![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1679286
¸¶¿ì½º ¸ðµ¨ ½ÃÀå ¿¹Ãø(-2030³â) : ¸ðµ¨ À¯Çüº°, ±â¼úº°, ÀûÀÀÁõº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Mice Model Market Forecasts to 2030 - Global Analysis By Model Type, Technology, Indication, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¸¶¿ì½º ¸ðµ¨ ½ÃÀåÀº 2024³â¿¡ 15¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 10.1%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 27¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¸¶¿ì½º ¸ðµ¨Àº »ýÁã°¡ Àΰ£°ú À¯ÀüÀûÀ¸·Î À¯»çÇϹǷΠÀΰ£ Áúº´, »ý¹°ÇÐÀû °úÁ¤, ÀǾàǰ °³¹ß ¿¬±¸¿¡ »ç¿ëµÇ´Â ½ÇÇè ÅøÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¸ðµ¨Àº ¿¬±¸ÀÚµéÀÌ ¾Ï, ½Å°æ ÅðÇ༺ Áúȯ, ½ÉÇ÷°ü Áúȯ µîÀÇ ÁúȯÀ» ¿¬±¸ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ±ÙÄ£±³¹è, ±³¹è°è, ÇüÁúÀüȯ, ³ì¾Æ¿ô, Àΰ£È ¸ðµ¨ µî ´Ù¾çÇÑ À¯ÇüÀÌ ÀÖÀ¸¸ç, °¢°¢ ƯÁ¤ ¿¬±¸ ¼ö¿ä¿¡ µû¶ó CRISPR-Cas9 ¹× ±âŸ À¯ÀüÀÚ ÆíÁý ±â¼úÀº Ç¥Àû Áúº´ ¿¬±¸¸¦ À§ÇØ ÀÌ·¯ÇÑ ¸ðµ¨ÀÇ Á¤È®µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.
½Å¾à°³¹ß¿¡ ÀÖÀ¸¸ç, ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀüÀÓ»ó ¸ðµ¨ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
Á¦¾àȸ»ç¿Í »ý¸í°øÇÐ ±â¾÷ÀÌ ÀÓ»ó½ÃÇè Àü¿¡ ¾à¹°ÀÇ È¿´É°ú µ¶¼ºÀ» Æò°¡Çϱâ À§ÇØ ¸¶¿ì½º ¸ðµ¨À» ±¤¹üÀ§ÇÏ°Ô »ç¿ëÇÔÀ¸·Î½á Àΰ£À» ´ë»óÀ¸·Î ÇÑ ¿¬±¸¿¡¼ ½ÇÆÐÇÒ È®·üÀÌ ÁÙ¾îµé°í ÀÖ½À´Ï´Ù. »ýÁã´Â ¹ø½Ä ÁֱⰡ ª°í À¯ÀüÀûÀ¸·Î Àΰ£°ú À¯»çÇϹǷΠ½Å¼ÓÇϰí È®Àå °¡´ÉÇÑ ½ÇÇè¿¡ ÀûÇÕÇÕ´Ï´Ù. »ý¹°ÀÇÇÐ ¿¬±¸¿¡¼ ¸¶¿ì½º ¸ðµ¨ÀÇ Çʿ伺Àº ½ÇÁúÀûÀÎ ÀüÀÓ»ó Áõ°Å¸¦ ¿ä±¸ÇÏ´Â FDA³ª EMA¿Í °°Àº Á¶»ç ±â°ü¿¡ ÀÇÇØ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ¾Ï, ½Å°æÁúȯ°ú °°Àº ¸¸¼ºÁúȯ Áõ°¡·Î ÀÎÇØ Ä¡·á ¿¬±¸¸¦ À§ÇÑ Á¤±³ÇÑ ¸¶¿ì½º ¸ðµ¨ÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
À±¸®Àû ¿ì·Á¿Í ¾ö°ÝÇÑ µ¿¹°½ÇÇè ±ÔÁ¦
PETA³ª HSUS¿Í °°Àº µ¿¹°º¸È£´ÜüµéÀº ¿¬±¸¿¡¼ÀÇ µ¿¹°¸ðµ¨ »ç¿ë¿¡ Àû±ØÀûÀ¸·Î ¹Ý´ëÇÏ¸ç ´ëü±â¼úÀÇ »ç¿ëÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸±â°üÀº ¹Ì±¹ÀÇ µ¿¹°º¹Áö¹ýÀ̳ª À¯·´¿¬ÇÕÀÇ REACH µî µ¿¹°½ÇÇè¿¡ °üÇÑ ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ÁؼöÇϱâ À§ÇØ ´õ ¸¹Àº ºñ¿ëÀ» ÁöºÒÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ µ¿¹°½ÇÇèÀ» ÁÙÀÌ·Á´Â ¿©·ÐÀÇ ¾Ð·Â°ú ±â¾÷ÀÇ ¾à¼ÓÀ¸·Î ÀÎÇØ ¿À°¡³ëÀ̵å, ºñ½Ç¸®ÄÜ ½Ã¹Ä·¹À̼Ç, ÈÞ¸Õ¿ÂĨ ±â¼ú µî ´ëü ¸ðµ¨¿¡ ´õ ¸¹Àº ÀÚ±ÝÀÌ ÅõÀԵǰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
