½ÃÀ庸°í¼­
»óǰÄÚµå
1679193

MOS ¼¾¼­ ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

MOS Sensors Market Forecasts to 2030 - Global Analysis by Type (Gas Sensors, Chemical Sensors, Humidity Sensors, Pressure Sensors and Temperature Sensors), Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é, ¼¼°è MOS ¼¾¼­ ½ÃÀåÀº ¿¹Ãø ±â°£ µ¿¾È 8.25%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±Ý¼Ó »êÈ­¹° ¹ÝµµÃ¼(MOS) ¼¾¼­´Â ±Ý¼Ó »êÈ­¹° ¹ÝµµÃ¼ Àç·á¸¦ ÀÌ¿ëÇÏ¿© °¡½º ³óµµ¸¦ °¨ÁöÇϰí Á¤·®È­ÇÕ´Ï´Ù. ¼¾¼­°¡ ´ë»ó °¡½º¿¡ ³ëÃâµÇ¸é °¡½º ºÐÀÚ¿Í ¹ÝµµÃ¼ Ç¥¸éÀÇ »óÈ£ ÀÛ¿ëÀ¸·Î ÀÎÇØ ¼¾¼­ÀÇ ÀúÇ×ÀÌ º¯È­ÇÏ¿© °¡½º ³óµµ¿¡ ºñ·ÊÇÏ´Â Àü±â ½ÅÈ£°¡ »ý¼ºµÇ¸ç, MOS ¼¾¼­´Â »ê¾÷ ¾ÈÀü, ÀÚµ¿Â÷ ¾ÖÇø®ÄÉÀ̼Ç, ÀÇ·á Áø´Ü, °ø±âÁú ¸ð´ÏÅ͸µ µî¿¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. MOS ¼¾¼­´Â ³»±¸¼º, ºü¸¥ ¹ÝÀÀ ½Ã°£, °í°¨µµ µîÀÇ ÀåÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ °¡½º °¨Áö ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ ÃÖ»óÀÇ °á°ú¸¦ ¾òÀ¸·Á¸é ¿Âµµ ¹× ½Àµµ¿Í °°Àº ȯ°æ º¯¼ö°¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖÀ¸¹Ç·Î ±³Á¤ÀÌ ÇÊ¿äÇÕ´Ï´Ù.

°ø±âÁú ¸ð´ÏÅ͸µ ¼ö¿ä È®´ë

±â¾÷, Á¤ºÎ ¹× ¼ÒºñÀÚ°¡ ½Ç½Ã°£ ¿À¿° ÃßÀûÀ» ¿ì¼±½ÃÇÔ¿¡ µû¶ó °ø±âÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó MOS ¼¾¼­ ½ÃÀåÀÌ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® °ø±âûÁ¤±â, HVAC ½Ã½ºÅÛ, »ê¾÷ ¹èÃâ¹° ¸ð´ÏÅ͸µ¿¡ MOS ¼¾¼­ÀÇ »ç¿ëÀº ´õ¿í ¾ö°ÝÇÑ È¯°æ ¿ä°Ç°ú °Ç°­¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡·Î ÀÎÇØ ÃËÁøµÇ°í ÀÖÀ¸¸ç, MOS ¼¾¼­´Â °í°¨µµ, ºü¸¥ ÀÀ´ä, IoT Áö¿ø ±â±â¿ÍÀÇ »óÈ£ ÀÛ¿ëÀ» ÅëÇØ CO2, VOC, NO2¿Í °°Àº ¿À¿° ¹°ÁúÀÇ °ËÃâ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¿À¿°¹°Áú °ËÃâ¿¡ ÃÖÀûÀÔ´Ï´Ù.

³ôÀº Àü·Â ¼Òºñ

³ôÀº Àü·Â ¼Òºñ´Â ¹èÅ͸® ±¸µ¿ ¹× ÈÞ´ë¿ë Á¦Ç°¿¡¼­ »ç¿ëÀ» Á¦ÇÑÇÔÀ¸·Î½á MOS ¼¾¼­ ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àü·Â ¼Òºñ´Â ¿¡³ÊÁö È¿À²À» ¶³¾î¶ß¸®°í, ¿î¿µ ºñ¿ëÀ» Áõ°¡½Ã۸ç, ¹ß¿­·®ÀÌ ³Ê¹« ¸¹¾Æ ¼¾¼­ÀÇ ¼ö¸íÀ» ´ÜÃà½ÃŰ°í ¼º´É ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ¶ÇÇÑ ³ôÀº Àü·Â ¼Òºñ·Î ÀÎÇØ ÀúÀü·Â ¾ÖÇø®ÄÉÀÌ¼Ç ¹× »ç¹°ÀÎÅÍ³Ý ¾ÖÇø®ÄÉÀ̼ǿ¡ ÅëÇÕÇϱⰡ ¾î·Á¿ö ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÏ°í ¼ÒºñÀÚ¿Í ±â¾÷¿¡ ´ëÇÑ ´Ù¸¥ ÀúÀü·Â ¼¾¼­ ±â¼úÀÇ ¸Å·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

