½ÃÀ庸°í¼­
»óǰÄÚµå
1662735

¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå ¿¹Ãø( -2030³â) : ±¸¼º¿ä¼Òº°, Á¶ÀÛº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Oil and Gas Automation Market Forecasts to 2030 - Global Analysis By Component (Hardware, Software and Services), Operation (Production Optimization, Energy Efficiency and Safety and Security), Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀåÀº 2024³â 190¾ï 4,000¸¸ ´Þ·¯·Î 2030³â¿¡´Â 277¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È 6.5%ÀÇ CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¼®À¯ ¹× °¡½º ÀÚµ¿È­´Â ·Îº¿ °øÇÐ, ÀΰøÁö´É(AI), »ç¹°ÀÎÅͳÝ(IoT) µî ÷´Ü ±â¼úÀ» »ç¿ëÇÏ¿© Ž»ç, »ý»ê, À¯Åë ¾÷¹«ÀÇ ¾÷¹« È¿À²¼º Çâ»ó, ÀýÂ÷ ÃÖÀûÈ­, ¾ÈÀü¼º Çâ»óÀ» ½ÇÇöÇÕ´Ï´Ù. ¼³ºñÀÇ ¿¹Áöº¸Àü, Áß¿ä ÀÎÇÁ¶óÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿î¿µºñ¿ë°ú ´Ù¿îŸÀÓÀ» ÁÙÀÌ´Â È¿°úÀûÀÎ µ¥ÀÌÅÍ ºÐ¼®Àº ¸ðµÎ ÀÚµ¿È­ ¼Ö·ç¼ÇÀ» ÅëÇØ °¡´ÉÇØÁý´Ï´Ù. ¶ÇÇÑ, ÷´Ü Á¦¾î ½Ã½ºÅÛ, ÀÚµ¿ ½ÃÃß ½Ã½ºÅÛ, ¿ø°Ý ÆÄÀÌÇÁ¶óÀÎ ¸ð´ÏÅ͸µÀº À§Çè »óȲ¿¡¼­ »ç¶÷ÀÇ °³ÀÔ Çʿ伺À» ÁÙÀ̸鼭 Á¤È®µµ¸¦ Çâ»ó½Ãŵ´Ï´Ù.

¼¼°è°æÁ¦Æ÷·³(WEF)ÀÇ º¸°í¼­¿¡ µû¸£¸é, ¼®À¯ ¹× °¡½º »ê¾÷¿¡¼­ ÀÚµ¿È­¸¦ Æ÷ÇÔÇÑ µðÁöÅÐ ±â¼úÀÇ ÅëÇÕÀº 2025³â±îÁö ÃÖ´ë 1Á¶ ´Þ·¯ÀÇ ºñ¿ë Àý°¨ È¿°ú¸¦ °¡Á®¿Ã °ÍÀ̶ó°í ÇÕ´Ï´Ù.

¿î¿µ È¿À²¼º ¹× ºñ¿ë Àý°¨

¿¹Áöº¸Àü ½Ã½ºÅÛÀº ÀåºñÀÇ °íÀå °¡´É¼ºÀ» »çÀü¿¡ °¨ÁöÇÏ¿© ¿¹±âÄ¡ ¾ÊÀº ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» ÅëÇØ ¿î¿µÀÚ°¡ ¼º´É ÁöÇ¥¸¦ ¸ð´ÏÅ͸µÇÏ°í ¿¡³ÊÁö ¹× ³ëµ¿·Â°ú °°Àº ÀÚ¿øÀ» ÃÖÀûÀ¸·Î Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­´Â ¿À·ù¸¦ ÃÖ¼ÒÈ­Çϰí 󸮷®À» Áõ°¡½ÃÄÑ ½ÃÃß, ÃßÃâ, Á¤Á¦ µîÀÇ »ý»ê °øÁ¤À» °³¼±ÇÔÀ¸·Î½á ¹ë·ùüÀÎ Àü¹Ý¿¡ °ÉÃÄ »ó´çÇÑ ºñ¿ë Àý°¨À» °¡Á®¿É´Ï´Ù. ¶ÇÇÑ, ÀÚµ¿È­´Â ¼®À¯ ¹× °¡½º ±â¾÷ÀÇ ¾÷¹« ¿öÅ©Ç÷ο츦 ÃÖÀûÈ­ÇÏ¿© »ó´çÇÑ ºñ¿ë Àý°¨°ú È¿À²¼º Çâ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë

¼®À¯ ¹× °¡½º »ê¾÷¿¡¼­ ÀÚµ¿È­ ±â¼úÀ» µµÀÔÇϱâ À§Çؼ­´Â ¸·´ëÇÑ Ãʱâ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÌ´Â Áß¼Ò±â¾÷(SME)¿¡°Ô Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐ, IoT Áö¿ø ¼¾¼­, ÀΰøÁö´É Ç÷§Æû, ÀÚµ¿ Á¦¾î ½Ã½ºÅÛ µî ÷´Ü ½Ã½ºÅÛÀ» µµÀÔÇϱâ À§Çؼ­´Â ¸·´ëÇÑ ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖÀ¸¸ç, ÷´Ü Åë½Å ³×Æ®¿öÅ© ¹× Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ±â´É µî ÀÚµ¿È­¸¦ Áö¿øÇÏ´Â ÀÎÇÁ¶ó¸¦ ¾÷±×·¹À̵åÇÏ´Â °Íµµ °æÁ¦Àû ºÎ´ãÀ» °¡Áß½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ³ôÀº ÀÚº» ¿ä±¸ »çÇ×Àº ƯÈ÷ ÀÚ±ÝÀÌ ºÎÁ·ÇÑ Áö¿ªÀ̳ª ÀüÅëÀûÀÎ ¹æ¹ýÀÌ ¿©ÀüÈ÷ ¿ì¼¼ÇÑ Áö¿ª¿¡¼­´Â äÅÃÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.

Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ °ü½É Áõ°¡

¼®À¯ ¹× °¡½º ºÎ¹®Àº ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ°í ¿¡³ÊÁö Æ÷Æ®Æú¸®¿À¸¦ ´Ù¾çÈ­Çϱâ À§ÇØ Ç³·Â, ž籤, ¼ö¼Ò¿Í °°Àº Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö¸¦ ±âÁ¸ ¿î¿µ¿¡ ÅëÇÕÇϱâ À§Çؼ­´Â ÇÏÀ̺긮µå ¿¡³ÊÁö ½Ã½ºÅÛ °ü¸®¿¡ ÀÚµ¿È­°¡ ÇʼöÀûÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö ¹ßÀüÀº È­¼®¿¬·á¿Í ÇÔ²² ÷´Ü Á¦¾î ½Ã½ºÅÛ, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®, AI ±â¹Ý Ç÷§ÆûÀ» ÅëÇØ °¡´ÉÇÑ ÇÑ È¿À²ÀûÀ¸·Î ¹ßÀü, ÀúÀå, ºÐ¹èµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç»ý¿¡³ÊÁö ÅëÇÕÀ» À§ÇØ Æ¯º°È÷ ¼³°èµÈ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ÀÚµ¿È­ ±â¾÷µéÀº º¸´Ù ģȯ°æÀûÀÎ ¿î¿µÀ¸·Î ÀüȯµÊ¿¡ µû¶ó Å« ½ÃÀå ±âȸ¸¦ °®°Ô µÉ °ÍÀÔ´Ï´Ù.

±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú ±â¼ú ³ëÈÄÈ­

ÀÚµ¿È­, ÀΰøÁö´É, ·Îº¿ °øÇÐÀÇ ¹ßÀü ¼Óµµ´Â ÇöÀç ½Ã½ºÅÛÀ» ºü¸£°Ô ±¸½ÄÀ¸·Î ¸¸µé ¼ö ÀÖ½À´Ï´Ù. ´õ »õ·Ó°í ´õ È¿°úÀûÀÎ ¼Ö·ç¼ÇÀº ÀÚµ¿È­ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÑ ±â¾÷¿¡°Ô ¹®Á¦°¡ µÉ ¼ö ÀÖÀ¸¸ç, Á¤±âÀûÀÎ ¾÷±×·¹À̵å¿Í ÀçÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ¶ÇÇÑ, ±â¼úÀÇ ³»±¸¼º°ú Àû¿ë¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ÀÚµ¿È­ µµÀÔ¿¡ ¼Ò±ØÀûÀÏ ¼ö Àֱ⠶§¹®¿¡ ±â¾÷µéÀº ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖÀ¸¸ç, ½ÃÀå µµÀÔ ¼Óµµ°¡ ´À·ÁÁú ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

