½ÃÀ庸°í¼­
»óǰÄÚµå
1662589

¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå(-2030³â) : Á¦Ç° À¯Çü, Á¦Á¶ ¹æ¹ý, ¿ø·á °ø±Þ¿ø, ¿ëµµ, Áö¿ªº° ¿¹Ãø ¹× ºÐ¼®

Nanosilica Market Forecasts to 2030 - Global Analysis By Type (P-Type, S-Type and Type III), Production Method (Precipitation Method, Sol-Gel Process, Pyrolysis and Plasma Synthesis), Raw Material Source, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀåÀº 2024³â 43¾ï ´Þ·¯¸¦ ´Þ¼ºÇÏ¿´°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 7.3%·Î 2030³â¿¡´Â 67¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

³ª³ë½Ç¸®Ä«·Î ¾Ë·ÁÁø Ãʹ̸³ÀÚ ÀÌ»êÈ­±Ô¼Ò´Â Åë»ó 1-100³ª³ë¹ÌÅÍÀÇ Å©±âÀÔ´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ºÐ»ê¼ºÀÌ ¿ì¼öÇϰí È­ÇÐÀû ¾ÈÁ¤¼ºÀÌ ³ôÀ¸¸ç Ç¥¸éÀûÀÌ Å©±â ¶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ³»¸¶¸ð¼ºÀ» ³ôÀÌ´Â ÆäÀÎÆ® ¹× ÄÚÆÃÁ¦ÀÇ Áß¿äÇÑ Ã·°¡Á¦ ¿ªÇÒÀ» ÇÏ¸ç Æú¸®¸Ó º¹ÇÕÀç·áÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ°í °ÇÃàÀç·áÀÇ ±â°èÀû ¼ºÁúÀ» °­È­ÇÏ¸ç ¼ö¸íÀ» ´Ã¸®°í ÀÖ½À´Ï´Ù.

°í¼º´É Àç·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

³ª³ë½Ç¸®Ä« ½ÃÀåÀº °í¼º´É Àç·á¸¦ ÇÊ¿ä·Î ÇÏ´Â »ê¾÷ ³» ä¿ë È®´ë°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ³ôÀº Ç¥¸éÀû, ¿­¾ÈÁ¤¼º, ±â°èÀû °­µµ µîÀÇ Å¹¿ùÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ °ÇÃà, ÀüÀÚ, ÀÇ·á µîÀÇ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. ³ª³ë½Ç¸®Ä«´Â ÄÜÅ©¸®Æ®ÀÇ ³»±¸¼º°ú °­µµ¸¦ ³ôÀ̰í ÄÚÆÃÀÇ ´Ü¿­¼ºÀ» Çâ»ó½ÃŰ¸ç ¾à¹° Àü´Þ ½Ã½ºÅÛÀÇ È¿À²À» ³ôÀÔ´Ï´Ù. »ê¾÷ÀÌ ¼º´É°ú Áö¼Ó °¡´É¼ºÀ» Á¡Á¡ ´õ ¿ì¼±½ÃÇÔ¿¡ µû¶ó ³ª³ë½Ç¸®Ä« ¼ö¿ä´Â Áõ°¡ Ãß¼¼¿¡ ÀÖÀ¸¸ç, ´Ù¾çÇÑ ºÎ¹®¿¡¼­ Áß¿äÇÑ Àç·á·Î¼­ÀÇ ¿ªÇÒÀ» È®°íÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

°Ç°­°ú ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á

³ª³ë½Ç¸®Ä« ÀÔÀÚ¿¡ Àå±â°£ ³ëÃâµÇ¸é È£Èí±â ½Ã½ºÅÛ ¹®Á¦, »êÈ­ ½ºÆ®·¹½º, ÀáÀçÀûÀÎ µ¶¼ºÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±ÔÁ¦ ±â°üÀº ¹Ì¼¼ÇÑ Å©±â¿Í ¹ÝÀÀ¼ºÀ¸·Î ÀÎÇÑ È¯°æ ¿µÇâ°ú ÀÎü À§Çè¿¡ ´ëÇÑ ¿ì·Á¸¦ Á¦½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦´Â ¾ö°ÝÇÑ ¾ÈÀü¼º Æò°¡¿Í ÁøÈ­ÇÏ´Â ±ÔÁ¦¸¦ ÁؼöÇØ¾ß Çϸç Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÏ°í ½Äǰ ¹× È­Àåǰ°ú °°Àº ¼¶¼¼ÇÑ ¿ëµµ·ÎÀÇ º¸±ÞÀÌ Á¦Çѵ˴ϴÙ.

