½ÃÀ庸°í¼­
»óǰÄÚµå
1662773

Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå ¿¹Ãø : ±¸¼º ¿ä¼Ò À¯Çü, Â÷Á¾, ±â¼ú, ¿ëµµ, Áö¿ªº° ¼¼°è ºÐ¼®(-2030)

Electric Vehicle Semiconductor Market Forecasts to 2030 - Global Analysis By Component Type, Vehicle Type, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀº 2024³â 180¾ï 9,584¸¸ ´Þ·¯¸¦ Â÷ÁöÇßÀ¸¸ç, 2030³â¿¡´Â 3,234¾ï 7,374¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 61.7%ÀÔ´Ï´Ù.

Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼´Â Àü±âÀÚµ¿Â÷ÀÇ Àü·Â ÀüÀÚ ¹× Á¦¾î ½Ã½ºÅÛ¿¡ »ç¿ëµÇ´Â ÀüÀÚ ºÎǰÀÔ´Ï´Ù. Â÷·® ³» Àü·Â È帧À» °ü¸®ÇÏ¿© ÆÄ¿öÆ®·¹ÀÎ, ¹èÅ͸® °ü¸®, ÃæÀü, ADAS(÷´Ü ¿îÀü Áö¿ø ½Ã½ºÅÛ) µî ÁÖ¿ä ½Ã½ºÅÛÀÇ È¿À²ÀûÀÎ ¿î¿µÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Àü·Â Æ®·£Áö½ºÅÍ, ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯ ¹× ¼¾¼­¸¦ Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ ¹ÝµµÃ¼´Â ¿¡³ÊÁö È¿À², ¼º´É ¹× ¾ÈÀü ÃÖÀûÈ­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

China Association of Automobile Manufacturers¿¡ µû¸£¸é 2021³â Áß±¹ ¹èÅ͸® Àü±âÂ÷ »ý»ê·®Àº 290¸¸´ë·Î 2020³â ´ëºñ 166% Áõ°¡Çß½À´Ï´Ù. °°Àº ÇØ Áß±¹¿¡¼­ Ç÷¯±×ÀÎ ÇÏÀ̺긮µå ÀÚµ¿Â÷ÀÇ »ý»ê ´ë¼ö´Â ¾à 60¸¸ 1,000´ë·Î 2020³âºÎÅÍ 131% Áõ°¡Çß½À´Ï´Ù.

Àü±âÂ÷ º¸±Þ È®´ë

±âÁ¸ÀÇ ³»¿¬ ¿£Áø Â÷·®¿¡¼­ÀÇ À̵¿Àº ±âÈÄ º¯È­ ¹æÁö ¹× ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¸¦ À§ÇÑ ±¹Á¦ÀûÀÎ ³ë·ÂÀ¸·Î °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. EV´Â Á¤ºÎ ¹ý·ü, EV ±¸¸Å Àμ¾Æ¼ºê, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¼ÒºñÀÚ ÀÇ½Ä Áõ°¡·Î Á¡Á¡ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. Ư¼ö ¹ÝµµÃ¼ ¼ö¿ä Áõ°¡´Â EV ¼ö¿ä Áõ°¡ÀÇ Á÷Á¢ÀûÀÎ °á°úÀÔ´Ï´Ù. EV´Â ±âÁ¸ ÀÚµ¿Â÷º¸´Ù ¸¹Àº ¹ÝµµÃ¼¸¦ »ç¿ëÇϰí ÀÖÀ¸¸ç, ÀÎÆ÷Å×ÀÎ¸ÕÆ® ½Ã½ºÅÛÀ̳ª ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)ºÎÅÍ ¿£Áø ¹× ¹èÅ͸® °ü¸® ½Ã½ºÅÛ¿¡ À̸£±â±îÁö ¸ðµç °Í¿¡ Àü·ÂÀ» °ø±ÞÇϰí ÀÖ½À´Ï´Ù. EVÀÇ ÀÌ¿ëÀÌ °è¼Ó È®´ëµÇ°í ÀÖ´Â °¡¿îµ¥, ÀÌ·¯ÇÑ Áß¿äÇÑ ºÎǰÀÇ Çʿ伺ÀÌ EV ¹ÝµµÃ¼ »ê¾÷ÀÇ Å« ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±âÁ¸ ÀÚµ¿Â÷ ½ÃÀå°úÀÇ °æÀï

