![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1662723
°Ç¹° ÀÏüÇü ž籤¹ßÀü ½ÃÀå ¿¹Ãø( -2030³â) : ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Building Integrated Photovoltaic Market Forecasts to 2030 - Global Analysis By Technology (Crystalline Silicon, Thin Film Cells and Other Technologies), Application (Roof, Glass, Wall, Facade and Other Applications), End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è °Ç¹° ÀÏüÇü ž籤¹ßÀü ½ÃÀåÀº 2024³â 272¾ï 4,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 18.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 739¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °Ç¹° ÀÏüÇü ž籤¹ßÀü(BIPV)Àº °Ç¹°ÀÇ °ÇÃà ¼³°è¿¡ ž籤¹ßÀü ½Ã½ºÅÛÀ» ¼º°øÀûÀ¸·Î ÅëÇÕÇÏ¿© ±¸Á¶Àû ÁöÁö¿Í ¿¡³ÊÁö »ý»êÀ̶ó´Â µÎ °¡Áö ±â´ÉÀ» ¼öÇàÇÏ´Â ÃÖ÷´Ü ±â¼úÀÔ´Ï´Ù. Áö¼Ó°¡´É¼º°ú ¾Æ¸§´Ù¿òÀ» °âºñÇϰí ÀÖ½À´Ï´Ù. ž翡³ÊÁö¸¦ ÀÌ¿ëÇÏ¿© Àü±â¸¦ »ý»êÇÔÀ¸·Î½á ÀÌ ½Ã½ºÅÛÀº °Ç¹°ÀÇ ±¸Á¶Àû °ÇÀü¼ºÀ» À¯ÁöÇÏ¸é¼ ¿¡³ÊÁö ºñ¿ë°ú ÀÌ»êÈź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ±â¿©ÇÕ´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)ÀÇ Å¾籤¹ßÀü ½Ã½ºÅÛ °èȹ(IEA-PVPS)¿¡ µû¸£¸é, ¼¼°è ž籤¹ßÀü(PV) ½ÃÀåÀº 2022³â ´©Àû ¿ë·®ÀÌ 1Å×¶ó¿ÍÆ®(TW)¸¦ ³Ñ¾î ¿¬°£ 235.8±â°¡¿ÍÆ®(GW)°¡ Ãß°¡µÇ¾î 2021³â ´ëºñ 35% Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù.
Àç»ý¿¡³ÊÁö¿Í Áö¼Ó°¡´É¼ºÀ¸·ÎÀÇ Àüȯ
±âÈĺ¯È¿¡ ´ëÇÑ ¿ì·ÁÀÇ Áõ°¡¿Í ¿Â½Ç°¡½º °¨ÃàÀÇ ½Ã±ÞÇÑ Çʿ伺ÀÌ Àü ¼¼°èÀûÀ¸·Î Àç»ý¿¡³ÊÁö·ÎÀÇ ÀüȯÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ, ±â¾÷ ¹× °³ÀÎÀº Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ¸ñÇ¥¸¦ ¾à¼ÓÇϰí ÀÖÀ¸¸ç, BIPV´Â Àç»ý¿¡³ÊÁö ¹ßÀü°ú °Ç¹° ±â´É °È¶ó´Â µÎ °¡Áö ÀÌÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Å¾翡³ÊÁö°¡ °¡Àå ½Ç¿ëÀûÀ̰í È®Àå °¡´ÉÇÑ Àç»ý¿¡³ÊÁö ¿ø Áß Çϳª°¡ µÊ¿¡ µû¶ó BIPV ¼Ö·ç¼ÇÀº °Ç¼³ ÇÁ·ÎÁ§Æ®¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ¸·Î¼ BIPV ½Ã½ºÅÛÀÇ Ã¤ÅÃÀº ÆÄ¸® ÇùÁ¤ ¹× ¼ø ź¼Ò Á¦·Î °ø¾à°ú °°Àº ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë
BIPV ½Ã½ºÅÛÀº Àå±âÀûÀÎ ºñ¿ë Àý°¨À¸·Î À̾îÁö´Â ¼³Ä¡¿¡ ÇÊ¿äÇÑ Ãʱ⠺ñ¿ëÀÌ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀΠž籤 ÆÐ³Î ¼³Ä¡ ¹× ÀüÅëÀûÀÎ °ÇÃàÀÚÀç¿¡ ºñÇØ °í±Þ ž籤¹ßÀü Àç·á, ¸ÂÃãÇü ¼³°è ¹× °Ç¹°¿¡ ÅëÇÕÇϱâ À§ÇÑ ¼÷·ÃµÈ ÀηÂÀº Á¾Á¾ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ, BIPV ¼Ö·ç¼ÇÀº ±¸Á¶ º¯°æ°ú Àü¹®ÀûÀÎ ¼³Ä¡ ÀýÂ÷°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ±âÁ¸ °Ç¹°À» BIPV·Î °³Á¶ÇÏ´Â µ¥ ´õ ¸¹Àº ºñ¿ëÀÌ ¼Ò¿äµÇ¸ç, ÀÌ·¯ÇÑ ³ôÀº Ãʱ⠺ñ¿ëÀ¸·Î ÀÎÇØ BIPV ±â¼úÀÇ º¸±ÞÀÌ Á¦ÇÑµÇ¾î ¼Ò±Ô¸ð °Ç¼³¾÷ü¿Í ÁÖÅà ¼ÒÀ¯ÀÚ°¡ BIPV¸¦ »ç¿ëÇÏ·Á´Â ÀÇ¿åÀ» ÀÒ°Ô µË´Ï´Ù. ÀÇ¿åÀ» ÀÒ°Ô ÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ž籤¹ßÀü ½Ã½ºÅÛ °³¹ß
º¸´Ù È¿°úÀûÀΠžçÀüÁö, ºÎµå·¯¿î µðÀÚÀÎ, °æ·® ¼ÒÀç µî ž籤¹ßÀü ±â¼úÀÇ ²÷ÀÓ¾ø´Â °³¼±Àº »õ·Î¿î BIPV ÀÀ¿ë °¡´É¼ºÀ» ¿¾îÁÖ°í ÀÖ½À´Ï´Ù. À¯±â žçÀüÁö, Æä·Îºê½ºÄ«ÀÌÆ® žçÀüÁö µîÀÇ ½Å±â¼ú·Î ÀÎÇØ º¸´Ù ¹Ì·ÁÇϰí ÀûÀÀ¼ºÀÌ ³ôÀº BIPV ¼Ö·ç¼ÇÀÇ °³¹ßÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ß·Î ÀÎÇØ â¹®, ÁöºØ, ÆÄ»çµå, ÁöºØ ±¸Á¶¹° µî ´Ù¾çÇÑ °ÇÃà ºÎÀç¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö º¯È¯ È¿À²°ú ³»±¸¼ºÀÌ Çâ»óµÊ¿¡ µû¶ó BIPV ½Ã½ºÅÛÀº ´õ¿í ¾ÈÁ¤ÀûÀÌ°í °¡°ÝÀÌ Àú·ÅÇØÁ® »ó¾÷¿ë, »ê¾÷¿ë, ÁÖ°Å¿ë µî ´Ù¾çÇÑ ºÎ¹®¿¡¼ °í°´ÀÌ ¸ô¸®°í ÀÖ½À´Ï´Ù.
±âÁ¸ ž籤 ÆÐ³Î°úÀÇ °æÀï
BIPV ½ÃÀå¿¡ Å« À§ÇùÀÌ µÇ°í ÀÖ´Â °ÍÀº ±âÁ¸ ¿Á»ó ¹× Áö»ó ¼³Ä¡Çü ž籤 ÆÐ³ÎÀÇ Æø¹ßÀûÀÎ ¼ºÀåÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡¼ ÀÌ·¯ÇÑ ±âÁ¸ ½Ã½ºÅÛÀº °¡°Ýµµ Àú·ÅÇϰí ÀÎÁöµµ°¡ ³ô±â ¶§¹®¿¡ ±ÇÀåµÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ž籤 ÆÐ³ÎÀÇ ÀÔÁõµÈ ¼º´É°ú ¼³Ä¡ ¿ëÀ̼ºÀº ƯÈ÷ ±ÝÀüÀû ¹®Á¦°¡ ¹ÌÀû ¹× µðÀÚÀÎÀû ¿ìÀ§º¸´Ù ´õ Áß¿äÇÑ ½ÃÀå¿¡¼ ¹Ù¶÷Á÷ÇÑ ´ë¾ÈÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ °æÀïÀº ƯÈ÷ Á¤ºÎ º¸Á¶±ÝÀ̳ª Àμ¾Æ¼ºê°¡ °ÅÀÇ ¾ø´Â Áö¿ª¿¡¼ BIPVÀÇ ½ÃÀå Á¡À¯À²À» ¶³¾î¶ß¸®°í ÀÖ½À´Ï´Ù.