°­È­ ³ª³ë º¹ÇÕÀç·á °³¹ß

÷´Ü ³ª³ëº¹ÇÕüÀÇ °³¹ßÀº ³ª³ë½Ç¸®Ä« ½ÃÀå¿¡ À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ³ª³ë½Ç¸®Ä«¸¦ Æú¸®¸Ó ¹× ±âŸ Àç·á¿¡ ÅëÇÕÇÔÀ¸·Î½á Á¦Á¶¾÷ü´Â ¿ì¼öÇÑ ±â°èÀû, ¿­Àû ¹× È­ÇÐÀû Ư¼ºÀ» °¡Áø º¹ÇÕÀç·á¸¦ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, Àç»ý °¡´É ¿¡³ÊÁö¿Í °°Àº ¼ö¿ä°¡ ³ôÀº ºÎ¹®¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ³ª³ë½Ç¸®Ä«¸¦ °­È­ÇÑ º¹ÇÕÀç·á´Â ÀÚµ¿Â÷ÀÇ ¿¬ºñ È¿À²°ú dz·Â Åͺó ºí·¹À̵åÀÇ ³»±¸¼ºÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ Ãß¼¼´Â °æ·®À¸·Î Áö¼Ó °¡´ÉÇÑ Àç·á¸¦ Ãß±¸ÇÏ´Â ¼¼°èÀû Ãß¼¼¿Í ÀÏÄ¡ÇÏ¸ç ½ÃÀåÀÇ Ãß°¡ ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù.

´ëü Àç·á¿ÍÀÇ Ä¡¿­ÇÑ °æÀï

ÀÌ ½ÃÀåÀº ±×·¡ÇÉ, ÀÌ»êȭƼŸ´½, »êÈ­¾Ë·ç¹Ì´½ µî Àúºñ¿ëÀ¸·Î µ¿µîÇϰųª ¿ì¼öÇÑ Æ¯¼ºÀ» Á¦°øÇÏ´Â ´ëü ³ª³ë¹°ÁúÀÇ À§Çù¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü Àç·á´Â ºñ¿ë È¿°ú ¹× ȯ°æÀû ÀÌÁ¡À¸·Î ÀÎÇØ ÄÚÆÃ, ÀüÀÚ, °ÇÃà µîÀÇ ÁÖ¿ä ¿ëµµ·Î Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÙÀÌ¿À Àç·áÀÇ Áøº¸´Â ³ª³ë½Ç¸®Ä« ½ÃÀå Á¡À¯À²À» ´õ¿í À§ÇùÇϰí ÀÖ½À´Ï´Ù. ÀÌ Ä¡¿­ÇÑ °æÀïÀº Á¦Á¶¾÷ü¿¡°Ô ½ÃÀå¿¡¼­ÀÇ ÁöÀ§¸¦ À¯ÁöÇϱâ À§ÇÑ ±â¼ú Çõ½Å°ú ºñ¿ë Àý°¨À» Ã˱¸Çϰí ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 ÆÒµ¥¹ÍÀº ¿î¿µ Áß´Ü, °ø±Þ¸Á Áß´Ü, »ê¾÷ Ȱµ¿ ÀúÇÏ·Î ³ª³ë½Ç¸®Ä« ½ÃÀåÀ» È¥¶õ½ÃÄ×½À´Ï´Ù. °Ç¼³ ÇÁ·ÎÁ§Æ®´Â Àü ¼¼°èÀûÀ¸·Î Áö¿¬µÇ¾úÀ¸¸ç ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® ÀÀ¿ë ºÐ¾ßÀÇ ³ª³ë½Ç¸®Ä« ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °øÀå Æó¼â´Â Á¦Á¶ ´É·ÂÀ» ´õ¿í °¨¼Ò½ÃÄ×½À´Ï´Ù. ±×·¯³ª Á¤ºÎ°¡ À¯Çà ÈÄ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇϱ⠽ÃÀÛÇϸ鼭 ȸº¹ÀÌ ½ÃÀ۵Ǿú½À´Ï´Ù. °Ô´Ù°¡ ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú °°Àº ÀÇ·á ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÑ °Íµµ ÀÌ ±â°£ÀÇ È¸º¹·ÂÀ¸·Î À̾îÁ³½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È PÇü ºÎ¹®ÀÌ ÃÖ´ë·Î ¼ºÀåÇÒ Àü¸Á