°ø±Þ¸Á È¥¶õ, ¼¼°è ¿¡³ÊÁö ¼ö¿ä ±Þ°¨, ¼®À¯ ¹× °¡½º ȸ»çÀÇ ¼³ºñ ÅõÀÚ °¨¼Ò·Î ÀÎÇØ COVID-19 »çÅ´ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹Í ÃʱâÀÇ À¯°¡ Æø¶ôÀ¸·Î ÀÎÇØ ¸¹Àº »ç¾÷ÀÚµéÀº ´çÀåÀÇ ºñ¿ë Àý°¨ ¹æ¾ÈÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÚµ¿È­ ÇÁ·ÎÁ§Æ®¸¦ ¿¬±âÇϰųª Ãà¼ÒÇØ¾ß Çß½À´Ï´Ù. ¶ÇÇÑ, »ê¾÷ ȸº¹°ú ÇÔ²² ÀΰøÁö´É(AI), »ç¹°ÀÎÅͳÝ(IoT), ·Îº¿°øÇÐ µî ÷´Ü ±â¼úÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ¸é¼­ ±â¾÷µéÀº Æ÷½ºÆ® ÆÒµ¥¹Í ȯ°æ¿¡¼­ ȸº¹·Â Çâ»ó, »ý»ê ÃÖÀûÈ­, ºñ¿ë Àý°¨À» À§ÇØ ÀÚµ¿È­¿¡ Á¡Á¡ ´õ ¸¹Àº °ü½ÉÀ» ±â¿ïÀ̰í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ºÐ»êÇü Á¦¾î ½Ã½ºÅÛ(DCS) ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