IoT¿Í ½º¸¶Æ® ±â±âÀÇ ¹ßÀü

IoT¿Í ½º¸¶Æ® ±â±âÀÇ ¹ßÀüÀº ½Ç½Ã°£ °ø±âÁú ¸ð´ÏÅ͸µ, ÀÚµ¿È­, ¿¬°á¼ºÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ½ÃÀåÀ» ÁÖµµÇϰí ÀÖÀ¸¸ç, IoT Ç÷§Æû°úÀÇ ÅëÇÕÀº ½º¸¶Æ®È¨, »ê¾÷ ¾ÈÀü, ÇコÄÉ¾î ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ µ¥ÀÌÅÍ ºÐ¼®, ¿ø°Ý ¸ð´ÏÅ͸µ, ¿¹Ãø À¯Áöº¸¼ö¸¦ °­È­ÇÕ´Ï´Ù. °­È­ÇÕ´Ï´Ù. °ø±âûÁ¤±â, ¿þ¾î·¯ºí, HVAC ½Ã½ºÅÛ°ú °°Àº ½º¸¶Æ® ±â±â´Â MOS ¼¾¼­¸¦ Ȱ¿ëÇÏ¿© Á¤È®ÇÑ °¡½º °¨Áö¸¦ ÅëÇØ »ç¿ëÀÚ °æÇè°ú ±ÔÁ¦ Áؼö¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ¼ö¿ä¸¦ Áõ°¡½ÃÄÑ ¼ÒÇüÈ­, ¿¡³ÊÁö È¿À², ´ÙÁß °¡½º °¨Áö ±â´ÉÀÇ Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

±³Á¤ ¹× °¨µµ ¹®Á¦

º¸Á¤ ¹× °¨µµ ¹®Á¦´Â Á¤È®µµ¿Í ½Å·Ú¼ºÀ» ÀúÇϽÃÄÑ MOS ¼¾¼­ »ê¾÷À» ÀúÇØÇϰí ÀÖ½À´Ï´Ù. Á¤±âÀûÀÎ Àç±³Á¤Àº ÀÛµ¿ È¿À²À» ¶³¾î¶ß¸®°í, À¯Áöº¸¼ö ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ¶ÇÇÑ ¿Âµµ ¹× ½Àµµ¿Í °°Àº ȯ°æ º¯¼ö¿¡ µû¶ó ¹Î°¨µµ°¡ º¯Çϱ⠶§¹®¿¡ Áß¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ÀÇ À¯È¿¼ºÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àå¾Ö¹°Àº ½ÃÀå È®´ë¸¦ ÀúÇØÇϰí, ³ôÀº Á¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ÀÇ·á ¹× »ê¾÷ ÀÚµ¿È­ µîÀÇ ºÐ¾ß¿¡¼­ »ç¿ëÀ» ¾ïÁ¦ÇÏ¿© ´ëü ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ´ MOS ¼¾¼­ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß¸®°í »ý»êÀ» Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª ÀÇ·á ¹× °ø±âÁú ¸ð´ÏÅ͸µ ÀÀ¿ë ºÐ¾ß¿¡¼­´Â ¼ö¿ä°¡ ±ÞÁõÇÏ¿© ±â¼ú Çõ½ÅÀ» ÃËÁøÇß½À´Ï´Ù. ºÀ¼â·Î ÀÎÇØ »ê¾÷ Ȱµ¿ÀÌ µÐÈ­µÇ¾úÁö¸¸, ÀÚµ¿È­ ¹× ¾ÈÀü ¸ð´ÏÅ͸µ ºÐ¾ß¿¡¼­ ½º¸¶Æ® ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ È¸º¹¼¼°¡ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí IoT, ÀÚµ¿Â÷, ȯ°æ °¨Áö ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ äÅÃÀÌ Áõ°¡ÇÏ¿© Àå±âÀûÀÎ È®ÀåÀ» ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È È­ÇÐ ¼¾¼­ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