PÀ¯Çü ºÎ¹®Àº °ÇÃà¿ë º¹ÇÕÀç·á ¹× °í¹«Á¦Ç°ÀÇ ÃæÀüÀç·Î Æø³Ð°Ô »ç¿ëµÇ°í Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ Áß ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µ¶Æ¯ÇÑ ³ª³ë ´Ù°ø¼º ±¸Á¶´Â ¿­¾ÈÁ¤¼º°ú ±â°èÀû °­µµ¸¦ ³ôÀÌ´Â µ¿½Ã¿¡ ½Ã¸àÆ®ÀÇ ¼öÈ­ °úÁ¤¿¡¼­ ±Õ¿­À» ÁÙÀÔ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ¼¼°è ÁÖÅðú »ó¾÷ °ÇÃà Ȱµ¿ Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. °Ô´Ù°¡ PÇü ³ª³ë½Ç¸®Ä«´Â ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú °°Àº ¹ÙÀÌ¿À¸ÞµðÄà ºÎ¹®¿¡µµ ÀÀ¿ëµÇ¾î ´Ù¾çÇÑ »ê¾÷¿¡¼­ ±× À¯¿ë¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÇöóÁ ÇÕ¼º ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È, ÇöóÁ ÇÕ¼º ºÎ¹®Àº Á¦¾îµÈ ÀÔÀÚ Å©±â·Î °í¼øµµ ³ª³ë½Ç¸®Ä«¸¦ Á¦Á¶ÇÏ´Â ´É·Â¿¡ ÀÇÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¹æ¹ýÀº ÀüÀÚ Á¦Ç° ¹× ÀÇ·á Á¦Ç°°ú °°Àº Á¤¹Ð °¡°øµÈ Àç·á°¡ ÇÊ¿äÇÑ Ã·´Ü ¿ëµµ¸¦ Áö¿øÇÕ´Ï´Ù. ¸ÂÃãÇü ³ª³ëÀÔÀÚ¸¦ ¸¸µå´Â °øÁ¤ÀÇ ´Ù¿ëµµ¼ºÀº ¹ÝµµÃ¼ ¹× ÄÚÆÃ°ú °°Àº »ê¾÷ Àü¹Ý¿¡ °ÉÄ£ Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ±× È®À强Àº ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ±â¼úÀ» ¿ä±¸ÇÏ´Â Á¦Á¶ ¾÷üÀÇ Ã¤ÅÃÀ» ´õ¿í °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡¿¡¼­ ±Þ¼ÓÇÑ »ê¾÷È­¿Í µµ½ÃÈ­·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °Ç¼³ ºÎ¹®Àº Ȱ¼ºÈ­µÇ¾î ÀÖÀ¸¸ç ³»±¸¼º°ú Áö¼Ó °¡´É¼ºÀ» Çâ»ó½ÃŰ´Â ³ª³ë½Ç¸®Ä« °­È­ ÄÜÅ©¸®Æ® ¼Ö·ç¼Ç ¼ö¿ä¸¦ À̲ø°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ È°¹ßÇÑ ÀüÀÚ »ê¾÷Àº ³ª³ë½Ç¸®Ä«ÀÇ Æ¯¼ºÀ» ¹ÝµµÃ¼ ¹× Àý¿¬ Àç·á¿¡ Ȱ¿ëÇÕ´Ï´Ù. ÀÎÇÁ¶ó °³¹ß¿¡ ´ëÇÑ Á¤ºÎ ÅõÀÚ´Â ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹ÌÁö¿ªÀº ³ª³ë±â¼ú¿¬±¸ÀÇ ÁøÀü°ú »ê¾÷ Àüü¿¡¼­ Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ Ã¤¿ë Áõ°¡¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ °ß°íÇÑ ÀÇ·á ºÎ¹®Àº ¾à¹° Àü´Þ ½Ã½ºÅÛ°ú Áø´Ü¿¡ ³ª³ë½Ç¸®Ä«¸¦ »ç¿ëÇÕ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÎ¹®¿¡¼­ °í¼º´É ÄÚÆÃ ¼ö¿ä Áõ°¡°¡ ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀ» Áö¿øÇÏ´Â À¯¸®ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ³ª³ë½Ç¸®Ä« ÀÀ¿ë ºÐ¾ßÀÇ ÁÖ¿ä ¼ºÀå Áö¿ªÀ¸·Î¼­ ºÏ¹ÌÀÇ ÁöÀ§¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½ ¹«·á ¸ÂÃãÇü ¿É¼Ç Áß Çϳª°¡ Á¦°øµË´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ¸ÂÃá ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º ºÐ¼®¿¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • PÀ¯Çü
  • SÀ¯Çü
  • À¯Çü III

