![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1679317
Àç»ý¿¡³ÊÁö¿ë ÀΰøÁö´É ½ÃÀå ¿¹Ãø(-2030³â) : °ø±Þ¿øº°, ¹èÆ÷ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Artificial Intelligence in Renewable Energy Market Forecasts to 2030 - Global Analysis By Source, Deployment Mode, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àç»ý¿¡³ÊÁö¿ë ÀΰøÁö´É(AI) ½ÃÀåÀº 2024³â¿¡ 9¾ï 4,050¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 25.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 36¾ï 2,231¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í±Þ ¾Ë°í¸®Áò, ¸Ó½Å·¯´×, µ¥ÀÌÅÍ ºÐ¼®Àº Àç»ý¿¡³ÊÁö¿¡ »ç¿ëµÇ¾î ž籤, dz·Â, ¼ö·Â µî Àç»ý¿¡³ÊÁöÀÇ ¿¡³ÊÁö »ý»ê, ºÐ¹è, ¼Òºñ¸¦ ±Ø´ëÈÇϰí, AI´Â ±×¸®µå °ü¸®¸¦ °ÈÇϰí, ¿¡³ÊÁö ¼ö¿ä¸¦ ¿¹ÃøÇϰí, È¿À²À» °³¼±Çϸç, Àç»ý¿¡³ÊÁö ÀÎÇÁ¶óÀÇ ¿¹Ãø À¯Áöº¸¼ö¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI¸¦ ÅëÇÕÇÔÀ¸·Î½á ¿¡³ÊÁö °ø±Þ¾÷ü´Â ºñ¿ëÀ» ÃÖ¼ÒÈÇϰí, ź¼Ò ¹èÃâ·®À» ÁÙÀ̸ç, ½Å·Ú¼ºÀ» ³ôÀ̰í, Àç»ý ¿¡³ÊÁö¸¦ º¸´Ù Áö¼Ó°¡´ÉÇϰí È®Àå °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÒ ¼ö ÀÖ½À´Ï´Ù.
±×¸®µå ÃÖÀûÈ¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
Àü·Â ½Ã½ºÅÛÀÇ º¹À⼺°ú Àç»ý ¿¡³ÊÁöÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ È¿À²ÀûÀÎ ±×¸®µå °ü¸®¸¦ À§ÇÑ Ã·´Ü AI ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϸç, AI´Â ¿¡³ÊÁö ¼ö¿ä¸¦ ¿¹ÃøÇϰí, °ø±ÞÀ» °ü¸®Çϸç, ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¡³ÊÁö ÀúÀå°ú ¹èÀüÀ» ÃÖÀûÈÇÏ°í ¼Õ½ÇÀ» ÁÙ¿© È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI´Â ž籤, dz·Â µî ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÇ ÅëÇÕÀ» ÃËÁøÇÏ°í ±×¸®µåÀÇ À¯¿¬¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁöÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ±×¸®µå ÃÖÀûÈ ÅøÀÇ Çʿ伺µµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µû¶ó¼ AI´Â Çö´ëÀÇ ¿¡³ÊÁö ±×¸®µå¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
AI ¸ðµ¨ÀÇ ¿¡³ÊÁö ¼Òºñ
AI ¸ðµ¨¿¡ ÇÊ¿äÇÑ ³ôÀº °è»ê ´É·ÂÀº Å« ¿¡³ÊÁö ¼Òºñ·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö ¼Òºñ´Â Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡¼ ´Þ¼ºÇÒ ¼ö ÀÖ´Â È¿À²¼º Çâ»óÀ» »ó¼âÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ´ë±Ô¸ð AI ¸ðµ¨ ÇнÀ¿¡´Â ¸·´ëÇÑ ÄÄÇ»ÆÃ ¸®¼Ò½º°¡ ÇÊ¿äÇϸç, ÀÌ´Â ¿¡³ÊÁö ¼Òºñ Áõ°¡·Î À̾îÁý´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® ¹× ÀÇ»ç°áÁ¤À» À§ÇÑ AI ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ °¡µ¿Àº ¿¡³ÊÁö ¼Òºñ¸¦ ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ´Â Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼ AIÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ µµÀüÀÌ µÇ°í ÀÖÀ¸¸ç, AIÀÇ ÀåÁ¡°ú ¿¡³ÊÁö ¹ßÀÚ±¹ÀÇ ±ÕÇüÀ» ¸ÂÃß´Â °ÍÀº ¿©ÀüÈ÷ Áß¿äÇÑ °úÁ¦ÀÔ´Ï´Ù.