DCS ½Ã½ºÅÛÀº Áß¾Ó ÁýÁᫎ Á¦¾î, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿øÈ°ÇÑ ÇÁ·Î¼¼½º ÅëÇÕÀ» Á¦°øÇϱ⠶§¹®¿¡ ¾÷¹« È¿À²¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¼®À¯È­ÇÐ ½Ã¼³°ú ´ë±Ô¸ð Á¤À¯°øÀå¿¡¼­´Â »ý»ê ǰÁúÀ» À¯ÁöÇÏ°í °¡µ¿ Áß´Ü ½Ã°£À» ÁÙÀ̱â À§ÇØ ´Ù¾çÇÑ ÆÄ¶ó¹ÌÅ͸¦ Á¤È®ÇÏ°Ô Á¦¾îÇØ¾ß Çϱ⠶§¹®¿¡ DCS°¡ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, °øÁ¤ ÃÖÀûÈ­, ¿¡³ÊÁö È¿À², ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¤ Áؼö¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó DCS´Â ÇöÀçµµ °¡Àå ³Î¸® »ç¿ëµÇ´Â ÀÚµ¿È­ ¼Ö·ç¼ÇÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾÷½ºÆ®¸²(Ž»ç ¹× »ý»ê) ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾÷½ºÆ®¸²(Ž»ç ¹× »ý»ê) ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ¾î·Á¿î ȯ°æ ÇÏ¿¡¼­ »ý»ê ¹× Ž»ç ³ë·ÂÀ» ±Ø´ëÈ­Çϱâ À§ÇÑ Ã·´Ü ±â¼úÀÇ È°¿ëÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. AI ±â¹Ý ¿¹Ãø ºÐ¼®, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý ½Ã½ºÅÛ, ÀÚÀ² ½ÃÃß Àåºñ¿Í °°Àº ÀÚµ¿È­ ¼Ö·ç¼ÇÀº ÀÚ¿ø ¹ß°ßÀÇ Áõ°¡, ½ÃÃß Á¤È®µµ Çâ»ó, ¿î¿µ ºñ¿ë Àý°¨À¸·Î ¾÷½ºÆ®¸² °øÁ¤¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀº ½ÉÇØ À¯Àü, ¼ÎÀϰ¡½º µî ºñÀüÅë ÀÚ¿ø ä±¼¿¡ ´ëÇÑ ÀÚµ¿È­ ¿ä±¸°¡ Áõ°¡Çϸ鼭 ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾÷½ºÆ®¸² »ç¾÷¿¡¼­ÀÇ ÀÚµ¿È­ ±â¼ú ÅëÇÕÀº ¿ø°ÝÁö ¹× À§Çè Áö¿ª¿¡¼­ÀÇ ÀÛ¾÷ È¿À²¼º Çâ»ó, ȯ°æ ¹®Á¦ ÇØ°á, ÀÛ¾÷ÀÚ ¾ÈÀü °³¼±ÀÇ Çʿ伺¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ¼®À¯ ¹× °¡½º »ê¾÷ÀÌ È°¹ßÇϰí ÷´Ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ¸¹±â ¶§¹®À¸·Î ºÐ¼®µË´Ï´Ù. ´ë±Ô¸ð ¼ÎÀϰ¡½º »ý»ê, ÇØ¾ç ½ÃÃß ÀÛ¾÷, ÀÛ¾÷ È¿À²¼º°ú ¾ÈÀü¿¡ ´ëÇÑ °­Á¶·Î ¹Ì±¹Àº ÀÚµ¿È­ ¼Ö·ç¼Ç µµÀÔ¿¡¼­ ¼¼°è¸¦ ¼±µµÇϰí ÀÖ½À´Ï´Ù. °íµµ·Î ¼÷·ÃµÈ ÀηÂ, Á¤±³ÇÑ ÀÎÇÁ¶ó, IoT, AI, ·Îº¿°øÇÐ µî ÷´Ü ±â¼úÀ» Á¦°øÇÏ´Â ÁÖ¿ä ÀÚµ¿È­ °ø±Þ¾÷ü°¡ ÁýÁߵǾî ÀÖ´Â °ÍÀº ÀÌ Áö¿ª¿¡ Å« ÀÌÁ¡ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿î¿µ ºñ¿ë Àý°¨°ú ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦ Áؼö¸¦ À§ÇØ ÀÚµ¿È­ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Áß±¹, Àεµ, µ¿³²¾Æ½Ã¾Æ µîÀÇ ±¹°¡¿¡¼­ ¼®À¯ ¹× °¡½º ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ, ±Þ¼ÓÇÑ »ê¾÷È­, ¿¡³ÊÁö ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌµé ±¹°¡µéÀÌ Æ¯È÷ ÇØ»ó À¯Àü¿¡¼­ Ž»ç ¹× »ý»ê Ȱµ¿À» ´Ã¸®¸é¼­ È¿À²¼º°ú ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ Á¤±³ÇÑ ¼¾¼­, Á¦¾î ½Ã½ºÅÛ, ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç°ú °°Àº ÀÚµ¿È­ ±â¼úÀÌ ÇʼöÀûÀÎ ¿ä¼Ò·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀº ȯ°æ ±ÔÁ¦¸¦ ÁؼöÇÏ°í ¿î¿µ ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ³ëÈÄÈ­µÈ ÀÎÇÁ¶ó¸¦ Çö´ëÈ­ÇÏ°í ½º¸¶Æ® ±â¼úÀ» µµÀÔÇÏ´Â µ¥¿¡µµ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ÁøÀÔ ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • ¼Ò°³
  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : ¾÷¹«º°

