![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1679334
Àü±âÀÚµ¿Â÷ ¸ðÅÍ ÄÁÆ®·Ñ·¯ ½ÃÀå ¿¹Ãø(-2030³â) : Á¦Ç° À¯Çüº°, Â÷Á¾º°, Â÷·®º°, Ãâ·Âº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®Electric Vehicle Motor Controller Market Forecasts to 2030 - Global Analysis By Product Type, Vehicle Type, Vehicle, Power Output, Application and By Geography |
Stratistics MRC¿¡ µû¸£¸é, Àü±âÀÚµ¿Â÷ ¸ðÅÍ ÄÁÆ®·Ñ·¯ ¼¼°è ½ÃÀåÀº 2024³â 54¾ï ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 18.1%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 146¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV) ¸ðÅÍ ÄÁÆ®·Ñ·¯´Â Àü±âÀÚµ¿Â÷(EV)ÀÇ Àü±â ¸ðÅÍÀÇ Àü¿ø °ø±Þ ¹× ÀÛµ¿À» °ü¸®ÇÏ´Â Áß¿äÇÑ ±¸¼º¿ä¼ÒÀÔ´Ï´Ù. ¸ðÅÍÀÇ Àü¾Ð, Àü·ù, ¼Óµµ¸¦ Á¶ÀýÇÏ¿© ¿øÈ°ÇÑ °¡¼Ó, °¨¼Ó, ¿¡³ÊÁö È¿À²À» º¸ÀåÇÕ´Ï´Ù. ÄÁÆ®·Ñ·¯´Â ¹èÅ͸®ÀÇ Á÷·ù(DC)¸¦ ¸ðÅÍÀÇ ±³·ù(AC)·Î º¯È¯ÇÏ¿© Â÷·®ÀÇ ¿òÁ÷ÀÓÀ» Á¤È®ÇÏ°Ô Á¦¾îÇÕ´Ï´Ù.
Àü±âÀÚµ¿Â÷(EV) ¼ö¿ä Áõ°¡
ûÁ¤ ±³Åë ¼ö´ÜÀ¸·ÎÀÇ ÀüȯÀº ±ÔÁ¦ ¾Ð·Â°ú ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ EVÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¸ðÅÍ ÄÁÆ®·Ñ·¯´Â Àü·Â È帧À» Á¦¾îÇϰí ÀÌ»óÀûÀÎ ¸ðÅÍ ±â´ÉÀ» º¸ÀåÇÔÀ¸·Î½á EVÀÇ ¼º´É°ú È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ÇʼöÀûÀ̸ç, EV ¸ðµ¨ ¼±ÅÃÀÇ ÆøÀÌ ³Ð¾îÁö°í ¹èÅ͸® ±â¼úÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ½ÃÀå ¼ö¿ä´Â ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷ÀÇ ÀαⰡ ³ô¾ÆÁü¿¡ µû¶ó Àü±âÀÚµ¿Â÷ ±¸¸Å¿¡ ´ëÇÑ Á¤ºÎ º¸Á¶±Ý°ú Àμ¾Æ¼ºêµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±× °á°ú, EVÀÇ ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ ´ëÇÑ ¼ö¿ä´Â ºñ¾àÀûÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¸ðÅÍ ÄÁÆ®·Ñ·¯ ¼³°èÀÇ º¹À⼺
°í±Þ ¸ðÅÍ ÄÁÆ®·Ñ·¯ÀÇ ¼³°è´Â °í¼º´É°ú °í½Å·Ú¼ºÀ» ´Þ¼ºÇϱâ À§ÇØ º¹ÀâÇÑ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ ÅëÇÕÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¤¹ÐÇÑ Á¦¾î ¾Ë°í¸®Áò°ú È¿À²ÀûÀÎ ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ Çʿ伺ÀÌ ¼³°èÀÇ º¹À⼺À» ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ´Ù¾çÇÑ ÁÖÇà Á¶°Ç°ú Â÷·® ¸ðµ¨¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ÄÁÆ®·Ñ·¯¸¦ °³¹ßÇϱâ À§Çؼ´Â ±¤¹üÀ§ÇÑ ¿¬±¸ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺Àº »õ·Î¿î ¸ðÅÍ ÄÁÆ®·Ñ·¯ ¼Ö·ç¼ÇÀÇ °³¹ß ºñ¿ë »ó½Â°ú ½ÃÀå Ãâ½Ã ½Ã°£ ¿¬ÀåÀ¸·Î À̾îÁý´Ï´Ù. °á°úÀûÀ¸·Î ¸ðÅÍ ÄÁÆ®·Ñ·¯ ¼³°èÀÇ º¹À⼺Àº ½ÃÀå ¼ºÀåÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½É Áõ°¡
¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó Àü±âÀÚµ¿Â÷ ¸ðÅÍ ÄÁÆ®·Ñ·¯ ½ÃÀåÀÌ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¼Òºñ¿Í ȯ°æ ¿µÇâÀÌ Áß¿äÇÑ °í·Á»çÇ×ÀÌ µÇ¸é¼ È¿À²ÀûÀÎ ¸ðÅÍ Á¦¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÷´Ü ¸ðÅÍ ÄÁÆ®·Ñ·¯´Â Àü·Â »ç¿ëÀ» ÃÖÀûÈÇϰí, ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̸ç, Àüü Â÷·®ÀÇ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹ÝµµÃ¼ ±â¼úÀÇ ¹ßÀüÀ¸·Î °íÈ¿À² ¸ðÅÍ ÄÁÆ®·Ñ·¯ÀÇ °³¹ßÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ °Á¶°¡ ½ÃÀåÀÇ ¼ºÀå°ú ±â¼ú Çõ½ÅÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ÃæÀü ÀÎÇÁ¶ó
°ø°ø ¹× ¹Î°£ ÃæÀü¼ÒÀÇ ºÒÃæºÐÇϰųª ´À¸° ÃæÀü¼Ò È®ÀåÀº ÀáÀçÀûÀÎ Àü±âÀÚµ¿Â÷ ±¸¸ÅÀÚÀÇ ¹ß¸ñÀ» Àâ°í Àüü Àü±âÀÚµ¿Â÷ ¼ö¿ä¸¦ °¨¼Ò½Ãų °ÍÀÔ´Ï´Ù. ±× °á°ú, ¸ðÅÍ ÄÁÆ®·Ñ·¯ µî °ü·Ã ºÎǰÀÇ Çʿ伺¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ƯÈ÷ ¿Üµý Áö¿ªÀ̳ª ¼ºñ½º°¡ Àß °®Ãß¾îÁöÁö ¾ÊÀº °÷¿¡¼ ±Þ¼Ó ÃæÀü ¿É¼ÇÀÌ ³Î¸® º¸±ÞµÇÁö ¾ÊÀ¸¸é °í°´Àº Àü±âÀÚµ¿Â÷·Î ÀüȯÇÏ´Â °ÍÀ» ÁÖÀúÇÒ ¼ö ÀÖÀ¸¸ç, EV ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ ´ëÇÑ ¼ö¿ä´Â ÃæÀü ÀÎÇÁ¶ó°¡ ±¸ÃàµÇ°í ¼ºÀåÇÔ¿¡ µû¶ó Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÇöÀçÀÇ Á¦¾àÀº ½ÃÀåÀÇ ºü¸¥ ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ±Þ¼ÓÇÑ È®ÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â »ý»ê, °ø±Þ¸Á, R&D Ȱµ¿À» ¹æÇØÇϰí Àü±âÀÚµ¿Â÷(EV) ¸ðÅÍ ÄÁÆ®·Ñ·¯ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ºÀ¼â¿Í ±ÔÁ¦·Î ÀÎÇØ ÀÚµ¿Â÷ Á¦Á¶ ¹× ºÎǰ ³³Ç°ÀÌ Áö¿¬µÇ¾î EVÀÇ º¸±Þ°ú ¸ðÅÍ ÄÁÆ®·Ñ·¯ÀÇ Çʿ伺ÀÌ µÐȵǾú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö°í ûÁ¤ ±³Åë¼ö´Ü¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼ Á¤ºÎµµ Áö¼Ó°¡´ÉÇÑ ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç¿¡ ´Ù½Ã ÁýÁßÇÏ°Ô µÇ¾ú°í, ÀÌ´Â EV ¸ðÅÍ ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ È¸º¹°ú Àå±âÀûÀÎ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ½Â¿ëÂ÷ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
½Â¿ëÂ÷ ºÎ¹®Àº Àü ¼¼°èÀûÀ¸·Î Àü±âÀÚµ¿Â÷ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¬·áºñ »ó½Â, Àü±âÀÚµ¿Â÷¿¡ ´ëÇÑ Á¤ºÎ º¸Á¶±Ý, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¼ÒºñÀÚµéÀÌ Àü±âÀÚµ¿Â÷·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü±âÀÚµ¿Â÷ ¼ö¿äÀÇ ±ÞÁõÀº ½Â¿ë Àü±âÀÚµ¿Â÷ÀÇ È¿À²ÀûÀÎ ¼º´É, ÁÖÇà°Å¸® ¿¬Àå, ¾ÈÀü ±â´É °È¸¦ º¸ÀåÇÏ´Â °í±Þ ¸ðÅÍ ÄÁÆ®·Ñ·¯ÀÇ Çʿ伺À» Á÷Á¢ÀûÀ¸·Î ºÒ·¯ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV) ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV) ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, HEV´Â Àü±â ¸ðÅÍ¿Í ³»¿¬±â°üÀ» ¸ðµÎ »ç¿ëÇϱ⠶§¹®¿¡ ÀÌµé µ¿·Â¿ø °£ÀÇ Àü·Â ºÐ¹è¸¦ ¿øÈ°ÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖ´Â °í±Þ ¸ðÅÍ ÄÁÆ®·Ñ·¯°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ º¹À⼺À¸·Î ÀÎÇØ È¿À²¼º, ºÎµå·¯¿î Àüȯ, ȸ»ý Á¦µ¿ ±â´É¿¡ ÃÊÁ¡À» ¸ÂÃá ÄÁÆ®·Ñ·¯ ¼³°èÀÇ Çõ½ÅÀÌ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, HEVÀÇ º¸±ÞÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ƯÁ¤ ¿î¿µ ¿ä±¸¿¡ ¸Â´Â °í±Þ ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ, °¡Ã³ºÐ ¼Òµæ Áõ°¡, Á¤ºÎ Áö¿ø Á¤Ã¥À¸·Î Àü±âÀÚµ¿Â÷ º¸±ÞÀ» ÃËÁøÇÏ°í ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ÇöÁö »ý»ê, ±â¼ú ¹ßÀü, °æÀï·Â ÀÖ´Â °¡°Ý Ã¥Á¤ÀÌ ÃËÁøµË´Ï´Ù. ÀÌ Áö¿ªÀÇ EV ½ÃÀåÀÇ ¼ºÀåÀº ¸ðÅÍ ÄÁÆ®·Ñ·¯ ¾÷°èÀÇ ±¹³»¿Ü ±â¾÷µé¿¡°Ô Å« ºñÁî´Ï½º ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¿Í Á¤ºÎ Àμ¾Æ¼ºê°¡ Àü±âÀÚµ¿Â÷ º¸±ÞÀ» ÃËÁøÇϰí ÷´Ü ¸ðÅÍ ÄÁÆ®·Ñ·¯¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Á¸Àç¿Í ÃæÀü ÀÎÇÁ¶ó°¡ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀåÀ» ´õ¿í °È½Ã۰í ÀÖ½À´Ï´Ù. ÀÌó·³ Àü±âÀÚµ¿Â÷¿¡ ÁýÁßÇϰí ÀÖ´Â ºÏ¹Ì´Â ƯÈ÷ °í¼º´É Â÷·®¿ë ¸ðÅÍ ÄÁÆ®·Ñ·¯ÀÇ ±â¼ú Çõ½Å°ú °³¹ß¿¡ ÀÖ¾î Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Electric Vehicle Motor Controller Market is accounted for $5.40 billion in 2024 and is expected to reach $14.67 billion by 2030 growing at a CAGR of 18.1% during the forecast period. An Electric Vehicle (EV) Motor Controller is an essential component that manages the power supply and operation of the electric motor in EVs. It regulates the voltage, current, and speed of the motor, ensuring smooth acceleration, deceleration, and energy efficiency. The controller converts direct current (DC) from the battery into alternating current (AC) for the motor, enabling precise control of vehicle movement.
Increasing demand for electric vehicles (EVs)
EV adoption is growing as the move to cleaner transportation is fueled by regulatory pressures and environmental concerns. By controlling power flow and guaranteeing ideal motor functioning, motor controllers are essential to improving the performance and efficiency of EVs. The market demand is further increased by the expanding selection of EV models and developments in battery technology. The growing popularity of electric vehicles is also aided by government subsidies and incentives for EV purchasing. As a result, it is anticipated that the need for motor controllers in EVs would increase dramatically.
