![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662594
¼¼°èÀÇ ¸Ó½Å ºñÀü ½Ã½ºÅÛ ½ÃÀå(-2030³â) : Á¦Ç° À¯Çü, ÄÄÆ÷³ÍÆ®, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ¿¹Ãø ¹× ºÐ¼®Machine Vision Systems Market Forecasts to 2030 - Global Analysis By Product Type, Component, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°è ¸Ó½Å ºñÀü ½Ã½ºÅÛ ½ÃÀåÀº 2024³â¿¡ 128¾ï ´Þ·¯¸¦ ´Þ¼ºÇÏ¿´°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 8.7%·Î 2030³â¿¡´Â 212¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
Ä«¸Þ¶ó, ¼¾¼, ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÏ¿© ÁÖº¯ ½Ã°¢ µ¥ÀÌÅ͸¦ ºÐ¼® ¹× ÇØ¼®ÇÏ´Â ÀÚµ¿È ½Ã½ºÅÛÀº ¸Ó½Å ºñÀü ½Ã½ºÅÛÀ¸·Î ¾Ë·ÁÁ® ÀÖÀ¸¸ç ·Îº¿ ¾Ï °¡À̵å, Á¦Ç° °Ë»ç, Á¦Á¶ ¹× ǰÁú °ü¸®¿¡¼ °áÇÔ ¹ß°ß µî¿¡ ÀÚÁÖ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇÑ ½Ç½Ã°£ ¿µ»ó 󸮴 ¼±º°, ÃøÁ¤, ¹°Ã¼ ÀÎ½Ä µîÀÇ ÀÛ¾÷¿¡¼ ³ôÀº Á¤¹Ðµµ, ¼Óµµ, Á¤È®µµ¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ´Ù¾çÇÑ »ê¾÷¿¡¼ ¸Ó½Å ºñÀüÀº »ý»ê·® Áõ°¡, ¿À·ù °¨¼Ò, ¾÷¹« È¿À²¼º Çâ»ó¿¡ ÇʼöÀûÀÔ´Ï´Ù.
Sony Semiconductor Solutions´Â CMOS À̹ÌÁö ¼¾¼ÀÇ »ý»ê ´É·ÂÀ» ¿ùº° 60,000 ¿þÀÌÆÛ Çâ»ó½Ãų °èȹÀ» ¹ßÇ¥Çß½À´Ï´Ù.
ÀÚµ¿È¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
Á¦Á¶¾÷, ÀÚµ¿Â÷, ÀüÀÚ±â±â µîÀÇ ºÎ¹®À¸·Î »ê¾÷ ÀÚµ¿È°¡ Áß½ÃµÇ¸é¼ ¸Ó½Å ºñÀü ½Ã½ºÅÛ ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½Ç½Ã°£ ǰÁú °ü¸®, °áÇÔ °¨Áö ¹× °øÁ¤ ÃÖÀûȸ¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á »ý»ê È¿À²À» ³ôÀÔ´Ï´Ù. Àδõ½ºÆ®¸® 4.0°ú ½º¸¶Æ® ÆÑÅ丮ÀÇ Ã¤ÅÃÀº ¸Ó½Å ºñÀü ±â¼úÀÌ ¼öÀÛ¾÷À» ÁÙÀ̰í Á¤È®¼ºÀ» Çâ»ó½ÃŰ¸ç ¿öÅ©Ç÷ο츦 °£¼ÒÈÇÏ¿© ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈÇÕ´Ï´Ù. AI¿Í µö·¯´×ÀÇ Áøº¸¿¡ ÀÇÇØ ¸Ó½Å ºñÀü ½Ã½ºÅÛÀº ·Îº¿ °øÇÐÀ̳ª IoT±â±â¿Í ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ¾î ÃֽŠÀÚµ¿È ¿ÀÆÛ·¹À̼ǿ¡´Â ºü¶ß¸± ¼ö ¾ø´Â ¿ä¼ÒÀÔ´Ï´Ù.
