![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662652
¼¼°èÀÇ °í󸮷® °øÁ¤ °³¹ß(HTPD) ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ÇÁ·Î¼¼½ºº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®High Throughput Process Development Market Forecasts to 2030 - Global Analysis By Type, Process, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è °í󸮷® °øÁ¤ °³¹ß(HTPD) ½ÃÀåÀº 2024³â 111¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇß°í, ¿¹Ãø ±â°£ µ¿¾È ¿¬Æò±Õ 10.7% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 205¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °í󸮷® °øÁ¤ °³¹ß(HTPD)Àº Á¦¾à, »ý¸í°øÇÐ, ÈÇÐ, Àç·á°úÇÐ µîÀÇ »ê¾÷¿¡¼ ÀÚµ¿È ½Ã½ºÅÛ, ÷´Ü °èÃø Àåºñ, µ¥ÀÌÅÍ ºÐ¼®À» »ç¿ëÇÏ¿© ´Ù¾çÇÑ °øÁ¤À» ½Å¼ÓÇÏ°Ô Å×½ºÆ®Çϰí ÃÖÀûÈÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. HTPD´Â ¿©·¯ Á¶°Ç°ú º¯¼ö¸¦ µ¿½Ã¿¡ Å×½ºÆ®ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¬±¸°³¹ß ¼Óµµ¸¦ Å©°Ô Çâ»ó½Ã۰í, ´ë·®ÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ½ºÅ©¸®´×Çϰí, »ý»ê¼ºÀ» Çâ»ó½Ã۸ç, ½ÅÁ¦Ç° Ãâ½Ã ½Ã°£À» ´ÜÃàÇÏ¿© ½Å¾à °³¹ß, ÈÇÐ °øÁ¤ ÃÖÀûÈ, Àç·á °³¹ßÀ» °¡¼ÓÈÇÕ´Ï´Ù.
½Å¾à°³¹ß ¼ö¿ä Áõ°¡
HTPD ±â¼úÀ» ÅëÇØ Á¦¾àȸ»ç´Â ´ë·®ÀÇ ÈÇÕ¹°À» ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×ÇÏ°í ½Å¾à Èĺ¸¹°Áú Ž»öÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â º¹ÀâÇÑ Áúº´°ú °Ç° ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ º¸´Ù ½Å¼ÓÇϰí È¿À²ÀûÀÎ ÀǾàǰ °³¹ß¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇÑ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ½Å¼ÓÇÑ ÀýÂ÷´Â ÀǾàǰ °³¹ß ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¿½Ã¿¡ ½ÃÀå Ãâ½Ã±îÁö °É¸®´Â ½Ã°£À» Å©°Ô ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦¾à¾÷°è´Â ´Ù¾çÇÑ Áúº´¿¡ ´ëÇÑ »õ·Î¿î Ä¡·á¹ýÀ» Á¦°øÇØ¾ß ÇÑ´Ù´Â ¾Ð¹ÚÀÌ Ä¿Áö°í Àֱ⠶§¹®¿¡ HTPD ½Ã½ºÅÛÀ» ÀÌ¿ëÇÑ °íÈ¿À² ½ºÅ©¸®´×°ú °øÁ¤ ÃÖÀûÈ´Â ÀǾàǰ °³¹ß ³ë·ÂÀ» °³¼±ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë
Áß¼Ò±â¾÷ÀÇ °æ¿ì, HTPD ½Ã½ºÅÛÀ» µµÀÔÇϱâ À§Çؼ´Â ·Îº¿ °øÇÐ, ÷´Ü ÀÚµ¿È Àåºñ, Àü¹® ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ ¸ðµç ºñ¿ëÀÌ ¾öû³ª°Ô ºñ½Ò ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ °ü¸® ¹× ±âÁ¸ ½Ã½ºÅÛ°úÀÇ ÅëÇÕ¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó·Î ÀÎÇØ ºñ¿ëÀº ´õ¿í Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ³ôÀº Ãʱ⠺ñ¿ëÀº ¸¹Àº ±â¾÷, ƯÈ÷ ½Å»ý ±â¾÷À̳ª ÀÚ¿øÀÌ ºÎÁ·ÇÑ ±â¾÷ ½ÃÀå ÁøÀÔÀ» ¾î·Æ°Ô ¸¸µé ¼ö ÀÖÀ¸¸ç, HTPD´Â R&D ¼Óµµ¸¦ ³ô¿© Àå±âÀûÀÎ ºñ¿ë Àý°¨ È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖÀ½¿¡µµ ºÒ±¸Çϰí, ƯÈ÷ ºñ¿ë È¿À²¼ºÀÌ ÃÖ¿ì¼± ¼øÀ§ÀÎ ±â¾÷À̳ª ÀÚ¿øÀÌ ÇÑÁ¤µÈ ±â¾÷¿¡¼ Ãʱ⠺ñ¿ë ºÎ´ãÀÌ HTPDÀÇ µµÀÔÀ» °¡·Î¸·´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÈÇÐ ¹× Àç·á ¿¬±¸ÀÇ º¹À⼺