±¤¹üÀ§ÇÑ ÀÚ¿ø°ú È®¸³µÈ °ø±Þ¸ÁÀ» °®Ãá ±âÁ¸ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¹ÝµµÃ¼ Á¦Á¶¾÷ü¿¡ Å« ¾Ð·ÂÀ» °¡ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Àü±âÀÚµ¿Â÷ Àü¹® Ĩ Á¦Á¶¾÷ü¿¡°Ô °¡°Ý °æÀï°ú ÀÌÀÍ·üÀÌ ¾ÇÈ­µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °æÀïÀÇ °á°ú·Î, Á¦Á¶¾÷ü´Â ´õ Å« ÀüÅëÀûÀÎ ÀÚµ¿Â÷ ½ÃÀå¿¡ ´ëÀÀÇÏ´Â °ÍÀ» Áß½ÃÇÒ ¼ö ÀÖ°í, EV ¹ÝµµÃ¼ ±â¼úÀÇ Áøº¸ ¼Óµµ°¡ µÐÈ­µÉ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ³»¿¬ ±â°üÂ÷°¡ Àå±â°£¿¡ °ÉÃÄ ¿ìÀ§¸¦ Â÷ÁöÇÔÀ¸·Î½á EV ½ÃÀå ÀüüÀÇ ¼ºÀåÀÌ Á¦ÇÑµÉ ¼ö ÀÖ¾î °£Á¢ÀûÀ¸·Î EV ¹ÝµµÃ¼ »ê¾÷ÀÇ ¼ºÀåÀ» ÀúÇØÇÏ°Ô µË´Ï´Ù. °æÀïÀ» À̱â·Á¸é EV ¹ÝµµÃ¼ ±â¾÷Àº Àü¹® ±â¼ú°ú Àú·ÅÇÑ ¼Ö·ç¼ÇÀ» ÅëÇÑ Â÷º°È­¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

Àü±âÂ÷¿Í ÀÚÀ²ÁÖÇàÂ÷ ä¿ë È®´ë

Á¦Á¶¾÷ü°¡ EV¿¡ ÀÚÀ²ÁÖÇà ±â¼úÀ» ÅëÇÕÇÔ¿¡ µû¶ó °í±Þ Ĩ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®, ÀÇ»ç°áÁ¤ ¹× Â÷·® Á¦¾î¸¦ ¿ëÀÌÇÏ°Ô Çϱâ À§ÇØ ÀÌ·¯ÇÑ Â÷·®¿¡´Â °í¼º´É ¸¶ÀÌÅ©·ÎĨ, °­·ÂÇÑ CPU, °í±Þ ¼¾¼­(·¹ÀÌ´õ ¹× LiDAR µî)°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» Áö¿øÇÏ°í µ¿ÀÛ, ¾ÈÀü¼º, È¿À²¼ºÀ» º¸ÀåÇϱâ À§Çؼ­´Â ¹ÝµµÃ¼°¡ ÇʼöÀûÀÔ´Ï´Ù. ³×ºñ°ÔÀÌ¼Ç ¹× Àå¾Ö¹° °¨Áö¿Í °°Àº º¹ÀâÇÑ ÀÛ¾÷À» °ü¸®Çϱâ À§ÇÑ Æ¯¼ö ¹ÝµµÃ¼ ¼Ö·ç¼Ç ¼ö¿ä´Â ÀÚÀ²ÁÖÇà EV¸¦ ä¿ëÇÏ´Â »ç¶÷ÀÌ ´Ã¾î³²¿¡ µû¶ó Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë

½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC) ¹× °¥·ý ÁúÈ­¹°(GaN)°ú °°Àº ±¤´ë¿ª °¸ Àç·á¸¦ ±â¹ÝÀ¸·Î ÇÏ´Â °Í°ú °°Àº °í±Þ ¹ÝµµÃ¼ ºÎǰ Á¦Á¶´Â ±âÁ¸ ½Ç¸®ÄÜ ±â¹Ý Ĩ¿¡ ºñÇØ ºñ½Ô´Ï´Ù. EVÀÇ Àü·Â È¿À²°ú ¼º´É Çâ»ó¿¡ ÇʼöÀûÀÎ ÀÌ·¯ÇÑ Àç·á´Â º¹ÀâÇÑ Á¦Á¶ °øÁ¤À» ¼ö¹ÝÇÏ¿© Á¦Á¶ ºñ¿ëÀÌ »ó½ÂÇÕ´Ï´Ù. °á°úÀûÀ¸·Î Àü±âÀÚµ¿Â÷ÀÇ ÃÑ ºñ¿ëÀÌ »ó½ÂÇÏ¿© ¼ÒºñÀÚ°¡ ±¸ÀÔÇÒ ¼öÀÖ´Â °¡°ÝÀÌ »ç¶óÁý´Ï´Ù. ±× °á°ú ³ôÀº Á¦Á¶ ºñ¿ëÀº EVÀÇ ´ë·® º¸±ÞÀ» ´ÊÃß°í Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀåÀÇ ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå¿¡ Å« ¿µÇâÀ» ÁÖ¾úÀ¸¸ç °ø±Þ¸ÁÀÇ È¥¶õ, Á¦Á¶ Áö¿¬, »ý»ê °¨¼ÓÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ¹ÝµµÃ¼ ºÎÁ·Àº ÁÖ¿ä ºÎǰ Á¦Á¶¾÷ü°¡ °øÀå °¡µ¿ Áߴܰú ³ëµ¿·Â °ø±Þ Á¦ÇÑ¿¡ Á÷¸éÇÏ¿© ½É°¢ÇØÁ³½À´Ï´Ù. °Ô´Ù°¡ ¼¼°è °æÁ¦ÀÇ ºÒÈ®½Ç¼ºÀÌ ¼ÒºñÀÚÀÇ ÀÚµ¿Â÷ ¼ö¿ä °¨¼Ò¸¦ ÃÊ·¡ÇØ EVÀÇ º¸±ÞÀ» ´ÊÃß¾ú½À´Ï´Ù. ±×·¯³ª ¼¼°è°¡ ȸº¹µÊ¿¡ µû¶ó ûÁ¤ ¿¡³ÊÁö¿Í Àüµ¿ À̵¿¼ºÀ¸·ÎÀÇ ÀüȯÀÌ °¡¼ÓÈ­µÇ°í EV ¹ÝµµÃ¼ ½ÃÀåÀÇ Àå±â ¼ºÀåÀÌ ÃËÁøµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¾Æ³¯·Î±× ¹ÝµµÃ¼ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¾Æ³¯·Î±× ¹ÝµµÃ¼ ºÎ¹®Àº Àü·Â °ü¸®, ¹èÅ͸® ¸ð´ÏÅ͸µ ¹× Á¦¾î ½Ã½ºÅÛ¿¡¼­ ÇʼöÀûÀÎ ¿ªÇÒÀ» Çϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ³¯·Î±× ¹ÝµµÃ¼´Â ÀιöÅÍ, ÃæÀü±â, ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)°ú °°Àº EV ºÎǰ¿¡¼­ È¿À²ÀûÀÎ ¿¡³ÊÁö º¯È¯, Á¤È®ÇÑ Àü¾Ð Á¶Á¤ ¹× ½ÅÈ£ 󸮸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼º´É Çâ»ó, È¿À² °³¼±, Â÷·® ¾ÈÀü ½Ã½ºÅÛ Áö¿ø µîÀÇ ±â´ÉÀÌ EV ºÎ¹®¿¡¼­ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ºÎ¹®ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»ó