Complexity of motor controller design
Designing advanced motor controllers involves intricate hardware and software integration to achieve high performance and reliability. The need for precise control algorithms and efficient power electronics adds to the design complexity. Additionally, developing controllers that can adapt to various driving conditions and vehicle models requires extensive research and development efforts. These complexities can lead to higher development costs and longer time-to-market for new motor controller solutions. As a result, the complexity of motor controller design presents challenges for market growth.
Growing focus on energy efficiency
The rising focus on energy efficiency presents major growth for the electric vehicle motor controller market. As energy consumption and environmental impact become key considerations, there is a rising demand for efficient motor control solutions. Advanced motor controllers can optimize power usage, reduce energy losses, and enhance overall vehicle efficiency. Additionally, advancements in semiconductor technologies enable the development of high-efficiency motor controllers. This growing emphasis on energy efficiency supports the market's growth and innovation.
Limited charging infrastructure
Inadequate or slow expansion of public and private charging stations can deter potential EV buyers, reducing the overall demand for electric vehicles. Consequently, this affects the need for related parts such as motor controllers. Customers can be hesitant to convert to electric vehicles if fast-charging options are not widely available, especially in remote or underserved locations. The need for EV motor controllers is anticipated to increase as charging infrastructure develops and grows, although present constraints prevent faster market expansion.
Covid-19 Impact
The COVID-19 pandemic had a significant impact on the Electric Vehicle (EV) Motor Controller market by disrupting production, supply chains, and R&D activities. Lockdowns and restrictions delayed vehicle manufacturing and component delivery, slowing down the adoption of EVs and the need for motor controllers. However, the pandemic also heightened awareness of environmental issues and the need for cleaner transportation, which led to renewed government, focus on sustainable mobility solutions, thereby spurring recovery and long-term growth in the EV motor controller market.
The passenger cars segment is expected to be the largest during the forecast period
The passenger cars segment is expected to account for the largest market share during the forecast period, due to the increasing global adoption of EVs. Factors like rising fuel costs, government incentives for electric vehicles, and growing environmental concerns are pushing consumers towards electric cars. This surge in EV demand directly fuels the need for advanced motor controllers that ensure efficient performance, extended range, and enhanced safety features in passenger EVs.
The hybrid electric vehicles (HEVs) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the hybrid electric vehicles (HEVs) segment is predicted to witness the highest growth rate. HEVs utilize both an electric motor and an internal combustion engine, requiring sophisticated motor controllers to seamlessly manage power distribution between these sources. This complexity drives innovation in controller design, focusing on efficiency, smooth transitions, and regenerative braking capabilities. As HEV adoption grows, so does the demand for advanced motor controllers tailored to their specific operational needs.
During the forecast period, Asia Pacific region is expected to hold the largest market share. Rapid urbanization, increasing disposable incomes, and supportive government policies are fueling EV adoption, thus driving demand for motor controllers. This, in turn, stimulates local manufacturing, technological advancements, and competitive pricing. The region's growing EV market presents significant opportunities for both domestic and international players in the motor controller industry.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the region's push for electrification. Stringent emissions regulations and government incentives drive EV adoption, fueling demand for advanced motor controllers. The presence of major automotive players and a growing charging infrastructure further strengthens the market. This focus on EVs positions North America as a key player in motor controller innovation and development, particularly for high-performance vehicles.
Key players in the market
Some of the key players profiled in the Electric Vehicle Motor Controller Market include BYD Company, Continental AG, Denso Corporation, Hitachi Astemo Ltd., Renesas Electronics, Robert Bosch GmbH, Siemens AG, Tesla, Inc., Valeo SA, ZF Friedrichshafen AG, Broad-Ocean Motor Co., Ltd., Inovance Automotive, MEGMEET, JEE Automation Equipment Co., Ltd., Chang'an Automobile Group, DAJUN TECH, UAES, Shenzhen V&T Technologies Co., Ltd., Parker Hannifin Corporation, and Delta Electronics, Inc.
In February 2025, Hitachi Astemo (Astemo) continues its NTT INDYCAR SERIES partnership with Team Penske for a 14th consecutive year in 2025 as a sponsor of the No. 2 Dallara/Chevrolet driven by Josef Newgarden.
In August 2024, BYD Auto Industry Co. Ltd., announced the launch of the BYD ATTO 3 2024 version in Nepal. Following its success as the Best-Selling SUV in Nepal, the BYD ATTO 3 2024 model continues to offer cutting-edge technology and sustainability with the popular 100 kW motor capacity.