Àç·á°úÇÐ, ¿¡³ÊÁö ¿¬±¸, ÈÇÐ µîÀÇ ºÐ¾ß°¡ º¹ÀâÇØÁü¿¡ µû¶ó È¿°úÀûÀ̰í È®Àå °¡´ÉÇÑ °Ë»ç ±â¼ú¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, HTPD ½Ã½ºÅÛÀº ¿¬±¸ÀÚµéÀÌ ÇÑ ¹ø¿¡ ¿©·¯ ÈÇÐ ¹èÇÕ, ¹ÝÀÀ Á¶°Ç ¹× Àç·á ¼Ó¼ºÀ» ½Å¼ÓÇÏ°Ô °Ë»çÇϰí Á¶Á¤ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© °³¹ß ½Ã°£À» Å©°Ô ´ÜÃàÇÕ´Ï´Ù. °³¹ß ½Ã°£À» Å©°Ô ´ÜÃà½Ãŵ´Ï´Ù. ÀÌ ´É·ÂÀº Æú¸®¸Ó, Ã˸Å, ³ª³ë¼ÒÀç µî Á¤¹Ðµµ¿Í ½ÇÇèÀÌ ¸¹ÀÌ ÇÊ¿äÇÑ Ã·´Ü ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ±â¼ú Çõ½ÅÀ» °¡¼ÓÈÇÏ°í ½ÃÀåÀÇ ±â´ë¿¡ ºÎÀÀÇϱâ À§Çؼ´Â ÀÚµ¿ÈµÈ °íó¸® ÀýÂ÷¸¦ ÅëÇØ ÀÌ·¯ÇÑ º¹À⼺À» °ü¸®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ ÇÊ¿äÇÕ´Ï´Ù.
Áö³ªÄ£ ´Ü¼øÈÀÇ À§Çè
HTPD ±â¼úÀ» ÅëÇØ ¹æ´ëÇÑ ¾çÀÇ ÈÇÐ ¹°Áú°ú »óȲÀ» ½Å¼ÓÇÏ°Ô ½ºÅ©¸®´×ÇÏ¿© °øÁ¤ °Ë»ç ¹× ÃÖÀûÈ ¼Óµµ¸¦ ³ôÀÏ ¼ö ÀÖÁö¸¸, º¹ÀâÇÑ ½Ã½ºÅÛÀÇ Áß¿äÇÑ ¼¼ºÎ »çÇ×À» ³õÄ¥ À§ÇèÀÌ ÀÖÀ¸¸ç, HTPDÀÇ ¼Óµµ¿Í ÀÚµ¿È·Î ÀÎÇØ ½ÇÇè °á°ú¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Èñ±ÍÇÏ°í ¹Ì¹¦ÇÑ º¯¼ö¸¦ ³õÄ¥ ¼ö ÀÖ½À´Ï´Ù. ºÒ¿ÏÀüÇϰųª Áö³ªÄ¡°Ô ÀϹÝÈµÇ¾î °á·ÐÀÌ ºÒ¿ÏÀüÇÏ°Ô µµÃâµÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ü¼øÈ´Â Àç·á°úÇÐÀ̳ª ½Å¾à°³¹ß°ú °°Àº °íµµ·Î Àü¹®ÈµÈ ºÐ¾ß¿¡¼ ºÎÁ¤È®Çϰųª ºÒÃæºÐÇÑ °á°ú¸¦ ÃÊ·¡ÇÒ ¼ö ÀÖÀ¸¸ç, °á±¹ ºñ¿ëÀÌ ¸¹ÀÌ µå´Â ½Ç¼ö·Î À̾îÁ® Àüü °³¹ß ÇÁ·Î¼¼½ºÀÇ È¿À²¼ºÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19ÀÇ ´ëÀ¯ÇàÀº °í󸮷® °øÁ¤ °³¹ß(HTPD) ½ÃÀå¿¡ º¯ÇõÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â ¿¬±¸°³¹ß Ȱµ¿ÀÌ Å« È¥¶õ¿¡ Á÷¸éÇÏ¿© ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°Å³ª ÁøÇàÀÌ Áö¿¬µÇ´Â µî Å« È¥¶õÀ» °Þ¾ú½À´Ï´Ù. ±×·¯³ª ½Å¼ÓÇÑ ¹é½Å ¹× ÀǾàǰ °³¹ßÀÇ Çʿ伺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó HTPD ±â¹ýÀÌ °¢±¤À» ¹ÞÀ¸¸é¼ ½ºÅ©¸®´× ¹× °Ë»ç ÇÁ·Î¼¼½ºÀÇ °¡¼ÓȰ¡ ÃËÁøµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â Áø´Ü ´É·Â°ú ½Å¾à °³¹ß È¿À²À» ³ôÀÌ´Â HTPDÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±× °á°ú, ÆÒµ¥¹Í ÀÌÈÄ ´Ü°è¿¡¼´Â ±â¼ú ¹ßÀü°ú Á¦¾à R&D ÅõÀÚ Áõ°¡·Î ÀÎÇØ HTPD ½ÃÀåÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½ÇÇè½Ç Àåºñ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Å¾à °³¹ßÀÇ ÀÚµ¿È ¹× È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¿¹Ãø ±â°£ µ¿¾È ½ÇÇè½Ç Àåºñ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼ÒÇüÈ ¹× ¾×ü ó¸® ±â¼úÀÇ ¹ßÀüÀ¸·Î ¸¹Àº ¼öÀÇ »ùÇÃÀ» µ¿½Ã¿¡ °Ë»çÇÒ ¼ö ÀÖ°Ô µÇ¾î 󸮷®ÀÌ Å©°Ô Çâ»óµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀº µ¥ÀÌÅÍ ºÐ¼® ¹× ½ÇÇè ÇÁ·Î¼¼½º¸¦ ÃÖÀûÈÇÏ¿© ÀÇ»ç°áÁ¤À» ½Å¼ÓÇÏ°Ô ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ºñ¿ë Àý°¨°ú »ý»ê¼º Çâ»ó¿¡ ´ëÇÑ ¿ä±¸´Â ÃֽŠÁ¦¾à R&D ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÇʼöÀûÀÎ Á¤±³ÇÑ ½ÇÇè ÀåºñÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ³ó¾÷ ¹× ½Äǰ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ³ó¾÷ ¹× ½Äǰ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, IoT ¹× AI¿Í °°Àº ÀÚµ¿È ¹× µðÁöÅÐ ±â¼úÀÇ ¹ßÀüÀ¸·Î ³ó¾÷ °øÁ¤ÀÇ Á¤È®ÇÑ ¸ð´ÏÅ͸µ ¹× °ü¸®°¡ °¡´ÉÇØÁ® ÀÛ¹° ¼öÈ®·®À» ³ôÀ̰í ÀÚ¿ø ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ǰÁú°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ³ó¾÷ »ý»êÀÚµéÀº Çõ½ÅÀûÀÎ ½ÄǰÀ» º¸´Ù ºü¸£°Ô °³¹ßÇϱâ À§ÇØ ³ôÀº 󸮷®À» °¡Áø ¹æ¹ýÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº ºü¸£°Ô ÁøÈÇÏ´Â ½ÃÀå¿¡¼ ³ó¾÷ ºÎ¹®ÀÇ Àü¹ÝÀûÀΠȸº¹·Â°ú °æÀï·ÂÀ» °ÈÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¦¾à, »ý¸í°øÇÐ, ÈÇÐ »ê¾÷ÀÇ ±Þ°ÝÇÑ ¼ºÀå¿¡ ÈûÀÔ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖÀ¸¸ç, ÀÌ´Â È¿À²ÀûÀÎ ½Å¾à °³¹ß ¹× °øÁ¤ ÃÖÀûÈ µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª¿¡¼´Â °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÚµ¿È ¹× AI ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² Á¦Ç° °³¹ßÀ» °¡¼ÓÈÇÏ°í ´Ù¾çÇÑ ºÎ¹®ÀÇ R&D ¿ª·®À» °ÈÇÏ´Â HTPD ½Ã½ºÅÛÀÇ µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ªÀÌ ½Å¾à °³¹ß °¡¼ÓÈ, °øÁ¤ È¿À²¼º °³¼±, °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¹ßÀü¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ¾î HTPD ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì¿¡´Â ÁÖ¿ä Á¦¾à»ç, Çмú ±â°ü, CRO(ÀÓ»ó½ÃÇè¼öʱâ°ü)°¡ Á¸ÀçÇÏ¿© °í󸮷® ±â¼úÀÇ Çõ½Å°ú µµÀÔÀÌ ÃËÁøµÇ°í ÀÖÀ¸¸ç, ÀÌ Áö¿ªÀº º¸´Ù ½Å¼ÓÇÏ°í ºñ¿ë È¿À²ÀûÀÎ °³¹ß ÇÁ·Î¼¼½º¸¦ ½ÇÇöÇÏ´Â HTPD ¼Ö·ç¼ÇÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global High Throughput Process Development (HTPD) Market is accounted for $11.15 billion in 2024 and is expected to reach $20.52 billion by 2030 growing at a CAGR of 10.7% during the forecast period. High Throughput Process Development (HTPD) describes the use of automated systems, advanced instrumentation, and data analytics to rapidly test and optimize various processes in industries such as pharmaceuticals, biotechnology, chemicals, and materials science. It allows for the simultaneous testing of multiple conditions or variables, significantly speeding up research and development. HTPD accelerates drug discovery, chemical process optimization, and material development by efficiently screening large volumes of data, improving productivity, and reducing time-to-market for new products.