COVID-19´Â °Ç¹°ÀÏüÇü ž籤(BIPV) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Çʿ伺À» °Á¶ÇÏ´Â ÇÑÆí, °ø±Þ¸Á¿¡ È¥¶õÀ» ÃÊ·¡Çϰí Àü ¼¼°è °Ç¼³ ÇÁ·ÎÁ§Æ®¸¦ ¿¬±âÇÏ´Â µî ¿©·¯ °¡Áö ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹Í Ãʱ⠴ܰèÀÇ ºÀ¼â¿Í ±ÔÁ¦·Î ÀÎÇØ Á¦Á¶ ¹× ¼³Ä¡ Ȱµ¿ÀÌ Å©°Ô Áö¿¬µÇ¾î ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ°í ÁÖ¿ä ½ÃÀå ÁøÀÔÀÚµéÀÌ ºñ¿ëÀ» ºÎ´ãÇÏ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, BIPV ½ÃÀåÀº Àç»ý¿¡³ÊÁö¸¦ Áö¿øÇϱâ À§ÇÑ ±×¸° ¸®Ä¿¹ö¸® ÇÁ·Î±×·¥°ú Á¤ºÎÀÇ °æ±â ºÎ¾çÃ¥¿¡ ÁßÁ¡À» µÎ¸é¼ ¼ºÀå¼¼¸¦ À̾½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È, ÁöºØ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ºÐ¾ß´Â ÁöºØ ºÎ¹®ÀÔ´Ï´Ù. ÁöºØ ÀÏüÇü ž籤¹ßÀü ½Ã½ºÅÛÀº °Ç¹° º¸È£¿Í Àç»ý¿¡³ÊÁö ¹ßÀüÀ̶ó´Â ÀÌÁß ±â´ÉÀ¸·Î ÀÎÇØ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ÁöºØÀº ž翡³ÊÁö¸¦ Èí¼öÇÒ ¼ö ÀÖ´Â °¡Àå Á¢±ÙÇϱ⠽±°í È¿°úÀûÀΠǥ¸éÀ̱⠶§¹®¿¡ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ƯÈ÷ ÁÖ°Å¿ë ¹× »ó¾÷¿ë °Ç¹°¿¡¼ ÈçÈ÷ º¼ ¼ö ÀÖ½À´Ï´Ù. ž籤 ÁöºØÆÇÀ̳ª ±â¿Í¿Í °°Àº BIPV ÁöºØÀç´Â ±âÁ¸ ÁöºØÀÇ ¹Ì°ü°ú ¿Ïº®ÇÏ°Ô Á¶È¸¦ ÀÌ·ç±â ¶§¹®¿¡ Àå±âÀûÀÎ ¿¡³ÊÁö Àý¾à È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöºØ ºÎ¹®Àº ³ôÀº ¿¡³ÊÁö »ý»ê È¿À², ³ì»ö °Ç¹°¿¡ ´ëÇÑ Áö¿ø Áõ°¡, Á¤ºÎ Àå·Á±Ý µîÀ¸·Î ÀÎÇØ BIPV ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÁÖÅà ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÁÖÅà ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àç»ý¿¡³ÊÁö ¿É¼Ç°ú ±× ȯ°æÀû ÀÌÁ¡¿¡ ´ëÇÑ ÁÖÅà ¼ÒÀ¯ÀÚÀÇ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÀÌ ½ÃÀå È®´ë¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ÁÖÅÿ¡ BIPV ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â °ÍÀº Àü±â ¿ä±ÝÀÇ »ó½Â°ú ž籤 ¿¡³ÊÁö µµÀÔÀ» À§ÇÑ ¹ßÀüÂ÷¾×Áö¿øÁ¦µµ ¹× ¼¼Á¦ ÇýÅðú °°Àº Á¤ºÎ Àμ¾Æ¼ºê¿¡ ÀÇÇØ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÅÂ¾ç¿ Å¸ÀÏ ¹× ÀûÀÀÇü µðÀÚÀΰú °°Àº ¹ÌÀûÀ¸·Î ¿ì¼öÇÑ ÅÂ¾ç¿ ¼Ö·ç¼ÇÀÇ °³¼±Àº ÁÖÅà °í°´¿¡ ´ëÇÑ BIPVÀÇ ¸Å·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ÁÖÅðú Á¦·Î ¿¡³ÊÁö °Ç¹°À» ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓÀº ÁÖÅà ºÎ¹®ÀÇ BIPV ½Ã½ºÅÛ Ã¤ÅÃÀ» °ÈÇÏ¿© Æø¹ßÀûÀÎ ¼ºÀåÀ» ¼³¸íÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ÀÌÀ¯´Â Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀÌ Å¾籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ, Àç»ý¿¡³ÊÁö ±â¼úÀÇ ºü¸¥ äÅÃ, Á¤ºÎ Áö¿ø Á¤Ã¥À¸·Î ÀÎÇØ ž籤 ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ BIPV ½Ã½ºÅÛ Ã¤ÅÃÀº Áö¼Ó°¡´ÉÇÑ °ÇÃà ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, µµ½ÃÈ, ¿¡³ÊÁö °¡°Ý »ó½ÂÀ¸·Î ÀÎÇØ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Æ½Ã¾ÆÅÂÆò¾çÀº dzºÎÇÑ Å¾籤 ÀÚ¿øÀ» º¸À¯Çϰí ÀÖ¾î »ó¾÷ ¹× ÁÖ°Å ºÎ¹® ¸ðµÎ¿¡¼ BIPV ¾ÖÇø®ÄÉÀ̼ÇÀÇ ½ÇÇà °¡´É¼º°ú È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ »ç¿ìµð¾Æ¶óºñ¾Æ, ÀÌÁýÆ®, ¾Æ¶ø¿¡¹Ì¸®Æ®¿Í °°Àº ±¹°¡¿¡¼ Áö¼Ó°¡´É¼ºÀÇ ÀÏȯÀ¸·Î Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ÀÌ Áö¿ªÀÇ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Àå·ÁÃ¥°ú ¿¡³ÊÁö ÀÚ¿øÀÇ ´Ù¾çȸ¦ °·ÂÇÏ°Ô ÃßÁøÇϸé¼, ÀÌµé ±¹°¡´Â ¿¡³ÊÁö È¿À² ±â¼ú°ú ģȯ°æ °ÇÃà¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ÀÏÁ¶·®ÀÌ ¸¹±â ¶§¹®¿¡ BIPV ½Ã½ºÅÛÀº °¡Á¤°ú ±â¾÷ÀÇ ¿¡³ÊÁö »ç¿ë·®À» ÁÙÀÌ´Â µ¥ ÀÖ¾î ¹Ù¶÷Á÷ÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀåÀÇ Æø¹ßÀûÀÎ ¼ºÀåÀ» ¼³¸íÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Building