![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662589
¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå(-2030³â) : Á¦Ç° À¯Çü, Á¦Á¶ ¹æ¹ý, ¿ø·á °ø±Þ¿ø, ¿ëµµ, Áö¿ªº° ¿¹Ãø ¹× ºÐ¼®Nanosilica Market Forecasts to 2030 - Global Analysis By Type (P-Type, S-Type and Type III), Production Method (Precipitation Method, Sol-Gel Process, Pyrolysis and Plasma Synthesis), Raw Material Source, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀåÀº 2024³â 43¾ï ´Þ·¯¸¦ ´Þ¼ºÇÏ¿´°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 7.3%·Î 2030³â¿¡´Â 67¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
³ª³ë½Ç¸®Ä«·Î ¾Ë·ÁÁø Ãʹ̸³ÀÚ ÀÌ»êȱԼҴ Åë»ó 1-100³ª³ë¹ÌÅÍÀÇ Å©±âÀÔ´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ºÐ»ê¼ºÀÌ ¿ì¼öÇϰí ÈÇÐÀû ¾ÈÁ¤¼ºÀÌ ³ôÀ¸¸ç Ç¥¸éÀûÀÌ Å©±â ¶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷¿¡¼ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ³»¸¶¸ð¼ºÀ» ³ôÀÌ´Â ÆäÀÎÆ® ¹× ÄÚÆÃÁ¦ÀÇ Áß¿äÇÑ Ã·°¡Á¦ ¿ªÇÒÀ» ÇÏ¸ç Æú¸®¸Ó º¹ÇÕÀç·áÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ°í °ÇÃàÀç·áÀÇ ±â°èÀû ¼ºÁúÀ» °ÈÇÏ¸ç ¼ö¸íÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.
°í¼º´É Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
³ª³ë½Ç¸®Ä« ½ÃÀåÀº °í¼º´É Àç·á¸¦ ÇÊ¿ä·Î ÇÏ´Â »ê¾÷ ³» ä¿ë È®´ë°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ôÀº Ç¥¸éÀû, ¿¾ÈÁ¤¼º, ±â°èÀû °µµ µîÀÇ Å¹¿ùÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ °ÇÃà, ÀüÀÚ, ÀÇ·á µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ÄÜÅ©¸®Æ®ÀÇ ³»±¸¼º°ú °µµ¸¦ ³ôÀ̰í ÄÚÆÃÀÇ ´Ü¿¼ºÀ» Çâ»ó½ÃŰ¸ç ¾à¹° Àü´Þ ½Ã½ºÅÛÀÇ È¿À²À» ³ôÀÔ´Ï´Ù. »ê¾÷ÀÌ ¼º´É°ú Áö¼Ó °¡´É¼ºÀ» Á¡Á¡ ´õ ¿ì¼±½ÃÇÔ¿¡ µû¶ó ³ª³ë½Ç¸®Ä« ¼ö¿ä´Â Áõ°¡ Ãß¼¼¿¡ ÀÖÀ¸¸ç, ´Ù¾çÇÑ ºÎ¹®¿¡¼ Áß¿äÇÑ Àç·á·Î¼ÀÇ ¿ªÇÒÀ» È®°íÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.
°Ç°°ú ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á
³ª³ë½Ç¸®Ä« ÀÔÀÚ¿¡ Àå±â°£ ³ëÃâµÇ¸é È£Èí±â ½Ã½ºÅÛ ¹®Á¦, »êÈ ½ºÆ®·¹½º, ÀáÀçÀûÀÎ µ¶¼ºÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°üÀº ¹Ì¼¼ÇÑ Å©±â¿Í ¹ÝÀÀ¼ºÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâ°ú ÀÎü À§Çè¿¡ ´ëÇÑ ¿ì·Á¸¦ Á¦½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â ¾ö°ÝÇÑ ¾ÈÀü¼º Æò°¡¿Í ÁøÈÇÏ´Â ±ÔÁ¦¸¦ ÁؼöÇØ¾ß Çϸç Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÏ°í ½Äǰ ¹× ÈÀåǰ°ú °°Àº ¼¶¼¼ÇÑ ¿ëµµ·ÎÀÇ º¸±ÞÀÌ Á¦Çѵ˴ϴÙ.