¿¹Ãø ±â°£ µ¿¾È, ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ ºÎ¹®Àº È¿À²ÀûÀÎ ¿¡³ÊÁö º¯È¯°ú ÃÖÀûÈ­µÈ ¼º´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÝµµÃ¼´Â ¹èÅ͸®, ¸ðÅÍ ¹× ÀιöÅÍ °£ÀÇ Àü·Â È帧À» °ü¸®ÇÏ°í ºÎµå·¯¿î ÀÛµ¿À» º¸ÀåÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. SiC³ª GaN ±â¹Ý ¹ÝµµÃ¼ µî ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Áøº¸¿¡ ÀÇÇØ ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛÀº º¸´Ù È¿À²ÀûÀ¸·Î µÇ¾î, ÁÖÇà °Å¸®ÀÇ ¿¬Àå, °¡¼ÓÀÇ °í¼ÓÈ­, Â÷·® ÀüüÀÇ ¼º´É Çâ»óÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Á¤ºÎÀÇ °­·ÂÇÑ Áö¿ø, EVÀÇ ±Þ¼ÓÇÑ º¸±Þ, BYD, Nissan, Toyota¿Í °°Àº ÁÖ¿ä EV Á¦Á¶¾÷üÀÇ Á¸Àç·Î ÀÎÇØ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ªÀº ¹ÝµµÃ¼ »ý»êÀÇ °ÅÁ¡À̱⵵ Çϸç Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀÌ EV ÀÎÇÁ¶ó¿Í ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä¿Í Á¦Á¶ ´É·ÂÀÇ Á¶ÇÕÀÌ EV ¹ÝµµÃ¼ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â EV¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡, Á¤ºÎ Àμ¾Æ¼ºê, ¾ö°ÝÇÑ ¹èÃâ°¡½º ±ÔÁ¦ µîÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡´Â Å×½½¶ó¿Í °°Àº ¼±µµÀû ÀÎ EV Á¦Á¶¾÷ü°¡ ÀÖÀ¸¸ç EV ÀÎÇÁ¶ó¿Í ³ì»ö ¿¡³ÊÁö¿¡ ´ëÇÑ ³ë·Â¿¡ ¸¹Àº ÅõÀÚ¸¦Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¹ÝµµÃ¼ÀÇ ±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÇ °íÁ¶°¡ EVÀÇ Ã¤¿ëÀ» ´õ¿í µÞ¹ÞÄ§ÇØ, ÀÌ Áö¿ªÀÇ ¹ÝµµÃ¼ ¼ö¿ä¸¦ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç Á¤º¸¿ø
    • 1Â÷ Á¶»ç Á¤º¸¿ø
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå : ±¸¼º ¿ä¼Ò À¯Çüº°

  • ¼­·Ð
  • Àü·Â ¹ÝµµÃ¼
  • ·ÎÁ÷ ¹ÝµµÃ¼
  • ¾Æ³¯·Î±× ¹ÝµµÃ¼
  • ¸Þ¸ð¸® ¹ÝµµÃ¼
  • ÀÌ»ê ¹ÝµµÃ¼
  • ¸¶ÀÌÅ©·Î ÄÁÆ®·Ñ·¯¿Í ¼¾¼­
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå : Â÷Á¾º°

  • ¼­·Ð
  • Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)
  • ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)
  • ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)
  • ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV)

Á¦7Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå : ±â¼úº°

  • ¼­·Ð
  • ½Ç¸®ÄÜ ±â¹Ý ¹ÝµµÃ¼
  • ¿ÍÀÌµå ¹êµå°¸ ¹ÝµµÃ¼

Á¦8Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)
  • ÆÄ¿öÆ®·¹ÀÎ ½Ã½ºÅÛ
  • ÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)
  • Â÷ü ¹× ¼¨½Ã
  • ÀÎÆ÷Å×ÀÎ¸ÕÆ®¿Í Á¢¼Ó¼º
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ Àü±âÀÚµ¿Â÷¿ë ¹ÝµµÃ¼ ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä °³¹ß

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Infineon Technologies
  • STMicroelectronics
  • NXP Semiconductors
  • ON Semiconductor
  • Texas Instruments
  • Renesas Electronics
  • Broadcom Inc.
  • Vishay Intertechnology
  • Qualcomm Technologies
  • Marvell Technology
  • Samsung Electronics
  • Toshiba Corporation
  • Microchip Technology
  • MuRata Manufacturing
  • Rockwell Automation
  • Diodes Incorporated
KTH 25.03.13

According to Stratistics MRC, the Global Electric Vehicle Semiconductor Market is accounted for $18095.84 million in 2024 and is expected to reach $323473.74 million by 2030 growing at a CAGR of 61.7% during the forecast period. Electric Vehicle (EV) semiconductors are electronic components used in the power electronics and control systems of electric vehicles. They manage the flow of electrical power within the vehicle, enabling efficient operation of key systems such as the powertrain, battery management, charging, and advanced driver-assistance systems (ADAS). These semiconductors, including power transistors, microcontrollers, and sensors, play a crucial role in optimizing energy efficiency, performance, and safety.