°í°¨µµ ½Ç½Ã°£ °¡½º °¨Áö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä, ƯÈ÷ °ø±âÁú ¸ð´ÏÅ͸µ ¹× À¯ÇØ °¡½º °¨Áö¿¡ ´ëÇÑ MOS ¼¾¼­ÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó È­ÇÐ ¼¾¼­ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ª³ë ¼ÒÀç¿Í ¼ÒÇüÈ­ÀÇ ¹ßÀüÀº ¼¾¼­ÀÇ È¿À²¼ºÀ» ´õ¿í Çâ»ó½ÃÄÑ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿Í IoT ÅëÇÕÀÇ Áõ°¡´Â È­ÇÐ ¼¾¼­¸¦ MOS ¼¾¼­ ½ÃÀå È®´ëÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇコÄÉ¾î ¹× ÀÇ·á ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÇコÄÉ¾î ¹× ÀÇ·á ºÐ¾ß´Â ÀÇ·á ½Ã¼³ÀÇ È£Èí ºÐ¼®, Áúº´ °¨Áö ¹× °ø±âÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¼ö¿ä·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, MOS ¼¾¼­´Â Áúº´ÀÇ Á¶±â ¹ß°ßÀ» À§ÇØ È£Èí Áß Èֹ߼º À¯±â È­ÇÕ¹°(VOC) °ËÃâ°ú °°Àº ºñħ½ÀÀû Áø´Ü¿¡ »ç¿ëµË´Ï´Ù. ȯÀÚ ¸ð´ÏÅ͸µ, ¸¶Ãë °ü¸®, °¨¿° °ü¸® ½Ã½ºÅÛ¿¡¼­ÀÇ ¿ªÇÒÀº ±× äÅÃÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾ ½Ç½Ã°£ Áø´Ü ¹× ½º¸¶Æ® ÀÇ·á±â±â·Î ¹ßÀüÇÔ¿¡ µû¶ó °í°¨µµ, °í½Å·Ú¼º MOS ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä´Â Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À² Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â °ø±âÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¼ö¿ä, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ½º¸¶Æ®È¨ ¿ÀÅä¸ÞÀ̼ÇÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇコÄɾî, ÀÚµ¿Â÷, »ê¾÷ ¾ÈÀü°ú °°Àº »ê¾÷Àº °¡½º °¨Áö ¹× ¹èÃâ Á¦¾î¸¦ À§ÇÑ MOS ¼¾¼­ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, IoT ±â¹Ý ½º¸¶Æ® ¼¾¼­ÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀº °øÁß º¸°ÇÀ» °­È­Çϰí, ÀÛ¾÷Àå ¾ÈÀüÀ» Çâ»ó½Ã۸ç, ±ÔÁ¦ Áؼö¸¦ Áö¿øÇϱ⠶§¹®¿¡ MOS ¼¾¼­´Â ºÏ¹ÌÀÇ ½º¸¶Æ®Çϰí Áö¼Ó°¡´ÉÇÑ ÀÎÇÁ¶ó¸¦ À§ÇÑ Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ȯ°æ ±ÔÁ¦¸¦ °­È­Çϸ鼭 ¿À¿° ¸ð´ÏÅ͸µ¿ë ¼¾¼­ÀÇ »ç¿ëÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÚµ¿Â÷ ¹× °¡Àü ºÐ¾ßÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ °¡½º °¨Áö ¹× »ç¹°ÀÎÅͳÝ(Internet of Things) ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ MOS ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¹ÝµµÃ¼ »ý»êÀÇ °³¼±°ú R&D ºñ¿ëÀÇ Áõ°¡·Î ½ÃÀåÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀº MOS ¼¾¼­ÀÇ °³¹ß ¹× ±¸ÇöÀÇ ÁÖ¿ä °ÅÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç Á¤º¸ Ãâó
    • 1Â÷ Á¶»ç Á¤º¸ Ãâó
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ MOS ¼¾¼­ ½ÃÀå : À¯Çüº°

  • °¡½º ¼¾¼­
  • È­ÇÐ ¼¾¼­
  • ½Àµµ ¼¾¼­
  • ¾Ð·Â ¼¾¼­
  • ¿Âµµ ¼¾¼­

Á¦6Àå ¼¼°èÀÇ MOS ¼¾¼­ ½ÃÀå : ±â¼úº°

  • Èĸ· MOS ¼¾¼­
  • ¹Ú¸· MOS ¼¾¼­
  • MEMS ±â¹Ý MOS ¼¾¼­

Á¦7Àå ¼¼°èÀÇ MOS ¼¾¼­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷¡¤¿î¼Û
  • ÇコÄɾî¿Í ÀÇ·á
  • »ê¾÷¡¤Á¦Á¶¾÷
  • °¡Àü
  • ¿¡³ÊÁö¿Í Àü·Â
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ MOS ¼¾¼­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ °³¿ä