°È ³ª³ë º¹ÇÕÀç·á °³¹ß
÷´Ü ³ª³ëº¹ÇÕüÀÇ °³¹ßÀº ³ª³ë½Ç¸®Ä« ½ÃÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ³ª³ë½Ç¸®Ä«¸¦ Æú¸®¸Ó ¹× ±âŸ Àç·á¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ¿ì¼öÇÑ ±â°èÀû, ¿Àû ¹× ÈÇÐÀû Ư¼ºÀ» °¡Áø º¹ÇÕÀç·á¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, Àç»ý °¡´É ¿¡³ÊÁö¿Í °°Àº ¼ö¿ä°¡ ³ôÀº ºÎ¹®¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ³ª³ë½Ç¸®Ä«¸¦ °ÈÇÑ º¹ÇÕÀç·á´Â ÀÚµ¿Â÷ÀÇ ¿¬ºñ È¿À²°ú dz·Â Åͺó ºí·¹À̵åÀÇ ³»±¸¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â °æ·®À¸·Î Áö¼Ó °¡´ÉÇÑ Àç·á¸¦ Ãß±¸ÇÏ´Â ¼¼°èÀû Ãß¼¼¿Í ÀÏÄ¡ÇÏ¸ç ½ÃÀåÀÇ Ãß°¡ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.
´ëü Àç·á¿ÍÀÇ Ä¡¿ÇÑ °æÀï
ÀÌ ½ÃÀåÀº ±×·¡ÇÉ, ÀÌ»êÈÆ¼Å¸´½, »êȾ˷ç¹Ì´½ µî Àúºñ¿ëÀ¸·Î µ¿µîÇϰųª ¿ì¼öÇÑ Æ¯¼ºÀ» Á¦°øÇÏ´Â ´ëü ³ª³ë¹°ÁúÀÇ À§Çù¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü Àç·á´Â ºñ¿ë È¿°ú ¹× ȯ°æÀû ÀÌÁ¡À¸·Î ÀÎÇØ ÄÚÆÃ, ÀüÀÚ, °ÇÃà µîÀÇ ÁÖ¿ä ¿ëµµ·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿À Àç·áÀÇ Áøº¸´Â ³ª³ë½Ç¸®Ä« ½ÃÀå Á¡À¯À²À» ´õ¿í À§ÇùÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ä¡¿ÇÑ °æÀïÀº Á¦Á¶¾÷ü¿¡°Ô ½ÃÀå¿¡¼ÀÇ ÁöÀ§¸¦ À¯ÁöÇϱâ À§ÇÑ ±â¼ú Çõ½Å°ú ºñ¿ë Àý°¨À» Ã˱¸Çϰí ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ¿î¿µ Áß´Ü, °ø±Þ¸Á Áß´Ü, »ê¾÷ Ȱµ¿ ÀúÇÏ·Î ³ª³ë½Ç¸®Ä« ½ÃÀåÀ» È¥¶õ½ÃÄ×½À´Ï´Ù. °Ç¼³ ÇÁ·ÎÁ§Æ®´Â Àü ¼¼°èÀûÀ¸·Î Áö¿¬µÇ¾úÀ¸¸ç ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® ÀÀ¿ë ºÐ¾ßÀÇ ³ª³ë½Ç¸®Ä« ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °øÀå Æó¼â´Â Á¦Á¶ ´É·ÂÀ» ´õ¿í °¨¼Ò½ÃÄ×½À´Ï´Ù. ±×·¯³ª Á¤ºÎ°¡ À¯Çà ÈÄ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇϱ⠽ÃÀÛÇÏ¸é¼ È¸º¹ÀÌ ½ÃÀ۵Ǿú½À´Ï´Ù. °Ô´Ù°¡ ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú °°Àº ÀÇ·á ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÑ °Íµµ ÀÌ ±â°£ÀÇ È¸º¹·ÂÀ¸·Î À̾îÁ³½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È PÇü ºÎ¹®ÀÌ ÃÖ´ë·Î ¼ºÀåÇÒ Àü¸Á
PÀ¯Çü ºÎ¹®Àº °ÇÃà¿ë º¹ÇÕÀç·á ¹× °í¹«Á¦Ç°ÀÇ ÃæÀüÀç·Î Æø³Ð°Ô »ç¿ëµÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¶Æ¯ÇÑ ³ª³ë ´Ù°ø¼º ±¸Á¶´Â ¿¾ÈÁ¤¼º°ú ±â°èÀû °µµ¸¦ ³ôÀÌ´Â µ¿½Ã¿¡ ½Ã¸àÆ®ÀÇ ¼öÈ °úÁ¤¿¡¼ ±Õ¿À» ÁÙÀÔ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ¼¼°è ÁÖÅðú »ó¾÷ °ÇÃà Ȱµ¿ Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. °Ô´Ù°¡ PÇü ³ª³ë½Ç¸®Ä«´Â ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú °°Àº ¹ÙÀÌ¿À¸ÞµðÄà ºÎ¹®¿¡µµ ÀÀ¿ëµÇ¾î ´Ù¾çÇÑ »ê¾÷¿¡¼ ±× À¯¿ë¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
ÇöóÁ ÇÕ¼º ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ÇöóÁ ÇÕ¼º ºÎ¹®Àº Á¦¾îµÈ ÀÔÀÚ Å©±â·Î °í¼øµµ ³ª³ë½Ç¸®Ä«¸¦ Á¦Á¶ÇÏ´Â ´É·Â¿¡ ÀÇÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¹æ¹ýÀº ÀüÀÚ Á¦Ç° ¹× ÀÇ·á Á¦Ç°°ú °°Àº Á¤¹Ð °¡°øµÈ Àç·á°¡ ÇÊ¿äÇÑ Ã·´Ü ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ¸ÂÃãÇü ³ª³ëÀÔÀÚ¸¦ ¸¸µå´Â °øÁ¤ÀÇ ´Ù¿ëµµ¼ºÀº ¹ÝµµÃ¼ ¹× ÄÚÆÃ°ú °°Àº »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ±× È®À强Àº ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ±â¼úÀ» ¿ä±¸ÇÏ´Â Á¦Á¶ ¾÷üÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡¿¡¼ ±Þ¼ÓÇÑ »ê¾÷È¿Í µµ½ÃÈ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °Ç¼³ ºÎ¹®Àº Ȱ¼ºÈµÇ¾î ÀÖÀ¸¸ç ³»±¸¼º°ú Áö¼Ó °¡´É¼ºÀ» Çâ»ó½ÃŰ´Â ³ª³ë½Ç¸®Ä« °È ÄÜÅ©¸®Æ® ¼Ö·ç¼Ç ¼ö¿ä¸¦ À̲ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ È°¹ßÇÑ ÀüÀÚ »ê¾÷Àº ³ª³ë½Ç¸®Ä«ÀÇ Æ¯¼ºÀ» ¹ÝµµÃ¼ ¹× Àý¿¬ Àç·á¿¡ Ȱ¿ëÇÕ´Ï´Ù. ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ´Â ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹ÌÁö¿ªÀº ³ª³ë±â¼ú¿¬±¸ÀÇ ÁøÀü°ú »ê¾÷ Àüü¿¡¼ Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ Ã¤¿ë Áõ°¡¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °ß°íÇÑ ÀÇ·á ºÎ¹®Àº ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú Áø´Ü¿¡ ³ª³ë½Ç¸®Ä«¸¦ »ç¿ëÇÕ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÎ¹®¿¡¼ °í¼º´É ÄÚÆÃ ¼ö¿ä Áõ°¡°¡ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀ» Áö¿øÇÏ´Â À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ³ª³ë½Ç¸®Ä« ÀÀ¿ë ºÐ¾ßÀÇ ÁÖ¿ä ¼ºÀå Áö¿ªÀ¸·Î¼ ºÏ¹ÌÀÇ ÁöÀ§¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Nanosilica Market is accounted for $4.3 billion in 2024 and is expected to reach $6.7 billion by 2030 growing at a CAGR of 7.3% during the forecast period. Ultrafine silicon dioxide particles, known as nanosilica, are usually between one and one hundred nanometers in size. Nanosilica is widely used in many different industries because of its great dispersion qualities, high chemical stability, and large surface area. It serves as a crucial additive in paints and coatings to boost abrasion resistance, improves performance in polymer composites, and strengthens and prolongs the mechanical qualities of building materials.
Increasing demand for high-performance materials
The nanosilica market is driven by its growing adoption in industries requiring high-performance materials. Its exceptional properties, such as high surface area, thermal stability, and mechanical strength, make it indispensable in applications like construction, electronics, and healthcare. Nanosilica enhances the durability and strength of concrete, improves thermal insulation in coatings, and boosts the efficiency of drug delivery systems. As industries increasingly prioritize performance and sustainability, the demand for nanosilica continues to rise, solidifying its role as a critical material across diverse sectors.
Health and safety concerns
Prolonged exposure to nanosilica particles can lead to respiratory issues, oxidative stress, and potential toxicity. Regulatory bodies have raised concerns about its environmental impact and human health risks due to its microscopic size and reactivity. These challenges necessitate stringent safety assessments and compliance with evolving regulations, increasing production costs and limiting its widespread adoption in sensitive applications like food and cosmetics.