Integrated Photovoltaic Market is accounted for $27.24 billion in 2024 and is expected to reach $73.90 billion by 2030 growing at a CAGR of 18.1% during the forecast period. Building Integrated Photovoltaics (BIPV) is a cutting-edge technology that successfully incorporates photovoltaic systems into a building's architectural design, fulfilling the dual functions of structural support and energy production. BIPV systems combine sustainability and beauty by being integrated into building components like windows, skylights, roofs, and facades, in contrast to traditional solar panels. By using solar energy to create electricity, these systems help to lower energy expenses and carbon emissions while preserving the building's structural soundness.
According to the International Energy Agency's Photovoltaic Power Systems Programme (IEA-PVPS), the global photovoltaic (PV) market achieved a cumulative capacity exceeding 1 terawatt (TW) in 2022, with an annual addition of 235.8 gigawatts (GW), marking a 35% increase compared to 2021.
Transition to renewable energy and sustainability
Growing worries about climate change and the pressing need to cut greenhouse gas emissions are driving the global transition to renewable energy. Renewable energy targets are being committed to by governments, corporations, and individuals. BIPV provides the dual advantage of generating renewable energy and enhancing building functionality. In order to achieve sustainability goals, BIPV solutions are being used more and more in construction projects as solar energy becomes one of the most practical and scalable renewable energy sources. Additionally, adoption of BIPV systems as a sustainable energy solution is being pushed further by initiatives such as the Paris Agreement and net-zero carbon commitments.
Expensive initial expenses
Even though BIPV systems can save money over time, the initial outlay needed to install them is still a major obstacle. Compared to conventional solar panel installations or traditional building materials, advanced photovoltaic materials, customized designs, and skilled labor for integration into buildings are frequently more expensive. Furthermore, because BIPV solutions require structural alterations and specialized installation procedures, retrofitting existing buildings with them can be even more costly. The technology's widespread adoption is limited by these high upfront costs, which discourage small-scale builders and homeowners from utilizing it.
Developments in photovoltaic systems
Constant improvements in photovoltaic technology, such as more effective solar cells, flexible designs, and lightweight materials, are opening up new BIPV application possibilities. New technologies such as organic photovoltaics and perovskite solar cells are making it possible to create BIPV solutions that are more aesthetically pleasing and adaptable. These developments make it possible to incorporate them easily into a variety of building components, such as windows, roofs, facades, and even covered structures. Moreover, increases in energy conversion efficiency and durability make BIPV systems more dependable and affordable, drawing clients from the commercial, industrial, and residential sectors.