ÃÖ÷´Ü À¯ÀüÀÚ º¯Çü ±â¼ú °³¹ß
CRISPR-Cas9¿Í °°Àº ÃֽŠÀ¯ÀüÀÚ º¯Çü ±â¼úÀº Áúº´ ¿¬±¸¿¡ »ç¿ëµÇ´Â ¸¶¿ì½º ¸ðµ¨ÀÇ Á¤È®µµ¸¦ Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. °úÇÐÀÚµéÀÌ ³ì¾Æ¿ô ¸¶¿ì½º, ³ìÀÎ ¸¶¿ì½º, Àΰ£È ¸¶¿ì½º ¸ðµ¨À» Á¤È®ÇÏ°Ô Á¦ÀÛÇÒ ¼ö ÀÖ°Ô µÇ¸é¼ ¾ËÃ÷ÇÏÀ̸Ӻ´, ¾Ï, ÀÚ°¡¸é¿ªÁúȯ°ú °°Àº Áúº´¿¡ ´ëÇÑ ´õ ³ªÀº Áúº´ ¸ðµ¨¸µÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. Á¦¾à»ç, »ý¸í°øÇÐ ±â¾÷, ¿¬±¸±â°üµéÀÇ Çù·ÂÀº ¾à¹° ½ÃÇè ¹× Ä¡·á¹ý °³¹ßÀ» À§ÇÑ ¸ÂÃãÇü ¸¶¿ì½º ¸ðµ¨ Á¦ÀÛÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
À¯ÀüÀÚ Á¶ÀÛ ¸ðµ¨¿¡ µû¸¥ ³ôÀº ºñ¿ë
ÇüÁúÀüȯ ¸¶¿ì½º¿Í ³ì¾Æ¿ô ¸¶¿ì½ºÀÇ ¹ø½Ä, »çÀ°, Àü¹®ÀûÀÎ °ü¸®°¡ ÇÊ¿äÇϹǷΠ¿¬±¸ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ÀÌ ºñ¿ë ºÎ´ã ¶§¹®¿¡ ´ëÇÐ ±â°üÀ̳ª ¼Ò±Ô¸ð ½ÇÇè½Ç¿¡¼´Â °í±Þ ¸¶¿ì½º ¸ðµ¨À» ÀÌ¿ëÇÒ ¼ö ¾ø´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶ÇÇÑ À¯ÀüÀÚ ÀçÁ¶ÇÕ ¸ðµ¨ÀÇ °³¹ß ±â°£ÀÌ ±æ±â ¶§¹®¿¡ Áß¿äÇÑ ¿¬±¸ °èȹÀÌ ¿¬±âµÉ ¼ö ÀÖÀ¸¸ç, ´õ Àú·ÅÇÑ ´ëüǰÀÇ ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. 3D ¼¼Æ÷¹è¾ç, AI ±â¹Ý ÀǾàǰ °³¹ß µî ´ëü ¿¬±¸ ±â¼úÀÇ °¡¿ë¼º È®´ë·Î ÀÎÇØ ¸¶¿ì½º ¸ðµ¨ ½ÃÀå È®´ëµµ À§ÇùÀ» ¹Þ°í ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀº Ãʱ⿡ ½ÇÇ赿¹° °ø±Þ¸Á¿¡ È¥¶õÀ» ÀÏÀ¸ÄÑ ¿¬±¸ ÀÏÁ¤°ú ÀüÀÓ»ó½ÃÇè Ȱµ¿¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Æó¼â ¹× ¿©Çà Á¦ÇÑÀ¸·Î ÀÎÇØ »çÀ° ÇÁ·Î±×·¥ÀÌ Áö¿¬µÇ°í ¿¬±¸½Ã¼³¿¡ ´ëÇÑ Á¢±ÙÀÌ Á¦ÇÑµÇ¾î ´Ù¾çÇÑ »ý¹°ÀÇÇÐ ¿¬±¸°¡ ÁߴܵǾú½À´Ï´Ù. ±×·¯³ª À̹ø ÆÒµ¥¹ÍÀº ¹é½Å ¹× Ç×¹ÙÀÌ·¯½ºÁ¦ °³¹ß¿¡ ÀÖÀ¸¸ç, ¸¶¿ì½º ¸ðµ¨ÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. °¨¿°¼º Áúȯ ¸ðµ¨¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¸¶¿ì½º ¸ðµ¨ ½ÃÀå¿¡ ´ëÇÑ ÀçÅõÀÚ°¡ ÃËÁøµÇ¾î Àå±âÀûÀÎ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ±ÙÄ£±³¹è ¸¶¿ì½º ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
±ÙÄ£±³¹è ¸¶¿ì½º ºÎ¹®Àº À¯ÀüÀû ±ÕÀϼºÀ¸·Î ÀÎÇØ »ý¹° ÀÇÇÐ ¿¬±¸¿¡¼ ÀçÇö¼º°ú Àϰü¼ºÀ» º¸ÀåÇϹǷΠ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¸¶¿ì½º´Â ¾Ï ¿¬±¸, ¸é¿ªÇÐ ¿¬±¸, µ¶¼º ¿¬±¸ µî¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, Á¦¾à ¹× Çмú±â°ü¿¡¼ ¼±È£Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸ÂÃãÇü ÀÇ·á¿¡¼ ½Å·ÚÇÒ ¼ö ÀÖ´Â ÀüÀÓ»ó ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±ÙÄ£±³¹è ¸¶¿ì½ºÀÇ Ã¤ÅÃÀÌ ´õ¿í È®´ëµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Á¾¾çÇÐ ºÐ¾ß´Â °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Ï ºÐ¾ß´Â Àü ¼¼°è ¾Ï ºÎ´ã Áõ°¡¿Í ¾Ï ¿¬±¸¸¦ À§ÇÑ °í±Þ ÀüÀÓ»ó ¸ðµ¨¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸¶¿ì½º ¸ðµ¨Àº Á¾¾ç »ý¹°ÇÐ ¿¬±¸, ½Å±Ô ¾Ï Ä¡·áÁ¦ÀÇ ½ÃÇè, ÀÓ»ó½ÃÇè Àü ¸é¿ª ¿ä¹ýÀÇ È¿´É Æò°¡¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀÌ Àΰ£ Á¾¾ç ¹Ì¼¼È¯°æÀ» ¸ð¹æÇÑ Á¤È®ÇÑ ¸ðµ¨À» ã°í ÀÖÀ¸¹Ç·Î À¯ÀüÀÚº¯Çü ¸¶¿ì½º(GEM), ȯÀÚ À¯·¡ ÀÌÁ¾À̽Ä(PDX) ¸ðµ¨, Àΰ£È ¸¶¿ì½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â Àß ±¸ÃàµÈ ¿¬±¸ ÀÎÇÁ¶ó, »ý¹° ÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ ³ôÀº ÅõÀÚ, Á¦¾à ȸ»çÀÇ °·ÂÇÑ Á¸Àç°¨À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹Àº ÀüÀÓ»ó ¿¬±¸¿¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ±¹¸³º¸°Ç¿ø(NIH)°ú ¹Î°£ »ý¸í°øÇÐ ±â¾÷ µîÀÇ ±â°ü¿¡¼ ¸¹Àº ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â ½Å¾à°³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ³ôÀº À¯Àü°øÇÐ ´É·Â°ú ÇÔ²² ¸¶¿ì½º ¸ðµ¨ ¼ö¿ä¸¦ Áö¼ÓÀûÀ¸·Î °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â »ý¹° ÀÇÇÐ ¿¬±¸¿¡ ´ëÇÑ Á¤ºÎ Áö¿ø Áõ°¡, ÀÇ·áºñ Áõ°¡, Áß±¹, ÀϺ», Àεµ µîÀÇ ±¹°¡¿¡¼ Á¦¾à »ê¾÷ÀÌ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ À¯ÀüÀÚ ÆíÁý ±â¼úÀÇ ¹ßÀüÀ¸·Î À¯ÀüÀÚ º¯Çü ¸¶¿ì½ºÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾Æ ¿¬±¸±â°ü°ú ¼¼°è Á¦¾à±â¾÷°úÀÇ °øµ¿¿¬±¸°¡ ÀÌ Áö¿ª ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Mice Model Market is accounted for $1.5 billion in 2024 and is expected to reach $2.7 billion by 2030 growing at a CAGR of 10.1% during the forecast period. A mice model is a laboratory tool used to study human diseases, biological processes, and drug development due to mice's genetic similarity to humans. These models help researchers investigate conditions like cancer, neurodegenerative disorders, and cardiovascular diseases. Different types include inbred, outbred, transgenic, knockout, and humanized models, each serving specific research needs. CRISPR-Cas9 and other gene-editing technologies have enhanced the precision of these models for targeted disease studies.