Development of enhanced nanocomposites
The development of advanced nanocomposites presents a lucrative opportunity for the nanosilica market. By integrating nanosilica into polymers and other materials, manufacturers can create composites with superior mechanical, thermal, and chemical properties. These innovations cater to high-demand sectors such as aerospace, automotive, and renewable energy. For instance, nanosilica-enhanced composites improve fuel efficiency in vehicles and durability in wind turbine blades. This trend aligns with the global push for lightweight, sustainable materials, driving further growth in the market.
Intense competition from substitute materials
The market faces threats from alternative nanomaterials like graphene, titanium dioxide, and aluminum oxide that offer comparable or superior properties at lower costs. These substitutes are gaining traction in key applications such as coatings, electronics, and construction due to their cost-effectiveness and environmental benefits. Additionally, advancements in bio-based materials further challenge nanosilica's market share. This intense competition pressures manufacturers to innovate and reduce costs to maintain their position in the market.
The COVID-19 pandemic disrupted the nanosilica market due to lockdowns, supply chain interruptions, and reduced industrial activities. Construction projects were delayed globally, impacting demand for nanosilica in cement and concrete applications. Factory closures further hindered production capacities. However, recovery began as governments invested in infrastructure projects post-pandemic. Additionally, increased demand for healthcare applications like drug delivery systems provided some resilience during this period.
The P-Type segment is expected to be the largest during the forecast period
The P-Type segment is expected to account for the largest market share during the forecast period due to its extensive use as a filler material in construction composites and rubber products. Its unique nanoporous structure enhances thermal stability and mechanical strength while reducing cracking in cement hydration processes. The segment's growth is driven by increasing residential and commercial construction activities worldwide. Furthermore, P-Type nanosilica finds applications in biomedical fields like drug delivery systems, expanding its utility across diverse industries.
The plasma synthesis segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the plasma synthesis segment is predicted to witness the highest growth rate due to its ability to produce highly pure nanosilica with controlled particle sizes. This method supports advanced applications requiring precision-engineered materials such as electronics and healthcare products. The process's adaptability to create customized nanoparticles caters to growing demands for innovative solutions across industries like semiconductors and coatings. Its scalability further accelerates adoption among manufacturers seeking cost-effective production techniques.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid industrialization and urbanization in countries like China and India. The region's booming construction sector drives demand for nanosilica-enhanced concrete solutions that improve durability and sustainability. Additionally, Asia Pacific's thriving electronics industry leverages nanosilica's properties for semiconductors and insulating materials. Government investments in infrastructure development further bolster regional growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR owing to advancements in nanotechnology research and rising adoption of sustainable materials across industries. The region's robust healthcare sector utilizes nanosilica for drug delivery systems and diagnostics. Moreover, increasing demand for high-performance coatings in automotive and aerospace sectors contributes significantly to growth. Favorable regulatory frameworks supporting innovation further enhance North America's position as a key growth region for nanosilica applications.
Key players in the market
Some of the key players in Nanosilica Market include Akzo Nobel N.V., Bee Chems Corporates Private Limited, Cabot Corporation, Dow Corning Corporation, DuPont, Evonik Industries AG, Fuso Chemical Co., Ltd., NanoComposix, Inc., NanoPore Incorporated, Nanostructured & Amorphous Materials, Inc., Nanosil (Asia Pacific) Sdn Bhd, Nanoshel LLC, Normet Group Corporation, Songyi Advanced Materials Co., Ltd., US Research Nanomaterials, Inc. and Wacker Chemie AG.
In October 2024, Cabot Corporation was selected for a $50 million award from U.S. Department of Energy to build and operate a manufacturing plant in Wayne County, Michigan for EV battery components.
In June 2024, Evonik, one of the world's leading specialty chemicals companies, has started the production of ultra-high purity colloidal silica for the semiconductor industry at its new facility in Weston, Michigan. Colloidal silica is a critical raw material for the electronics and semiconductor industries, whose growth is driven by a surging global demand for complex and increasingly smaller microchips and digital products. The plant is the first of its kind in North America.
In July 2022, Dow announced a new engagement with BSB Nanotechnology Joint Stock Companyopens in a new tab, the world's first producer of premium rice husk-based specialty silica. Rice husk, a renewable resource produced as a waste product of rice milling, is used for a plethora of diverse applications in the personal care market. This engagement helps accelerate Dow's commitment towards a bio-based offering. The newly added ingredient - sold under the Dow trademark EcoSmooth(TM) Rice Husk Cosmetic Powderopens in a new tab - delivers optical benefits and a unique sensorial experience for consumers in skin care, hair care and color cosmetic applications.