½º¸¶Æ® ±×¸®µå¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
½º¸¶Æ® ±×¸®µå´Â ¿¡³ÊÁö °ü¸®¸¦ °³¼±Çϱâ À§ÇØ Ã·´Ü ¼¾¼, Åë½Å ³×Æ®¿öÅ©, AI ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÏ¿© ¿¡³ÊÁö °ü¸®¸¦ °³¼±ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚ´Â Àü·Â¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í, Á¤ÀüÀ» ÁÙÀ̸ç, È¿À²¼ºÀ» ³ôÀÌ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, AI´Â ¿¹Áöº¸Àü, ¼ö¿ä ¿¹Ãø, µ¿Àû ±×¸®µå ¹ë·±½ÌÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ½º¸¶Æ® ±×¸®µå¿¡¼ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ºÎ¹®ÀÌ ½º¸¶Æ®±×¸®µå ÀÎÇÁ¶ó¿¡ ÅõÀÚÇÔ¿¡ µû¶ó AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Àç»ý¿¡³ÊÁö ½ÃÀå¿¡¼ AIÀÇ Å« ¼ºÀå ±âȸ·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.
µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦
Àç»ý¿¡³ÊÁö ¹ßÀü¿¡¼ AI ¿ëµµ¿¡ ÀÇÇØ »ý¼ºµÇ´Â ¹æ´ëÇÑ µ¥ÀÌÅÍ´Â µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ±â¹Ð µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¹«´Ü ¾×¼¼½º´Â ½É°¢ÇÑ º¸¾È Ä§ÇØ¿Í ±ÝÀüÀû ¼Õ½Ç·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI¿Í ±×¸®µå ÀÎÇÁ¶óÀÇ ÅëÇÕÀº »çÀ̹ö °ø°ÝÀÇ ÀáÀçÀûÀΠǥÀûÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À§ÇùÀ¸·ÎºÎÅÍ º¸È£Çϱâ À§Çؼ´Â °ß°íÇÑ »çÀ̹ö º¸¾È Á¶Ä¡¸¦ È®º¸ÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µ¥ÀÌÅÍ º¸È£ ±ÔÁ¤ Áؼö´Â Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼ AI ½Ã½ºÅÛ °ü¸®ÀÇ º¹À⼺À» ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¸¾È ¹®Á¦¸¦ ÇØ°áÇÏ´Â °ÍÀº ÀÌ ºÐ¾ß¿¡¼ AI¸¦ ±¤¹üÀ§ÇÏ°Ô Ã¤ÅÃÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
ÆÒµ¥¹ÍÀº Àç»ý¿¡³ÊÁö ºÐ¾ß¿¡¼ AI¸¦ Æ÷ÇÔÇÑ µðÁöÅÐ ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇßÀ¸¸ç, AI´Â ¿ø°Ý ¸ð´ÏÅ͸µ, ¿¹Áöº¸Àü, ·Ï´Ù¿î½Ã ¿¡³ÊÁö »ç¿ë ÃÖÀûÈ µî¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ź·ÂÀûÀ̰í À¯¿¬ÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Çʿ伺ÀÌ ´õ¿í ºÐ¸íÇØÁö¸é¼ AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ÃËÁøµÇ¾ú½À´Ï´Ù. ±×·¯³ª À̹ø ÆÒµ¥¹ÍÀº ¿¡³ÊÁö ÀÎÇÁ¶óÀÇ Áß´Ü¿¡ ´ëÇÑ Ãë¾à¼ºµµ ºÎ°¢½ÃÄ×½À´Ï´Ù. ÀÌ·¯ÇÑ À§±â »óȲ¿¡¼ ¿¡³ÊÁö ½Ã½ºÅÛÀÇ ½Å·Ú¼º°ú ¾ÈÁ¤¼ºÀ» º¸ÀåÇÏ´Â °ÍÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
¿¹Ãø ±â°£ Áß ¼ö·Â ¹ßÀü ºÐ¾ß°¡ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼ö·Â ¹ßÀü ºÐ¾ß´Â ÀÌ¹Ì ±¸ÃàµÈ ÀÎÇÁ¶ó¿Í AI¸¦ ÅëÇÕÇÏ¿© ¿î¿µÀ» ÃÖÀûÈÇϰí È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» ¹ÙÅÁÀ¸·Î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI´Â ¼ö·ù °ü¸®¸¦ °³¼±Çϰí, Àåºñ °íÀåÀ» ¿¹ÃøÇϰí, ¿¡³ÊÁö »ý»êÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö·Â ¹ßÀüÀº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈÇÏ¸é¼ ´ë·®ÀÇ Àç»ý ¿¡³ÊÁö¸¦ »ý»êÇÒ ¼ö ÀÖÀ¸¹Ç·Î ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AIÀÇ ÅëÇÕÀº ¼ö·Â ¹ßÀü ½Ã½ºÅÛÀÇ Áö¼Ó°¡´É¼º°ú ½Å·Ú¼ºÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ÁÖ°Å ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ÁÖÅà ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, AI ±â¹Ý ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛÀº ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇÏ°í ºñ¿ëÀ» Àý°¨Çϸç ÁÖÅà ¼ÒÀ¯ÀÚÀÇ ÆíÀǼºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿Á»ó ž籤¹ßÀü°ú °°Àº ºÐ»êÇü Àç»ý¿¡³ÊÁö ¹ßÀü Áõ°¡´Â ÁְŠȯ°æ¿¡¼ AI ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ ÁÖ°Å¿ë Àç»ý ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê¿Í º¸Á¶±Ýµµ ÀÌ·¯ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àç»ý ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡µéÀº Á¤ºÎÀÇ ±¸»ó°ú À¯¸®ÇÑ Á¤Ã¥¿¡ ÈûÀÔ¾î Àç»ý ¿¡³ÊÁö µµÀÔÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Áö¼Ó°¡´ÉÇÑ °³¹ß°ú ź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ´Â ¿¡³ÊÁö °ü¸® ºÐ¾ß¿¡¼ AI ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ Áö¿ª¿¡´Â ÁÖ¿ä AI ±â¼ú ÇÁ·Î¹ÙÀÌ´õµéÀÌ Á¸ÀçÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â Á¤ºÎÀÇ °·ÂÇÑ Áö¿ø, ±â¼ú ¹ßÀü, Àç»ý ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ °ß°íÇÑ ½ÃÀåÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ź¼Ò ¹èÃâ·® °¨¼Ò¿Í ¿¡³ÊÁö È¿À² °³¼±ÀÇ Çʿ伺 ¶§¹®¿¡ AI¿Í Àç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºÏ¹ÌÀÇ ÁÖ¿ä AI ¹× Àç»ý¿¡³ÊÁö ±â¾÷ÀÇ Á¸Àç°¡ ÀÌ·¯ÇÑ ³ôÀº ¼ºÀå·ü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
1213 Kayrros
According to Stratistics MRC, the Global Artificial Intelligence (AI) in Renewable Energy Market is accounted for $940.50 million in 2024 and is expected to reach $3622.31 million by 2030 growing at a CAGR of 25.2% during the forecast period. Advanced algorithms, machine learning, and data analytics are used in renewable energy to maximize energy production, distribution, and consumption from renewable sources such as solar, wind, and hydro. AI enhances grid management, predicts energy demand, improves efficiency, and enables predictive maintenance of renewable energy infrastructure. By integrating AI, energy providers can minimize costs, reduce carbon emissions, and enhance reliability, making renewable energy more sustainable and scalable in the transition toward a cleaner global energy system.
Rising need for grid optimization
The increasing complexity of power systems and the integration of renewable energy sources necessitate advanced AI solutions for efficient grid management. AI can help in predicting energy demand, managing supply, and ensuring the stability of the grid. It can also optimize energy storage and distribution, reducing losses and improving efficiency. Moreover, AI can facilitate the integration of distributed energy resources like solar and wind, enhancing grid flexibility. As renewable energy adoption grows, so does the need for sophisticated grid optimization tools. Hence, AI is becoming indispensable in modern energy grids.