  • ¼Ò°³
  • »ý»ê ÃÖÀûÈ­
  • ¿¡³ÊÁö È¿À²
  • ¾ÈÀü°ú º¸¾È

Á¦7Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : ±â¼úº°

  • ¼Ò°³
  • ¼¾¼­¿Í Æ®·£½º¹ÌÅÍ
  • ºÐ»êÇü Á¦¾î ½Ã½ºÅÛ(DCS)
  • ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ÄÁÆ®·Ñ·¯(PLC)
  • ¸ð´ÏÅ͸µ Á¦¾î¿Í µ¥ÀÌÅÍ ¼öÁý(SCADA)
  • ¾ÈÀü °èÀå ½Ã½ºÅÛ(SIS)
  • °¡º¯ Á֯ļö µå¶óÀ̺ê(VFD)
  • Á¦Á¶ ½ÇÇà ½Ã½ºÅÛ(MES)
  • »ê¾÷ ÀÚ»ê °ü¸®
  • ±âŸ

Á¦8Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ¾÷½ºÆ®¸²(Ž»ç¿Í »ý»ê)
  • ¹Ìµå½ºÆ®¸²(ÆÄÀÌÇÁ¶óÀÎ »ç¾÷)
  • ´Ù¿î½ºÆ®¸²(Á¤Á¦¿Í ¼®À¯È­ÇÐ Á¦Á¶)

Á¦9Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼Ò°³
  • Á¾ÇÕ ¼®À¯ ¹× °¡½º ȸ»ç
  • ±¹¿µ ¼®À¯È¸»ç
  • µ¶¸³°è ¼®À¯ ¹× °¡½º ȸ»ç

Á¦10Àå ¼¼°èÀÇ ¼®À¯ ¹× °¡½º ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ¼Ò°³
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä °³¹ß

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ °³¿ä

  • Cisco Systems Inc.
  • ABB Ltd.
  • Rockwell Automation Inc.
  • General Electric(GE)
  • Honeywell International Inc.
  • Schneider Electric SE
  • Johnson Controls International Plc
  • Emerson Electric Co.
  • Robert Bosch GmbH
  • Mitsubishi Electric Corporation
  • HCL Technologies Ltd.
  • Siemens AG
  • Eaton Corporation
  • Invensys
  • Yokogawa Electric Corporation
ksm 25.03.20

According to Stratistics MRC, the Global Oil and Gas Automation Market is accounted for $19.04 billion in 2024 and is expected to reach $27.78 billion by 2030 growing at a CAGR of 6.5% during the forecast period. Oil and gas automation uses cutting-edge technologies like robotics, artificial intelligence (AI), and the Internet of Things (IoT) to increase operational efficiency, optimize procedures, and improve safety in exploration, production, and distribution operations. Predictive equipment maintenance, real-time monitoring of vital infrastructure and effective data analytics to lower operating expenses and downtime are all made possible by automation solutions. Moreover, advanced control systems, automated drilling systems, and remote pipeline monitoring improve accuracy while reducing the need for human intervention in dangerous situations.

According to a report by the World Economic Forum (WEF), the integration of digital technologies, including automation, in the oil and gas industry can lead to cost savings of up to $1 trillion by 2025.

Market Dynamics:

Driver:

Efficiency in operations and cost cutting

Predictive maintenance systems minimize unplanned downtimes by detecting possible equipment failures before they happen, real-time data acquisition and analytics enable operators to monitor performance metrics, ensuring optimal utilization of resources like energy and labor, and automation improves production processes, including drilling, extraction, and refining, by minimizing errors and improving throughput, resulting in significant cost reductions across the value chain. Additionally, automation also helps oil and gas companies optimize their operational workflows, which leads to significant cost savings and improved efficiency.

Restraint:

Expensive initial investment costs

Significant upfront investment is required to implement automation technologies in the oil and gas industry, which is a major barrier for small and medium-sized enterprises (SMEs). It can be prohibitively expensive to deploy advanced systems, such as robotics, IoT-enabled sensors, artificial intelligence platforms, and automated control systems, and upgrading infrastructure to support automation, such as advanced communication networks and cloud computing capabilities, adds to the financial burden. Furthermore, these high capital requirements may delay adoption, particularly in areas where funding is scarce or where traditional methods still predominate.