Á¦ÇÑµÈ ¼÷·Ã ³ëµ¿·Â
ÀÌ·¯ÇÑ Ã·´Ü ½Ã½ºÅÛ¿¡´Â ÇÁ·Î±×·¡¹Ö, À̹ÌÁö ó¸® ¹× ½Ã½ºÅÛ ÅëÇÕ¿¡ ´ëÇÑ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏÁö¸¸ ¸¹Àº Á¦Á¶¾÷ü´Â ÇØ´ç Áö½ÄÀÌ ºÎÁ·ÇÕ´Ï´Ù. ³ôÀº ±³À° ºñ¿ë°ú ±â¼úÀÇ º¹À⼺Àº ÀÌ ¹®Á¦¸¦ ´õ¿í ¾ÇȽÃ۰í ÀÖ½À´Ï´Ù. ƯÈ÷ Áß¼Ò±â¾÷Àº ÀÎÀç À°¼ºÀ» À§ÇÑ ÀÚ¿øÀÌ Á¦ÇÑµÇ¾î ¸Ó½Å ºñÀü ¼Ö·ç¼ÇÀÇ Ã¤¿ë¿¡ °íÀüÇϰí ÀÖ¾î º¸±ÞÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.
ÀÚµ¿Â÷ »ê¾÷ÀÇ ¼ºÀå
È®´ëµÇ´Â ÀÚµ¿Â÷ »ê¾÷Àº ¸Ó½Å ºñÀü ½Ã½ºÅÛ ½ÃÀå¿¡ Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¶¸³ °ËÁõ, °áÇÔ °ËÃâ, ºÎǰ ½Äº°°ú °°Àº ǰÁú º¸Áõ ÇÁ·Î¼¼½º¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿Í ÀÚÀ²ÁÖÇà±â¼úÀÇ ´ëµÎ´Â Á¤¹ÐÇÑ Á¦Á¶¸¦ º¸ÀåÇÒ ¼ö Àִ ÷´Ü ºñÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ ȸ»çÀÇ ½º¸¶Æ® Á¦Á¶ ¼³ºñ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ¸Ó½Å ºñÀü ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
±âÁ¸ °Ë»ç ¹æ¹ý°úÀÇ Ãæµ¹
¼öµ¿ ǰÁú °Ë»ç ¹× °£ÆíÇÑ ÀÚµ¿È ½Ã½ºÅÛ°ú °°Àº ±âÁ¸ÀÇ °Ë»ç ¹æ¹ýÀº ÷´Ü ¸Ó½Å ºñÀü ±â¼úÀÇ Ã¤Åÿ¡ À§ÇùÀÌ µË´Ï´Ù. Ãʱ⠺ñ¿ëÀÌ Àú·ÅÇÏ°í µµÀÔÀÌ °£´ÜÇϱ⠶§¹®¿¡ ¸¹Àº »ê¾÷µéÀÌ ÀÌ·¯ÇÑ ¹æ½Ä¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. º¯È¿¡ ´ëÇÑ ÀúÇ×°ú ½Å±â¼ú ÅëÇÕÀÇ º¹À⼺¿¡ ´ëÇÑ ¿ì·Áµµ ÀÌ °úÁ¦ÀÇ ¿øÀÎÀÌ¸ç ¸Ó½Å ºñÀü ½Ã½ºÅÛÀÇ ¼ºÀå °¡´É¼ºÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ´ëÀ¯ÇàÀº ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½º·´°Ô ¸¸µé°í Á¦Á¶ Ȱµ¿À» Áö¿¬½ÃÄױ⠶§¹®¿¡ Ãʱ⿡´Â ¸Ó½Å ºñÀü ½ÃÀåÀ» ¹æÇØÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â µ¿¾È ºñÁ¢ÃË½Ä Á¶ÀÛÀÌ ÇÊ¿äÇ߱⠶§¹®¿¡ ÀǷᳪ ¹°·ù µîÀÇ »ê¾÷¿¡¼ ÀÚµ¿ÈÀÇ µµÀÔÀÌ °¡¼ÓȵǾú½À´Ï´Ù. ¸Ó½Å ºñÀü ±â¼úÀº Çʼö ºÎ¹®¿¡¼ ¿ø°Ý ¸ð´ÏÅ͸µ ¹× ǰÁú °ü¸®¿Í °°Àº ¿ëµµ¿¡ Á¡Á¡ ´õ µµÀԵǰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â È¥¶õ µ¿¾È ÀÚµ¿ÈµÈ ź·Â¼ºÀÇ Á߿伺À» ºÎ°¢½ÃÄÑ ½ÃÀåÀÇ Àå±â ¼ºÀå Àü¸ÁÀ» ÃËÁø½ÃÄ×½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È PC ±â¹Ý ¸Ó½Å ºñÀü ½Ã½ºÅÛ ºÎ¹®ÀÌ ÃÖ´ë ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»ó
PC ±â¹Ý ¸Ó½Å ºñÀü ½Ã½ºÅÛ ºÎ¹®Àº ¶Ù¾î³ ó¸® ´É·Â°ú °áÇÔ °ËÃâ ¹× Á¶¸³ °ËÁõ°ú °°Àº º¹ÀâÇÑ ÀÛ¾÷À» ó¸®ÇÏ´Â À¯¿¬¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °í¼Ó µ¥ÀÌÅÍ ºÐ¼® ¹× »ç¿ëÀÚ Á¤ÀÇ ¿É¼ÇÀÌ ÇÊ¿äÇÑ »ê¾÷¿¡¼ ³Î¸® »ç¿ëµË´Ï´Ù. ±âÁ¸ »ý»ê¶óÀΰúÀÇ ÅëÇÕÀÌ °¡´ÉÇϹǷΠ´ë±Ô¸ð Á¦Á¶ ¾÷¹«¿¡ ÀûÇÕÇÕ´Ï´Ù. ó¸® ´É·Â°ú ¼ÒÇÁÆ®¿þ¾î ±â´ÉÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº ½ÃÀåÀÇ ÁÖ¿ä ºÎ¹®À¸·Î¼ÀÇ ÁöÀ§¸¦ ´õ¿í °ß°íÇÏ°Ô ¸¸µì´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â ¼ÒÇÁÆ®¿þ¾î ºÎ¹®