Increased demand for drug discovery and development
HTPD technologies allow pharmaceutical companies to screen large numbers of compounds quickly, optimizing the discovery of prospective drug candidates. This is in response to the growing need for faster and more efficient drug development to address complex diseases and health concerns. This expedited procedure lowers drug development expenses while significantly accelerating time to market. High-efficiency screenings and process optimization using HTPD systems are essential for improving drug development efforts as the pharmaceutical industry is under increasing pressure to provide novel therapies for a range of ailments.
High initial costs
For small to mid-sized businesses, the deployment of HTPD systems frequently necessitates a significant investment in robotics, sophisticated automation equipment, and specialist software, all of which might be prohibitively expensive. The entire cost is further increased by the infrastructure required for data management and integration with current systems. These hefty upfront expenses might make it difficult for many businesses to enter the market, particularly startups or those with tight resources. The initial price burden may hinder the adoption of HTPD, especially in businesses where cost-efficiency is a top priority or resources are limited, even though it promises long-term cost benefits by speeding up research and development.
Rising complexity in chemical and material research
The need for effective and scalable testing techniques is growing as sectors including materials science, energy research, and chemicals become more complex. HTPD systems drastically cut down on development time by enabling researchers to rapidly test and tune several chemical formulations, reaction conditions, and material attributes at once. This capacity is essential for meeting the rising demand for sophisticated materials that need a great deal of accuracy and experimentation, such as polymers, catalysts, and nanomaterials. Accelerating innovation and meeting market expectations require the ability to manage this complexity through automated, high-throughput procedures.