Opportunity:

Enhanced attention to integration of renewable energy

The oil and gas sector is making more and more investments in renewable energy sources like wind, solar, and hydrogen in an effort to lower carbon footprints and diversify energy portfolios. In order to integrate renewable energy sources into conventional operations, automation is essential to the management of hybrid energy systems. Together with fossil fuels, renewable energy is generated, stored, and distributed as efficiently as possible owing to sophisticated control systems, real-time data analytics, and AI-driven platforms. Moreover, automation companies that offer solutions specifically designed for the integration of renewable energy have a huge market opportunity as a result of this shift toward greener operations.

Threat:

Rapid innovation and the obsolescence of technology

The speed at which automation, artificial intelligence, and robotics are developing could quickly render current systems outdated. Newer, more effective solutions may present problems for businesses that make significant investments in automation technologies, necessitating regular upgrades and reinvestment. Additionally, this puts businesses in a difficult position because they may be reluctant to implement automation because they are worried about the technology's durability and applicability, which may slow down market adoption rates.

Covid-19 Impact:

Due to supply chain disruptions, a steep drop in global energy demand, and lower capital expenditures by oil and gas companies, the COVID-19 pandemic had a significant effect on the oil and gas automation market. Many operators were forced to postpone or reduce automation projects in favor of immediate cost-cutting measures due to the early stages of the pandemic's oil price collapse. Furthermore, the industry's recovery accelerated the adoption of cutting-edge technologies like artificial intelligence (AI), the Internet of Things (IoT), and robotics as businesses increasingly looked to automation to improve resilience, optimize production, and cut costs in a post-pandemic setting.

The Distributed Control Systems (DCS) segment is expected to be the largest during the forecast period

The Distributed Control Systems (DCS) segment is expected to account for the largest market share during the forecast period because DCS systems offer centralized control, real-time monitoring, and seamless process integration, they are widely used in the industry to ensure operational efficiency and safety. They are especially useful in petrochemical facilities and large refineries where exact control over a variety of parameters is necessary to preserve production quality and reduce downtime. Moreover, DCS is still the most popular automation solution due to the increasing demand for process optimization, energy efficiency, and compliance with strict safety regulations.

The Upstream (Exploration and Production) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the Upstream (Exploration and Production) segment is predicted to witness the highest growth rate, driven by the growing use of cutting-edge technologies to maximize production and exploration efforts in difficult settings. By increasing resource discovery, increasing drilling accuracy, and lowering operating costs, automation solutions like AI-powered predictive analytics, real-time data acquisition systems, and autonomous drilling rigs are revolutionizing upstream operations. The segment's growth is further accelerated by the rising need for automation in unconventional resource extraction, such as deepwater oil fields and shale gas. Additionally, the integration of automation technologies in upstream activities is driven by the need to improve operational efficiency in remote or hazardous locations, address environmental concerns, and enhance worker safety.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by the presence of thriving oil and gas industry and the region's large investments in cutting-edge technologies. Because of its extensive shale gas production, offshore drilling operations, and emphasis on operational efficiency and safety, the United States leads the world in the adoption of automation solutions. A highly qualified workforce, sophisticated infrastructure, and a large concentration of major automation providers offering cutting-edge technologies like IoT, AI, and robotics are all advantages for the area. Furthermore, automation adoption has also been accelerated by the drive to lower operating costs and comply with strict environmental regulations.

Region with highest CAGR:

Over the forecast period, the Asia-Pacific region is anticipated to exhibit the highest CAGR, driven by significant investments in oil and gas infrastructure across nations like China, India, and Southeast Asia, as well as by fast industrialization and rising energy demand. Automation technologies like sophisticated sensors, control systems, and real-time monitoring solutions are becoming essential for increasing efficiency and safety as these nations increase their exploration and production activities, especially in offshore oil fields. Moreover, in order to comply with environmental regulations and enhance operational performance, the region is also concentrating on modernizing its aging infrastructure and implementing smart technologies.