Energy consumption of AI models
The high computational power required for AI models can lead to significant energy consumption. This energy consumption can sometimes offset the efficiency gains achieved in renewable energy systems. Training large AI models requires substantial computational resources, which translates to increased energy use. Additionally, the continuous operation of AI systems for real-time data analysis and decision-making further adds to energy consumption. This poses a challenge for the sustainability of AI in the renewable energy sector. Balancing the benefits of AI with its energy footprint remains a critical concern.
Increased investments in smart grids
Smart grids incorporate advanced sensors, communication networks, and AI algorithms to improve energy management. These investments aim to enhance grid reliability, reduce outages, and increase efficiency. AI plays a pivotal role in smart grids by enabling predictive maintenance, demand forecasting, and dynamic grid balancing. As governments and private sectors invest in smart grid infrastructure, the demand for AI-based solutions is set to rise. This presents a significant growth opportunity for AI in the renewable energy market.
Data security and privacy concerns
The extensive data generated by AI applications in renewable energy raises concerns about data security and privacy. Unauthorized access to sensitive data can lead to significant security breaches and financial losses. Additionally, the integration of AI with grid infrastructure makes it a potential target for cyber-attacks. Ensuring robust cyber-security measures is crucial to protect against these threats. Compliance with data protection regulations further adds to the complexity of managing AI systems in renewable energy. Addressing these security challenges is vital for the widespread adoption of AI in this sector.
Covid-19 Impact
The pandemic has accelerated the adoption of digital technologies, including AI, in the renewable energy sector. AI has been leveraged for remote monitoring, predictive maintenance, and optimizing energy usage during lockdowns. The need for resilient and flexible energy systems has become more apparent, driving investments in AI solutions. However, the pandemic has also highlighted the vulnerability of energy infrastructure to disruptions. Ensuring the reliability and stability of energy systems during such crises is crucial.
The hydropower segment is expected to be the largest during the forecast period
The hydropower segment is expected to account for the largest market share during the forecast period, due to the established infrastructure and the potential for integrating AI to optimize operations and enhance efficiency. AI can improve water flow management, predict equipment failures, and optimize energy production. The ability to generate large amounts of renewable energy with minimal environmental impact makes hydropower an attractive option. Additionally, the integration of AI can further enhance the sustainability and reliability of hydropower systems.
The residential segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the residential segment is predicted to witness the highest growth rate. AI-enabled energy management systems can optimize energy usage, reducing costs and enhancing convenience for homeowners. The rise of distributed renewable energy generation, such as rooftop solar, further drives the adoption of AI solutions in residential settings. Additionally, government incentives and subsidies for residential renewable energy systems contribute to this growth.
During the forecast period, Asia Pacific region is expected to hold the largest market share, due to significant investments in renewable energy infrastructure. Countries like China and India are leading the charge in renewable energy adoption, supported by government initiatives and favourable policies. The region's focus on sustainable development and reducing carbon emissions drives the demand for AI solutions in energy management. Additionally, the presence of major AI technology providers in the region further boosts market growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong government support, technological advancements, and a robust market for renewable energy solutions. The United States and Canada are investing heavily in AI and renewable energy projects, driven by the need to reduce carbon emissions and enhance energy efficiency. Additionally, the presence of leading AI and renewable energy companies in North America contributes to this high growth rate.
Key players in the market
Some of the key players profiled in the Artificial Intelligence (AI) in Renewable Energy Market include Google, Microsoft, IBM, Siemens, General Electric (GE), Schneider Electric, ABB Ltd., Tesla, Enel Group, NextEra Energy, Shell AI, GridBeyond, Kayrros, Open Energi, Autogrid Systems, Verdigris Technologies, Innowatts, Uptake Technologies, Xcel Energy, and UrbanChain.
In January 2025, General Electric (GE) America's leading energy manufacturing company, is planning to invest nearly $600 million in its U.S. factories and facilities over the next two years to help meet the surging electricity demands around the world.
In July 2024, Siemens consortium partners with Bengaluru Metro Rail Corporation Limited for Rail Electrification technologies. Siemens Limited, as part of a consortium along with Rail Vikas Nigam Limited (RVNL), has secured an order from Bangalore Metro Rail Corporation Limited (BMRCL) for electrification of Bengaluru Metro Phase 2 project contributing to sustainable public transport in the city.
1213 Kayrros