¿¹Ãø ±â°£ µ¿¾È AI ±¸µ¿ ¾Ë°í¸®Áò°ú µö·¯´× ±â¼úÀÇ ¹ßÀüÀ¸·Î ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº º¸´Ù Á¤È®ÇÑ À̹ÌÁö ó¸® ¹× ÆÐÅÏ ÀνÄÀ» °¡´ÉÇÏ°Ô Çϰí ÀÇ·á, ÀÚµ¿Â÷, ÀüÀÚ Á¦Ç° µî »ê¾÷ Àü¹ÝÀ¸·Î ¿ëµµ¸¦ È®´ëÇÕ´Ï´Ù. »ç¿ëÀÚ Ä£ÈÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í ¸ÂÃãÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î äÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ÀÌ º¸´Ù ½º¸¶Æ®ÇÑ ÀÚµ¿È ¼Ö·ç¼ÇÀ» ¼±È£ÇÔ¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î´Â ¸Ó½Å ºñÀü ½Ã½ºÅÛÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹, ÀϺ», Çѱ¹ µî ±¹°¡ÀÇ °ß°íÇÑ Á¦Á¶°ÅÁ¡À¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀÌÁ¡Àº ÀüÀÚ »ý»ê, ÀÚµ¿Â÷ Á¶¸³ ¶óÀÎ ¹× ¹ÝµµÃ¼ Á¦Á¶¿¡¼ ¸Ó½Å ºñÀü ½Ã½ºÅÛÀÇ ±¤¹üÀ§ÇÑ »ç¿ëÀ¸·Î À̾îÁý´Ï´Ù. Àδõ½ºÆ®¸® 4.0ÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀÌ R&D¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí Àֱ⠶§¹®¿¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¸Ó½Å ºñÀü ±â¼ú Áøº¸ÀÇ ÃÖÀü¼±¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È¿Í Àεµ, µ¿³²¾Æ½Ã¾Æ µî ½ÅÈï±¹ÀÇ ÀÚµ¿È µµÀÔ Áõ°¡·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® °øÀå¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ǰÁú °ü¸® ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ÀüÀÚ±â±â, ÀÇ·á µî »ê¾÷ÀÇ È®´ë°¡ ÀÌ Áö¿ªÀÇ °í±Þ ¸Ó½Å ºñÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Machine Vision Systems Market is accounted for $12.8 billion in 2024 and is expected to reach $21.2 billion by 2030 growing at a CAGR of 8.7% during the forecast period. Automated systems that analyze and interpret visual data from the surroundings using cameras, sensors, and software are known as machine vision systems. They are frequently used to guide robotic arms, inspect products, and find flaws in manufacturing and quality control. Real-time image processing by these systems enables high accuracy, speed, and precision in tasks like sorting, measurement, and object recognition. In many different industries, machine vision is essential for increasing output, decreasing errors, and boosting operational effectiveness.
According to Sony Semiconductor Solutions has announced plans to boost its CMOS image sensor production capacity by 60,000 wafers per month.
Increased demand for automation
The growing emphasis on industrial automation across sectors such as manufacturing, automotive, and electronics drives the machine vision systems market. These systems enhance production efficiency by enabling real-time quality control, defect detection, and process optimization. The adoption of Industry 4.0 and smart factories further accelerates demand, as machine vision technologies reduce manual intervention, improve accuracy, and streamline workflows. With advancements in AI and deep learning, machine vision systems are increasingly integrated into robotics and IoT devices, making them indispensable for modern automated operations.