Key players in the market

Some of the key players in Oil and Gas Automation market include Cisco Systems Inc., ABB Ltd., Rockwell Automation Inc., General Electric (GE), Honeywell International Inc., Schneider Electric SE, Johnson Controls International Plc, Emerson Electric Co., Robert Bosch GmbH, Mitsubishi Electric Corporation, HCL Technologies Ltd., Siemens AG, Eaton Corporation, Invensys and Yokogawa Electric Corporation.

Key Developments:

In December 2024, Honeywell announced the signing of a strategic agreement with Bombardier, a global leader in aviation and manufacturer of world-class business jets, to provide advanced technology for current and future Bombardier aircraft in avionics, propulsion and satellite communications technologies.

In November 2024, Cisco and MGM Resorts International have announced a multi-year whole portfolio agreement (WPA) that will provide MGM Resorts with access to the majority of Cisco's software portfolio. This includes cybersecurity, software-defined networking, software-defined WAN [wide area network], digital experience assurance, full-stack observability, data centre and services.

In October 2024, Rockwell Automation, Inc. announced it has signed an agreement with Taurob to provide a holistic robotic solution that would enable industrial organizations to move towards autonomous operations in their facilities. Taurob designs and manufactures ground robots for inspection, maintenance and data collection to optimize and enhance efficiency on a variety of industrial sites.

Components Covered:

  • Hardware
  • Software
  • Services

Operations Covered:

  • Production Optimization
  • Energy Efficiency
  • Safety and Security

Technologies Covered:

  • Sensors & Transmitters
  • Distributed Control Systems (DCS)
  • Programmable Logic Controllers (PLC)
  • Supervisory Control and Data Acquisition (SCADA)
  • Safety Instrumented Systems (SIS)
  • Variable Frequency Drive (VFD)
  • Manufacturing Execution System (MES)
  • Industrial Asset Management
  • Other Technologies

Applications Covered:

  • Upstream (Exploration and Production)
  • Midstream (Pipeline Operations)
  • Downstream (Refining and Petrochemical Manufacturing)

End Users Covered:

  • Integrated Oil and Gas Companies
  • National Oil Companies
  • Independent Oil and Gas Companies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Oil and Gas Automation Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
  • 5.3 Software
  • 5.4 Services

6 Global Oil and Gas Automation Market, By Operation

  • 6.1 Introduction
  • 6.2 Production Optimization
  • 6.3 Energy Efficiency
  • 6.4 Safety and Security

7 Global Oil and Gas Automation Market, By Technology

  • 7.1 Introduction
  • 7.2 Sensors & Transmitters
  • 7.3 Distributed Control Systems (DCS)
  • 7.4 Programmable Logic Controllers (PLC)
  • 7.5 Supervisory Control and Data Acquisition (SCADA)
  • 7.6 Safety Instrumented Systems (SIS)
  • 7.7 Variable Frequency Drive (VFD)
  • 7.8 Manufacturing Execution System (MES)
  • 7.9 Industrial Asset Management
  • 7.10 Other Technologies

8 Global Oil and Gas Automation Market, By Application

  • 8.1 Introduction
  • 8.2 Upstream (Exploration and Production)
  • 8.3 Midstream (Pipeline Operations)
  • 8.4 Downstream (Refining and Petrochemical Manufacturing)

9 Global Oil and Gas Automation Market, By End User

  • 9.1 Introduction
  • 9.2 Integrated Oil and Gas Companies
  • 9.3 National Oil Companies
  • 9.4 Independent Oil and Gas Companies

10 Global Oil and Gas Automation Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Cisco Systems Inc.
  • 12.2 ABB Ltd.
  • 12.3 Rockwell Automation Inc.
  • 12.4 General Electric (GE)
  • 12.5 Honeywell International Inc.
  • 12.6 Schneider Electric SE
  • 12.7 Johnson Controls International Plc
  • 12.8 Emerson Electric Co.
  • 12.9 Robert Bosch GmbH
  • 12.10 Mitsubishi Electric Corporation
  • 12.11 HCL Technologies Ltd.
  • 12.12 Siemens AG
  • 12.13 Eaton Corporation
  • 12.14 Invensys
  • 12.15 Yokogawa Electric Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