Risk of oversimplification
The rapid screening of huge amounts of chemicals and circumstances by HTPD technology speeds up process testing and optimization, but it also has the risk of missing important details in complicated systems. Because of its speed and automation, HTPD may miss rare or subtle variables that affect experiment results, resulting in conclusions that are either incomplete or too generalized. This oversimplification can lead to inaccurate or poor outcomes in highly specialized domains like materials science or drug discovery, which can eventually result in costly blunders and undermine the overall efficacy of the development process.
The COVID-19 pandemic had a transformative impact on the High Throughput Process Development (HTPD) market. Initially, research and development activities faced significant disruptions, delaying projects and slowing progress. However, as the need for rapid vaccine and drug development intensified, HTPD methodologies gained prominence, facilitating accelerated screening and testing processes. This shift highlighted the importance of HTPD in enhancing diagnostic capabilities and drug discovery efficiency. Consequently, the post-pandemic phase is expected to witness sustained growth in the HTPD market, driven by advancements in technology and increased pharmaceutical R&D investments.
The laboratory instruments segment is expected to be the largest during the forecast period
The laboratory instruments segment is expected to account for the largest market share during the forecast period, due to the increasing demand for automation and efficiency in drug discovery. Advances in miniaturization and liquid-handling technologies enable the simultaneous testing of numerous samples, significantly enhancing throughput. Additionally, the integration of artificial intelligence and machine learning optimizes data analysis and experimental processes, leading to faster decision-making. The need for cost reduction and improved productivity further propels the adoption of sophisticated laboratory instruments, making them essential for modern pharmaceutical research and development initiatives.
The agriculture & food segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the agriculture & food segment is predicted to witness the highest growth rate. Advances in automation and digital technologies, such as IoT and AI, enable precise monitoring and management of agricultural processes, leading to improved crop yields and reduced resource waste. Additionally, rising consumer demands for quality and sustainability push agricultural producers to adopt high-throughput methodologies for faster development of innovative food products. This integration enhances the overall resilience and competitiveness of the agricultural sector in a rapidly evolving market.
During the forecast period, the Asia Pacific region is expected to hold the largest market share fuelled by the rapid growth of the pharmaceutical, biotechnology, and chemical industries. Countries like China, India, and Japan are increasing their investments in research and development, fueling the demand for efficient drug discovery and process optimization tools. Additionally, the region's expanding focus on personalized medicine, coupled with advancements in automation and AI technologies, is driving the adoption of HTPD systems to accelerate product development and enhance research capabilities across diverse sectors.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the region's focus on accelerating drug discovery, improving process efficiency, and advancing personalized medicine is fueling demand for HTPD systems. Additionally, the presence of leading pharmaceutical companies, academic institutions, and contract research organizations (CROs) in North America fosters innovation and adoption of high-throughput technologies, making the region a key player in advancing HTPD solutions for faster, cost-effective development processes.
Key players in the market
Some of the key players in High Throughput Process Development (HTPD) market include Thermo Fisher Scientific Inc., Agilent Technologies, PerkinElmer Inc., Labcorp Drug Development, Biotage AB, Schrodinger, Inc., Waters Corporation, Eppendorf AG, Sartorius AG, GE Healthcare Life Sciences, Horiba Ltd., Hamilton Company, Qiagen N.V., Mettler-Toledo International Inc., and Tecan Group Ltd.
In April 2024, PerkinElmer launched the LabChip GXII Touch platform, designed to provide high-throughput protein analysis and characterization. The platform helps speed up the drug discovery process by efficiently screening protein-based samples.
In February 2024, Agilent Technologies introduced an upgraded version of its 1290 Infinity II LC system, enhancing capabilities for high-throughput analysis in process development, particularly for pharmaceutical and biotechnology applications.
In October 2023, Thermo Fisher Scientific launched the KINGFISHER Flex instrument to further enhance automation in sample preparation for high-throughput process development, enabling faster and more efficient workflows in biotech and pharmaceutical applications.