Limited skilled workforce
These advanced systems require expertise in programming, image processing, and system integration, which many manufacturing units lack. High training costs and the complexity of the technology further exacerbate this issue. Small- to medium-sized enterprises (SMEs) particularly struggle to adopt machine vision solutions due to limited resources for workforce development, slowing widespread adoption.
Growth in the automotive industry
The expanding automotive sector presents lucrative opportunities for the machine vision systems market. These systems are integral to quality assurance processes such as assembly verification, defect detection, and component identification. The rise of electric vehicles (EVs) and autonomous driving technologies further boosts demand for advanced vision systems capable of ensuring precision manufacturing. Additionally, increased investments in smart manufacturing facilities by automotive companies drive the adoption of machine vision solutions.
Competition from traditional inspection methods
Traditional inspection methods, such as manual quality checks or simpler automated systems, pose a threat to the adoption of advanced machine vision technologies. Many industries continue to rely on these methods due to their lower initial costs and ease of implementation. Resistance to change and concerns over the complexity of integrating new technologies also contribute to this challenge, limiting the growth potential of machine vision systems.
The COVID-19 pandemic disrupted global supply chains and delayed manufacturing activities, initially hampering the machine vision market. However, the need for contactless operations during the crisis accelerated automation adoption in industries such as healthcare and logistics. Machine vision technologies were increasingly deployed for applications like remote monitoring and quality control in essential sectors. This shift highlighted the importance of automation resilience during disruptions, fostering long-term growth prospects for the market.
The pc-based machine vision systems segment is expected to be the largest during the forecast period
The pc-based machine vision systems segment is expected to account for the largest market share during the forecast period due to its superior processing capabilities and flexibility in handling complex tasks like defect detection and assembly verification. These systems are widely used in industries requiring high-speed data analysis and customization options. Their ability to integrate with existing production lines makes them a preferred choice for large-scale manufacturing operations. Continuous advancements in processing power and software capabilities further solidify their position as a leading segment in the market.
The software segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the software segment is predicted to witness the highest growth rate owing to advancements in AI-driven algorithms and deep learning technologies. These innovations enable more precise image processing and pattern recognition, expanding applications across industries such as healthcare, automotive, and electronics. The increasing demand for user-friendly interfaces and customizable solutions also drives software adoption. As industries prioritize smarter automation solutions, software emerges as a critical component for enhancing machine vision system performance.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its robust manufacturing base in countries like China, Japan, and South Korea. The region's dominance is driven by extensive use of machine vision systems in electronics production, automotive assembly lines, and semiconductor manufacturing. Government initiatives promoting Industry 4.0 adoption further boost market growth. The presence of key players investing heavily in R&D ensures Asia Pacific remains at the forefront of technological advancements in machine vision.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to rapid industrialization and increasing automation adoption across emerging economies like India and Southeast Asia. Growing investments in smart factories and rising demand for quality control solutions drive regional growth. The expansion of industries such as automotive, electronics, and healthcare further accelerates demand for advanced machine vision systems in this region.
Key players in the market
Some of the key players in Machine Vision Systems Market include Allied Vision Technologies GmbH, Basler AG, Baumer Optronic GmbH, Canon Inc., Cognex Corporation, FLIR Systems Inc., Intel Corporation, IDS Imaging Development Systems GmbH, ISRA Vision AG, Keyence Corporation, National Instruments Corporation, Omron Corporation, Sick AG, Sony Corporation, Teledyne Technologies Inc., Texas Instruments Incorporated, TKH Group NV and Toshiba Corporation.
In January 2025, SICK, an international provider of sensor-based automation solutions headquartered in Germany, and the Swiss measurement technology specialist Endress+Hauser are starting their strategic partnership for process automation. Both companies are joining forces to better support their customers and advance new technological solutions for the decarbonization of the process industry. Customers will now benefit from a broader product portfolio distributed from a single source via the global Endress+Hauser Sales Centers. The joint venture "Endress+Hauser SICK GmbH+Co. KG" will strengthen the development and production of analyzer and gas flow meter technologies, expanding the solution offerings.
In April 2024, Cognex Corporation, the leader in industrial machine vision released the In-Sight(R) L38 3D Vision System, which combines AI, 2D, and 3D vision technologies to solve a range of inspection and measurement applications. The system creates unique projection images that combine 3D information into an easy-to-label 2D image for simplified training and reveals features not visible with traditional 2D imaging. AI tools detect variable or undefined features, while rule-based algorithms provide 3D measurements to deliver reliable inspection results.