Á¦6Àå ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå : Á¦Á¶¹æ¹ýº°

  • ¼Ò°³
  • ħÀü¹ý
  • Á¹°Ö¹ý
  • ¿­ºÐÇØ
  • ÇöóÁ ÇÕ¼º

Á¦7Àå ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå : ¿ø·á °ø±Þ¿øº°

  • ¼Ò°³
  • ¿Õ°Ü
  • Åׯ®¶ó¿¡Æ¿¿À¸£Åä½Ç¸®ÄÉÀÌÆ®(TEOS)
  • °¨¶÷¼®
  • ¹Ù°¡½º
  • ¸ð·¡/¼®¿µ
  • ±âŸ ¿ø·á °ø±Þ¿ø

Á¦8Àå ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • °Ç¼³ ÀÎÇÁ¶ó
    • ÄÜÅ©¸®Æ® ÷°¡Á¦
    • ½Ã¸àÆ® °­È­
    • ¹æ¼öÀç
  • °ø¾÷ Àç·á
    • °í¹« º¸°­
    • ÇÃ¶ó½ºÆ½°ú Æú¸®¸Ó
    • ÆäÀÎÆ® ¹× ÄÚÆÃ
    • °ø¾÷¿ë Æ÷Àå
    • Á¢ÂøÁ¦ ¹× ½Ç¶õÆ®
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
    • ȸ·Î ±âÆÇ
    • µð½ºÇ÷¹ÀÌ ±â¼ú
    • ¹èÅ͸®¿Í ¿¡³ÊÁö ÀúÀå
    • ±¤¼¶À¯ ÄÚÆÃ
  • »ý¸í°úÇÐ
    • ÀǾàǰ
    • ¾à¹° Àü´Þ ½Ã½ºÅÛ
    • ¹ÙÀÌ¿À¸ÞµðÄà µð¹ÙÀ̽º
    • ÀÇ·á À̹ÌÁö
  • ¼ÒºñÀÚ¿ë°ú ÆÛ½º³ÎÄɾî
    • È­Àåǰ ¹× ¹Ì¿ë Á¦Ç°
    • ÆÛ½º³ÎÄɾî¿Í À§»ý
    • UV ÄÆ Àç·á
    • ÷´Ü ½ºÅ²ÄÉ¾î ¼Ö·ç¼Ç
  • ±âŸ
    • ³ó¾÷ °­È­
    • ´Ü¿­
    • ȯ°æ º¹±¸
    • ½º¸¶Æ® ÄÚÆÃ

Á¦9Àå ¼¼°èÀÇ ³ª³ë½Ç¸®Ä« ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä °³¹ß

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö ¹× ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Akzo Nobel NV
  • Bee Chems Corporates Private Limited
  • Cabot Corporation
  • Dow Corning Corporation
  • DuPont
  • Evonik Industries AG
  • Fuso Chemical Co., Ltd.
  • NanoComposix, Inc.
  • NanoPore Incorporated
  • Nanostructured & Amorphous Materials, Inc.
  • Nanosil(Asia Pacific) Sdn Bhd
  • Nanoshel LLC
  • Normet Group Corporation
  • Songyi Advanced Materials Co., Ltd.
  • US Research Nanomaterials, Inc.
  • Wacker Chemie AG
CSM 25.03.18

According to Stratistics MRC, the Global Nanosilica Market is accounted for $4.3 billion in 2024 and is expected to reach $6.7 billion by 2030 growing at a CAGR of 7.3% during the forecast period. Ultrafine silicon dioxide particles, known as nanosilica, are usually between one and one hundred nanometers in size. Nanosilica is widely used in many different industries because of its great dispersion qualities, high chemical stability, and large surface area. It serves as a crucial additive in paints and coatings to boost abrasion resistance, improves performance in polymer composites, and strengthens and prolongs the mechanical qualities of building materials.

Market Dynamics:

Driver:

Increasing demand for high-performance materials

The nanosilica market is driven by its growing adoption in industries requiring high-performance materials. Its exceptional properties, such as high surface area, thermal stability, and mechanical strength, make it indispensable in applications like construction, electronics, and healthcare. Nanosilica enhances the durability and strength of concrete, improves thermal insulation in coatings, and boosts the efficiency of drug delivery systems. As industries increasingly prioritize performance and sustainability, the demand for nanosilica continues to rise, solidifying its role as a critical material across diverse sectors.