  • AMS-Osram
  • Analog Devices
  • Bosch Sensortec
  • GE Measurement & Control
  • Honeywell International
  • Infineon Technologies
  • Melexis
  • NXP Semiconductors
  • OmniVision Technologies
  • ON Semiconductor
  • Panasonic Corporation
  • ROHM Semiconductor
  • Sensirion
  • Sony Semiconductor Solutions
  • STMicroelectronics
  • Teledyne DALSA
  • Texas Instruments
  • Vishay Intertechnology
ksm 25.04.07

According to Stratistics MRC, the Global MOS Sensors Market is growing at a CAGR of 8.25% during the forecast period. Metal-Oxide Semiconductor (MOS) sensors detect and quantify gas concentrations by utilizing a metal-oxide semiconductor material. An electrical signal proportionate to the gas concentration is produced when the sensor is exposed to a target gas because of interactions between the gas molecules and the semiconductor surface that alter the sensor's resistance. MOS sensors are extensively utilized in industrial safety, automotive applications, healthcare diagnostics, and air quality monitoring. They have benefits like durability, quick reaction times, and high sensitivity. For best results in a variety of gas detection applications, they must be calibrated because environmental variables like temperature and humidity might have an impact on them.

Market Dynamics:

Driver:

Growing Demand for Air Quality Monitoring

The rising demand for air quality monitoring is propelling the MOS sensors market, as enterprises, governments, and consumers prioritize real-time pollution tracking. The use of MOS sensors in smart air purifiers, HVAC systems, and industrial emissions monitoring is being driven by stricter environmental requirements as well as growing health concerns. They are perfect for detecting pollutants like CO2, VOCs, and NO2 because of their high sensitivity, quick response, and interaction with IoT-enabled equipment.

Restraint:

High Power Consumption

High power consumption has a detrimental influence on the MOS sensor market by limiting its use in battery-operated and portable products. It lowers energy efficiency, raises operating expenses, and produces too much heat, which shortens sensor lifespan and causes performance problems. High power needs also make it difficult to integrate into low-power and Internet of Things applications, which limits market expansion and increases the appeal of other low-power sensor technologies to consumers and businesses.

Opportunity:

Advancements in IoT and Smart Devices

Advancements in IoT and smart devices are significantly driving the market by enabling real-time air quality monitoring, automation, and connectivity. Integration with IoT platforms enhances data analytics, remote monitoring, and predictive maintenance in smart homes, industrial safety, and healthcare applications. Smart devices like air purifiers, wearables, and HVAC systems leverage MOS sensors for accurate gas detection, improving user experience and regulatory compliance. This trend boosts demand, fostering innovation in miniaturization, energy efficiency, and multi-gas detection capabilities.

Threat:

Calibration and Sensitivity Issues

Calibration and sensitivity difficulties impede the MOS sensor industry by reducing accuracy and dependability. Regular recalibration lowers operational efficiency and raises maintenance expenses. Their efficacy in crucial applications is restricted by sensitivity variations brought on by environmental variables like temperature and humidity. These obstacles hinder market expansion and increase demand for alternative sensor technologies by discouraging use in sectors like healthcare and industrial automation that demand high precision.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the MOS sensors market, disrupting supply chains and delaying production. However, demand surged in healthcare and air quality monitoring applications, driving innovation. Lockdowns slowed industrial activities, but the need for smart sensors in automation and safety monitoring grew. Post-pandemic recovery has spurred market growth, with increased adoption in IoT, automotive, and environmental sensing applications, fostering long-term expansion.

The chemical sensors segment is expected to be the largest during the forecast period

The chemical sensors segment is expected to account for the largest market share during the forecast period, due to demand for high-sensitivity, real-time gas sensing solutions fuels MOS sensor adoption, particularly in air quality monitoring and hazardous gas detection. Advancements in nanomaterials and miniaturization further improve sensor efficiency, boosting market growth. Additionally, stringent environmental regulations and increasing IoT integration amplify the impact, making chemical sensors a key enabler for MOS sensor market expansion.