According to the China Association of Automobile Manufacturers, China produced 2.9 million battery-electric vehicles in 2021, up 166% from 2020. Around 601,000 plug-in hybrid vehicles were produced in China in the same year, up by 131% from 2020.

Market Dynamics:

Driver:

Increasing adoption of electric vehicles

The shift away from conventional combustion engine vehicles is being accelerated by international initiatives to prevent climate change and cut carbon emissions. EVs are becoming more and more popular due to government laws, incentives for EV purchases, and growing consumer awareness of environmental issues. The increased demand for specialized semiconductors is a direct result of the growth in EV demand. More semiconductors are used in EVs than in traditional cars, powering everything from the infotainment system and advanced driver-assistance systems to the engine and battery management system. The need for these crucial components will drive significant growth in the EV semiconductor industry as EV usage continues expanding.

Restraint:

Competition from traditional vehicle market

With the extensive resources and well-established supply chains, established automakers can place a lot of pressure on semiconductor manufacturers, which might result in price wars and worse profit margins for chip makers that specialize in electric vehicles. As a result of this competition, manufacturers may emphasize catering to the bigger traditional vehicle market, which could slow down the pace of progress in EV semiconductor technology. Additionally, ICE vehicles' prolonged dominance may restrict the EV market's total growth, which would obstruct the growth of the EV semiconductor industry indirectly. In order to stay ahead of the competition, EV semiconductor companies must concentrate on differentiating themselves through specialized technology and affordable solutions.

Opportunity:

Growing adoption of electric & autonomous vehicles

Advanced chips are becoming much more in demand as manufacturers incorporate self-driving technologies into EVs. To facilitate real-time data processing, decision-making, and vehicle control, these vehicles need high-performance microchips, powerful CPUs, and advanced sensors (such as radar and LiDAR). In order to support these technologies and guarantee their operation, safety, and efficiency, semiconductors are essential. The demand for specialized semiconductor solutions to manage intricate tasks like navigation and obstacle detection is growing as more people embrace autonomous EVs, which is propelling the market's expansion.

Threat:

High manufacturing costs

The production of advanced semiconductor components, such as those based on wide-bandgap materials like Silicon Carbide (SiC) and Gallium Nitride (GaN), is more expensive compared to traditional silicon-based chips. These materials, essential for improving power efficiency and performance in EVs, involve complex manufacturing processes that increase production costs. This, in turn, raises the overall cost of electric vehicles, making them less affordable for consumers. As a result, high manufacturing costs can slow down mass adoption of EVs and hinder growth in the semiconductor market for electric vehicles.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the Electric Vehicle (EV) semiconductor market, causing supply chain disruptions, manufacturing delays, and a slowdown in production. The semiconductor shortage worsened as key component manufacturers faced factory shutdowns and limited labor availability. Additionally, the global economic uncertainty led to reduced consumer demand for vehicles, delaying EV adoption. However, as the world recovers, the shift toward clean energy and electric mobility is expected to accelerate, driving long-term growth in the EV semiconductor market.

The analog semiconductors segment is expected to be the largest during the forecast period

The analog semiconductors segment is expected to account for the largest market share during the forecast period, due to their essential role in power management, battery monitoring, and control systems. Analog semiconductors enable efficient energy conversion, precise voltage regulation, and signal processing in EV components such as inverters, chargers, and battery management systems (BMS). Their ability to enhance performance, improve efficiency, and support vehicle safety systems is fueling their growth in the EV sector.

The powertrain system segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the powertrain system segment is predicted to witness the highest growth rate, due to the increasing demand for efficient energy conversion and optimized performance. Semiconductors are crucial in managing power flow between the battery, motor, and inverter, ensuring smooth operation. With advancements in power electronics, such as SiC and GaN-based semiconductors, powertrain systems are becoming more efficient, enabling longer driving ranges, faster acceleration, and improved overall vehicle performance.

Region with largest share:

During the forecast period, Asia Pacific region is expected to hold the largest market share, due to strong government support, rapid adoption of EVs, and the presence of leading EV manufacturers like BYD, Nissan, and Toyota. The region is also a hub for semiconductor production, with countries like China, Japan, and South Korea investing heavily in EV infrastructure and technology. This combination of demand and manufacturing capability is propelling growth in the EV semiconductor market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, fuelled by increasing consumer demand for EVs, government incentives, and strict emissions regulations. The U.S. is home to leading EV manufacturers like Tesla, and the region is investing heavily in EV infrastructure and green energy initiatives. Additionally, technological innovations in semiconductors and a growing focus on sustainability further boost the adoption of EVs, driving semiconductor demand in the region.