Restraint:

Health and safety concerns

Prolonged exposure to nanosilica particles can lead to respiratory issues, oxidative stress, and potential toxicity. Regulatory bodies have raised concerns about its environmental impact and human health risks due to its microscopic size and reactivity. These challenges necessitate stringent safety assessments and compliance with evolving regulations, increasing production costs and limiting its widespread adoption in sensitive applications like food and cosmetics.

Opportunity:

Development of enhanced nanocomposites

The development of advanced nanocomposites presents a lucrative opportunity for the nanosilica market. By integrating nanosilica into polymers and other materials, manufacturers can create composites with superior mechanical, thermal, and chemical properties. These innovations cater to high-demand sectors such as aerospace, automotive, and renewable energy. For instance, nanosilica-enhanced composites improve fuel efficiency in vehicles and durability in wind turbine blades. This trend aligns with the global push for lightweight, sustainable materials, driving further growth in the market.

Threat:

Intense competition from substitute materials

The market faces threats from alternative nanomaterials like graphene, titanium dioxide, and aluminum oxide that offer comparable or superior properties at lower costs. These substitutes are gaining traction in key applications such as coatings, electronics, and construction due to their cost-effectiveness and environmental benefits. Additionally, advancements in bio-based materials further challenge nanosilica's market share. This intense competition pressures manufacturers to innovate and reduce costs to maintain their position in the market.

Covid-19 Impact:

The COVID-19 pandemic disrupted the nanosilica market due to lockdowns, supply chain interruptions, and reduced industrial activities. Construction projects were delayed globally, impacting demand for nanosilica in cement and concrete applications. Factory closures further hindered production capacities. However, recovery began as governments invested in infrastructure projects post-pandemic. Additionally, increased demand for healthcare applications like drug delivery systems provided some resilience during this period.

The P-Type segment is expected to be the largest during the forecast period

The P-Type segment is expected to account for the largest market share during the forecast period due to its extensive use as a filler material in construction composites and rubber products. Its unique nanoporous structure enhances thermal stability and mechanical strength while reducing cracking in cement hydration processes. The segment's growth is driven by increasing residential and commercial construction activities worldwide. Furthermore, P-Type nanosilica finds applications in biomedical fields like drug delivery systems, expanding its utility across diverse industries.

The plasma synthesis segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the plasma synthesis segment is predicted to witness the highest growth rate due to its ability to produce highly pure nanosilica with controlled particle sizes. This method supports advanced applications requiring precision-engineered materials such as electronics and healthcare products. The process's adaptability to create customized nanoparticles caters to growing demands for innovative solutions across industries like semiconductors and coatings. Its scalability further accelerates adoption among manufacturers seeking cost-effective production techniques.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid industrialization and urbanization in countries like China and India. The region's booming construction sector drives demand for nanosilica-enhanced concrete solutions that improve durability and sustainability. Additionally, Asia Pacific's thriving electronics industry leverages nanosilica's properties for semiconductors and insulating materials. Government investments in infrastructure development further bolster regional growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR owing to advancements in nanotechnology research and rising adoption of sustainable materials across industries. The region's robust healthcare sector utilizes nanosilica for drug delivery systems and diagnostics. Moreover, increasing demand for high-performance coatings in automotive and aerospace sectors contributes significantly to growth. Favorable regulatory frameworks supporting innovation further enhance North America's position as a key growth region for nanosilica applications.

Key players in the market

Some of the key players in Nanosilica Market include Akzo Nobel N.V., Bee Chems Corporates Private Limited, Cabot Corporation, Dow Corning Corporation, DuPont, Evonik Industries AG, Fuso Chemical Co., Ltd., NanoComposix, Inc., NanoPore Incorporated, Nanostructured & Amorphous Materials, Inc., Nanosil (Asia Pacific) Sdn Bhd, Nanoshel LLC, Normet Group Corporation, Songyi Advanced Materials Co., Ltd., US Research Nanomaterials, Inc. and Wacker Chemie AG.

Key Developments:

In October 2024, Cabot Corporation was selected for a $50 million award from U.S. Department of Energy to build and operate a manufacturing plant in Wayne County, Michigan for EV battery components.