Growing need for reliable preclinical models in drug discovery and development
The probability of failure in human research is decreased by the widespread use of mouse models by pharmaceutical and biotechnology companies to assess medication effectiveness and toxicity prior to clinical trials. Mice are perfect for quick and scalable experiments because of their short reproductive cycle and genetic resemblance to humans. The need for mouse models in biomedical research is further increased by regulatory bodies like the FDA and EMA, which want substantial preclinical evidence. The need for sophisticated mouse models for therapeutic research has increased due to the growth in chronic illnesses, such as cancer and neurological disorders.
Ethical concerns and stringent animal testing regulations
Animal rights groups like PETA and HSUS aggressively oppose the use of animal models in research and promote the use of alternative techniques. Research institutes must pay more to comply with strict regulations on animal testing, such as the Animal Welfare Act in the United States and the European Union's REACH. Additionally, there is now more money being spent on alternative models including organoids, in silico simulations, and human-on-a-chip technologies as a result of public pressure and business pledges to decrease animal experimentation hampers the market growth.
Development of cutting-edge genetic modification techniques
Modern genetic alteration methods, such CRISPR-Cas9, have greatly increased the accuracy of mouse models used in illness research. Better disease modeling for diseases like Alzheimer's, cancer, and autoimmune illnesses is now possible because to scientists' ability to accurately generate knockout, knock-in, and humanized mouse models. Collaborations among pharmaceutical corporations, biotech businesses, and research institutes are also encouraging innovation in the creation of customized mouse models for drug testing and therapeutic breakthroughs.
High costs associated with genetically engineered models
Higher research costs are a result of the breeding, housing, and specialized care needed for transgenic and knockout mice. The cost burden frequently prevents university institutions and small research labs from having access to sophisticated mouse models. Additionally, the lengthy development periods for genetically modified models may cause important research initiatives to be postponed, increasing the appeal of less expensive alternatives. The market expansion for mouse models is also threatened by the growing availability of alternative research techniques like 3D cell cultures and AI-driven drug development.
Covid-19 Impact
The COVID-19 pandemic initially disrupted the supply chain for laboratory animals, affecting research timelines and preclinical testing activities. Lockdowns and travel restrictions led to delays in breeding programs and limited access to research facilities, slowing down various biomedical studies. However, the pandemic also highlighted the importance of mice models in vaccine and antiviral drug development. This increased focus on infectious disease models has driven renewed investments in the mice model market, positioning it for long-term growth.
The inbred mice segment is expected to be the largest during the forecast period
The inbred mice segment is expected to account for the largest market share during the forecast period due to its genetic uniformity, which ensures reproducibility and consistency in biomedical research. These mice are extensively used in cancer research, immunology studies, and toxicology testing, making them a preferred choice for pharmaceutical and academic institutions. Additionally, the increasing demand for reliable preclinical models in personalized medicine is further driving the adoption of inbred mice.
The oncology segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the oncology segment is predicted to witness the highest growth rate due to the rising global burden of cancer and the increasing need for advanced preclinical models for cancer research. Mice models play a crucial role in studying tumor biology, testing novel cancer therapies, and evaluating the efficacy of immunotherapies before clinical trials. The demand for genetically engineered mice (GEMs), patient-derived xenograft (PDX) models, and humanized mice has surged as researchers seek accurate models to mimic human tumor microenvironments.
During the forecast period, the North America region is expected to hold the largest market share owing to its well-established research infrastructure, high investments in biomedical research, and strong presence of pharmaceutical companies. The U.S. leads in preclinical research, with extensive funding from organizations like the National Institutes of Health (NIH) and private biotech firms. The region's growing focus on drug discovery, coupled with advanced genetic engineering capabilities, continues to drive demand for mice models.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR attributed to increasing government support for biomedical research, rising healthcare expenditures, and expanding pharmaceutical industries in countries like China, Japan, and India. Additionally, the adoption of genetically modified mice models is increasing, driven by advancements in gene-editing technologies. Collaborations between Asian research institutes and global pharmaceutical companies are further fueling market expansion in this region.
Key players in the market
Some of the key players in Mice Model market include Allentown LLC, Charles River Laboratories International, Inc., Cyagen Biosciences Inc, Envigo, genOway S.A., Harbour Biomed, Hera Biolabs, Inotiv, Janvier Labs, Ozgene Pty Ltd, PolyGene, Sage Labs, Taconic Biosciences, Inc., The Jackson Laboratory, Trans Genic Inc. and TransCure bioServices .
In February 2025, HBM Alpha Therapeutics Inc., an innovative biotechnology company incubated by Harbour BioMed, announced a strategic collaboration and license agreement with a business partner to advance novel therapies targeting corticotropin-releasing hormone for various disorders.
In February 2025, Harbour BioMed and Insilico Medicine achieved strategic collaboration to advance AI-driven antibody discovery and development. leveraging their respective technological strengths in antibody discovery and artificial intelligence.