Rivalry with traditional solar panels
A significant threat to the BIPV market is the conventional rooftop and ground-mounted solar panels' explosive growth. For renewable energy projects, these conventional systems are the recommended option since they are frequently more affordable and well-known. Conventional solar panels' demonstrated performance and ease of installation make them a desirable substitute, particularly in markets where financial concerns outweigh aesthetic and design advantages. Additionally, this competition lowers BIPV's market share, especially in areas with few government subsidies or incentives.
The COVID-19 pandemic had a mixed effect on the building-integrated photovoltaic (BIPV) market, stressing the need for sustainable energy solutions while also upsetting supply chains and postponing construction projects around the world. Lockdowns and restrictions during the early stages of the pandemic resulted in major delays in manufacturing and installation activities, which deferred projects and cost major market participants money. Furthermore, the BIPV market was boosted, nevertheless, by the subsequent emphasis on green recovery programs and government stimulus plans meant to support renewable energy.
The Roof segment is expected to be the largest during the forecast period
The Roof segment is expected to account for the largest market share during the forecast period. Roof-integrated photovoltaic systems are widely adopted due to their dual functionality of providing building protection and generating renewable energy. Since rooftops are the most accessible and effective surface for capturing solar energy, these systems are especially common in residential and commercial buildings. Long-term energy savings are provided by BIPV roofing materials, like solar shingles and tiles, which blend in perfectly with conventional roofing aesthetics. Moreover, the roof segment dominates the BIPV market due to its high energy generation efficiency, growing support for green building initiatives, and government incentives.
The Residential segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the Residential segment is predicted to witness the highest growth rate. Growing homeowner awareness of renewable energy options and their environmental advantages is fueling this market's expansion. The integration of BIPV systems in residential buildings is further encouraged by rising electricity costs and government incentives, including feed-in tariffs and tax rebates for the adoption of solar energy. Improvements in aesthetically pleasing solar solutions, such as solar tiles and adaptable designs, increase the appeal of BIPV to residential customers. Additionally, the global movement toward energy-efficient housing and net-zero energy buildings reinforces the residential sector's adoption of BIPV systems, which helps explain its explosive growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share. This is mostly because countries like China, Japan, and South Korea have made large investments in solar infrastructure, adopted renewable energy technologies quickly, and had supportive government policies. The adoption of BIPV systems in this area is also fuelled by the growing need for sustainable building solutions, urbanization, and rising energy prices. Furthermore, Asia Pacific has a wealth of solar resources, which improves the viability and effectiveness of BIPV applications in both the commercial and residential sectors.
Over the forecast period, the Middle East and Africa (MEA) region is anticipated to exhibit the highest CAGR. The region's growing emphasis on renewable energy as part of its sustainability objectives, especially in nations like Saudi Arabia, Egypt, and the United Arab Emirates, is what is driving this growth. With the help of government incentives and a strong push to diversify their energy sources, these countries are making significant investments in energy-efficient technologies and green building initiatives. Moreover, the region's high levels of sunshine further make BIPV systems a desirable choice for lowering energy usage in homes and businesses, which helps explain the market's explosive growth.
Key players in the market
Some of the key players in Building Integrated Photovoltaic market include AGC Inc., Tesla Inc, Merck KGaA, Yingli Green Energy Holding Inc, Heliatek GmbH, Ertex Solartechnik Gmbh, Belectric GmbH, First Solar, Inc., Carmanah Technologies Corporation, Sharp Corporation, Ascent Solar Technologies, Inc., Hanergy Holding Group Ltd., Solaria Corporation, Onyx Solar Group LLC. and Waaree Energies Ltd.
In September 2024, AGC, the parent company of AGC Biologics, a leading global Biopharmaceutical CDMO*1 and MEDINET have signed a strategic partnership agreement in the cell therapy CDMO business. Under these circumstances, AGC and MEDINET have agreed to exchange and train manufacturing and quality human resources from both companies in order to complement MEDINET's capabilities with AGC Biologics' global network, and vice versa.
In May 2024, Merck, a leading science and technology company, has signed a definitive agreement to acquire life science company Mirus Bio for US$ 600 million (around € 550 million). Based in Madison, Wisconsin, USA, Mirus Bio is a specialist in the development and commercialization of transfection reagents.
In April 2024, Tesla has inked a strategic agreement with Tata Electronics to acquire semiconductor chips for its global operations. This agreement, executed discreetly a few months ago, holds significance as it positions Tata Electronics as a supplier for top-tier global clients seeking to establish a pivotal segment of their semiconductor value chain within India, as per an ET report.