In June 2024, Evonik, one of the world's leading specialty chemicals companies, has started the production of ultra-high purity colloidal silica for the semiconductor industry at its new facility in Weston, Michigan. Colloidal silica is a critical raw material for the electronics and semiconductor industries, whose growth is driven by a surging global demand for complex and increasingly smaller microchips and digital products. The plant is the first of its kind in North America.

In July 2022, Dow announced a new engagement with BSB Nanotechnology Joint Stock Companyopens in a new tab, the world's first producer of premium rice husk-based specialty silica. Rice husk, a renewable resource produced as a waste product of rice milling, is used for a plethora of diverse applications in the personal care market. This engagement helps accelerate Dow's commitment towards a bio-based offering. The newly added ingredient - sold under the Dow trademark EcoSmooth(TM) Rice Husk Cosmetic Powderopens in a new tab - delivers optical benefits and a unique sensorial experience for consumers in skin care, hair care and color cosmetic applications.

Types Covered:

  • P-Type
  • S-Type
  • Type III

Production Methods Covered:

  • Precipitation Method
  • Sol-Gel Process
  • Pyrolysis
  • Plasma Synthesis

Raw Material Sources Covered:

  • Rice Husk
  • Tetraethyl Orthosilicate (TEOS)
  • Olivine
  • Bagasse
  • Sand/Quartz
  • Other Raw Material Sources

Applications Covered:

  • Construction & Infrastructure
  • Industrial Materials
  • Electronics & Semiconductors
  • Life Sciences
  • Consumer & Personal Care
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Nanosilica Market, By Type

  • 5.1 Introduction
  • 5.2 P-Type
  • 5.3 S-Type
  • 5.4 Type III

6 Global Nanosilica Market, By Production Method

  • 6.1 Introduction
  • 6.2 Precipitation Method
  • 6.3 Sol-Gel Process
  • 6.4 Pyrolysis
  • 6.5 Plasma Synthesis

7 Global Nanosilica Market, By Raw Material Source

  • 7.1 Introduction
  • 7.2 Rice Husk
  • 7.3 Tetraethyl Orthosilicate (TEOS)
  • 7.4 Olivine
  • 7.5 Bagasse
  • 7.6 Sand/Quartz
  • 7.7 Other Raw Material Sources

8 Global Nanosilica Market, By Application

  • 8.1 Introduction
  • 8.2 Construction & Infrastructure
    • 8.2.1 Concrete Additives
    • 8.2.2 Cement Enhancement
    • 8.2.3 Waterproofing Materials
  • 8.3 Industrial Materials
    • 8.3.1 Rubber Reinforcement
    • 8.3.2 Plastics & Polymers
    • 8.3.3 Paints & Coatings
    • 8.3.4 Industrial Packaging
    • 8.3.5 Adhesives & Sealants
  • 8.4 Electronics & Semiconductors
    • 8.4.1 Circuit Boards
    • 8.4.2 Display Technologies
    • 8.4.3 Battery & Energy Storage
    • 8.4.4 Optical Fiber Coatings
  • 8.5 Life Sciences
    • 8.5.1 Pharmaceuticals
    • 8.5.2 Drug Delivery Systems
    • 8.5.3 Biomedical Devices
    • 8.5.4 Medical Imaging
  • 8.6 Consumer & Personal Care
    • 8.6.1 Cosmetics & Beauty Products
    • 8.6.2 Personal Care & Hygiene
    • 8.6.3 UV Protection Materials
    • 8.6.4 Advanced Skincare Solutions
  • 8.7 Other Applications
    • 8.7.1 Agricultural Enhancement
    • 8.7.2 Thermal Insulation
    • 8.7.3 Environmental Remediation
    • 8.7.4 Smart Coatings

9 Global Nanosilica Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Akzo Nobel N.V.
  • 11.2 Bee Chems Corporates Private Limited
  • 11.3 Cabot Corporation
  • 11.4 Dow Corning Corporation
  • 11.5 DuPont
  • 11.6 Evonik Industries AG
  • 11.7 Fuso Chemical Co., Ltd.
  • 11.8 NanoComposix, Inc.
  • 11.9 NanoPore Incorporated
  • 11.10 Nanostructured & Amorphous Materials, Inc.
  • 11.11 Nanosil (Asia Pacific) Sdn Bhd
  • 11.12 Nanoshel LLC
  • 11.13 Normet Group Corporation
  • 11.14 Songyi Advanced Materials Co., Ltd.
  • 11.15 US Research Nanomaterials, Inc.
  • 11.16 Wacker Chemie AG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