories, the demand for non-invasive diagnostic tools, such as terahertz imaging for medical and security applications, saw a rise. Additionally, the pandemic highlighted the need for advanced technologies in healthcare and safety, potentially boosting future market growth. However, economic uncertainty hindered investments in new technologies during the initial phases of the pandemic.
The material characterization segment is expected to be the largest during the forecast period
The material characterization segment is predicted to secure the largest market share throughout the forecast period. Terahertz technology in material characterization is used to analyze the properties of materials without causing damage. It provides valuable insights into the structure, thickness, composition, and density of various materials, including polymers, semiconductors, and coatings. By using terahertz waves, scientists can detect defects, measure moisture content, and assess material quality in industries such as electronics, aerospace, and manufacturing.
The consumer electronics segment is expected to have the highest CAGR during the forecast period
The consumer electronics segment is anticipated to witness the highest CAGR during the forecast period. Terahertz technology is gaining traction in consumer electronics for its potential in enhancing device performance and enabling innovative features. It is used for non-destructive testing during manufacturing to ensure the quality of electronic components, such as semiconductors and printed circuit boards. As consumer electronics evolve, terahertz technology offers promising applications in miniaturized components and improving device functionality, driving advancements in the industry.
Asia Pacific is expected to register the largest market share during the forecast period due to increasing investments in research and development, particularly in countries like China, Japan, and South Korea. These nations are leveraging terahertz technology for applications in medical imaging, security screening, telecommunications, and quality control in manufacturing. The rise in demand for advanced communication systems and non-destructive testing methods in industries such as electronics, automotive and aerospace further drives market growth.
North America is expected to witness the highest CAGR over the forecast period driven by robust investments in research, technological advancements, and increasing demand across sectors like healthcare, security, and telecommunications. The United States, in particular, leads the region, with applications in medical imaging, quality control, and non-destructive testing. Growing interest in high-speed communication systems and the need for innovative security solutions further contribute to market expansion.
Key players in the market
Some of the key players profiled in the Terahertz Technology Market include IBM Corporation, Thales Group, NTT Electronics Corporation, Fujitsu Ltd., Stanford Research Systems, Inc., Hamamatsu Photonics K.K., Optoelectronica, Lightwave Logic, Inc., TeraView Ltd., Terasense Group Inc., Virginia Diodes, Inc., Menlo Systems, QMC Instruments Ltd., Gentec Electro-Optics Inc., TicWave Solutions GmbH, Acal BFi and NeoPhotonics Corporation.
In July 2024, TicWave Solutions GmbH has introduced a new line of silicon-based terahertz products, including cameras, sources, and imaging systems. These products are designed to meet the growing demand for high-performance terahertz technology in both research and industry.
In January 2024, Gentec Electro-Optics unveiled its new PRONTO-250-FLEX Laser Power Meter. This innovative device is designed to measure the power of laser beams across a broad spectrum of wavelengths and power levels. The PRONTO-250-FLEX is designed to measure laser power across a wide range of wavelengths, making it versatile for use in different laser applications.