The healthcare & medical segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the healthcare & medical segment is predicted to witness the highest growth rate, due to demand for breath analysis, disease detection, and air quality monitoring in medical facilities. MOS sensors are used in non-invasive diagnostics, such as detecting volatile organic compounds (VOCs) in exhaled breath for early disease detection. Their role in patient monitoring, anesthesia control, and infection control systems further boosts adoption. As healthcare advances toward real-time diagnostics and smart medical devices, the demand for highly sensitive and reliable MOS sensors continues to grow.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share as demand for air quality monitoring, stringent environmental regulations, and advancements in smart home automation. Industries like healthcare, automotive, and industrial safety benefit from MOS sensors for gas detection and emission control. The growing adoption of IoT-based smart sensors further accelerates market growth. These factors enhance public health, improve workplace safety, and support regulatory compliance, making MOS sensors a critical component in North America's evolving smart and sustainable infrastructure.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, as governments enforce stronger environmental restrictions, the use of sensors for pollution monitoring is increasing. The need for MOS sensors in gas detection and Internet of Things applications is further fueled by the growing automotive and consumer electronics sectors. Furthermore, the market is expanding due to improvements in semiconductor production and rising R&D expenditures, which makes Asia-Pacific a major center for MOS sensor development and implementation.

Key players in the market

Some of the key players profiled in the MOS Sensors Market include AMS-Osram, Analog Devices, Bosch Sensortec, GE Measurement & Control, Honeywell International, Infineon Technologies, Melexis, NXP Semiconductors, OmniVision Technologies, ON Semiconductor, Panasonic Corporation, ROHM Semiconductor, Sensirion, Sony Semiconductor Solutions, STMicroelectronics, Teledyne DALSA, Texas Instruments and Vishay Intertechnology.

Key Developments:

In December 2024, Panasonic announced the launch of its BalancedHome Elite and Elite plus Series of Energy Recovery Ventilators (ERV). Available in top and side port configurations and compliant with major building codes, the new BalancedHome series ERVs are versatile and efficient, giving builders the flexibility to choose between eight different models with four different CFM levels.

In November 2024, Panasonic introduced the new PAN1783 Bluetooth Low Energy (LE) module to its wireless module portfolio. This module is a 5.4 BLE device based on the Nordic nrf5340 single chip controller. It is available with an onboard chip antenna and RF-bottom pad for external antenna connection.

In November 2024, Panasonic Automotive Systems Co., Ltd. (PAS) and Arm announced a strategic partnership aimed at standardizing automotive architecture for Software-Defined Vehicles (SDVs).

Types Covered:

  • Gas Sensors
  • Chemical Sensors
  • Humidity Sensors
  • Pressure Sensors
  • Temperature Sensors

Technologies Covered:

  • Thick-Film MOS Sensors
  • Thin-Film MOS Sensors
  • MEMS-Based MOS Sensors

End Users Covered:

  • Automotive & Transportation
  • Healthcare & Medical
  • Industrial & Manufacturing
  • Consumer Electronics
  • Energy & Power
  • Aerospace & Defense
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global MOS Sensors Market, By Type

  • 5.1 Introduction
  • 5.2 Gas Sensors
  • 5.3 Chemical Sensors
  • 5.4 Humidity Sensors
  • 5.5 Pressure Sensors
  • 5.6 Temperature Sensors

6 Global MOS Sensors Market, By Technology

  • 6.1 Introduction
  • 6.2 Thick-Film MOS Sensors
  • 6.3 Thin-Film MOS Sensors
  • 6.4 MEMS-Based MOS Sensors

7 Global MOS Sensors Market, By End User

  • 7.1 Introduction
  • 7.2 Automotive & Transportation
  • 7.3 Healthcare & Medical
  • 7.4 Industrial & Manufacturing
  • 7.5 Consumer Electronics
  • 7.6 Energy & Power
  • 7.7 Aerospace & Defense
  • 7.8 Other End Users

8 Global MOS Sensors Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 AMS-Osram
  • 10.2 Analog Devices
  • 10.3 Bosch Sensortec
  • 10.4 GE Measurement & Control
  • 10.5 Honeywell International
  • 10.6 Infineon Technologies
  • 10.7 Melexis
  • 10.8 NXP Semiconductors
  • 10.9 OmniVision Technologies
  • 10.10 ON Semiconductor
  • 10.11 Panasonic Corporation
  • 10.12 ROHM Semiconductor
  • 10.13 Sensirion
  • 10.14 Sony Semiconductor Solutions
  • 10.15 STMicroelectronics
  • 10.16 Teledyne DALSA
  • 10.17 Texas Instruments
  • 10.18 Vishay Intertechnology
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