Key players in the market

Some of the key players profiled in the Electric Vehicle Semiconductor Market include Infineon Technologies, STMicroelectronics, NXP Semiconductors, ON Semiconductor, Texas Instruments, Renesas Electronics, Broadcom Inc., Vishay Intertechnology, Qualcomm Technologies, Marvell Technology, Samsung Electronics, Toshiba Corporation, Microchip Technology, MuRata Manufacturing, Rockwell Automation, and Diodes Incorporated.

Key Developments:

In December 2024, STMicroelectronics and Ampere collaborate on powerbox with long term supply for silicon carbide. Ampere, the intelligent electric EV pure player born from Renault Group and STMicroelectronics announced the next step in their strategic co-operation, starting in 2026, with a multi-year agreement between STMicroelectronics and Renault Group on the supply of Silicon Carbide (SiC) power modules.

In November 2024, Infineon Technologies AG and Quantinuum, full-stack quantum computing, today announced a strategic partnership to develop the future generation of ion traps. This partnership will drive the acceleration of quantum computing and enable progress in fields such as generative chemistry, material science, and artificial intelligence.

Component Types Covered:

  • Power Semiconductors
  • Logic Semiconductors
  • Analog Semiconductors
  • Memory Semiconductors
  • Discrete Semiconductors
  • Microcontrollers and Sensors
  • Other Component Types

Vehicle Types Covered:

  • Plug-in Hybrid Electric Vehicles (PHEVs)
  • Battery Electric Vehicles (BEVs)
  • Fuel Cell Electric Vehicles (FCEVs)
  • Hybrid Electric Vehicles (HEVs)

Technologies Covered:

  • Silicon-Based Semiconductors
  • Wide Bandgap Semiconductors

Applications Covered:

  • Battery Management System (BMS)
  • Powertrain System
  • Advanced Driver Assistance Systems (ADAS)
  • Body and Chassis
  • Infotainment and Connectivity
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Electric Vehicle Semiconductor Market, By Component Type

  • 5.1 Introduction
  • 5.2 Power Semiconductors
  • 5.3 Logic Semiconductors
  • 5.4 Analog Semiconductors
  • 5.5 Memory Semiconductors
  • 5.6 Discrete Semiconductors
  • 5.7 Microcontrollers and Sensors
  • 5.8 Other Component Types

6 Global Electric Vehicle Semiconductor Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Plug-in Hybrid Electric Vehicles (PHEVs)
  • 6.3 Battery Electric Vehicles (BEVs)
  • 6.4 Fuel Cell Electric Vehicles (FCEVs)
  • 6.5 Hybrid Electric Vehicles (HEVs)

7 Global Electric Vehicle Semiconductor Market, By Technology

  • 7.1 Introduction
  • 7.2 Silicon-Based Semiconductors
  • 7.3 Wide Bandgap Semiconductors

8 Global Electric Vehicle Semiconductor Market, By Application

  • 8.1 Introduction
  • 8.2 Battery Management System (BMS)
  • 8.3 Powertrain System
  • 8.4 Advanced Driver Assistance Systems (ADAS)
  • 8.5 Body and Chassis
  • 8.6 Infotainment and Connectivity
  • 8.7 Other Applications

9 Global Electric Vehicle Semiconductor Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Infineon Technologies
  • 11.2 STMicroelectronics
  • 11.3 NXP Semiconductors
  • 11.4 ON Semiconductor
  • 11.5 Texas Instruments
  • 11.6 Renesas Electronics
  • 11.7 Broadcom Inc.
  • 11.8 Vishay Intertechnology
  • 11.9 Qualcomm Technologies
  • 11.10 Marvell Technology
  • 11.11 Samsung Electronics
  • 11.12 Toshiba Corporation
  • 11.13 Microchip Technology
  • 11.14 MuRata Manufacturing
  • 11.15 Rockwell Automation
  • 11.16 Diodes Incorporated
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