½ÃÀ庸°í¼­
»óǰÄÚµå
1700055

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : ¿£Áø À¯Çüº°, Á¦Á¶ °øÁ¤º°, ÆÇ¸Å ä³Îº°, ¿ëµµº°, Áö¿ªº° ¿¹Ãø ¹× ºÐ¼®(-2032³â)

Automotive Balance Shaft Market Forecasts to 2032 - Global Analysis By Engine Type, Manufacturing Process, Sales Channel, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷ ¹ë·±½º »þÇÁÆ® ½ÃÀåÀº 2025³â¿¡ 176¾ï 7,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGR 8.0%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 302¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ƯÈ÷ ÀζóÀÎ 4±âÅë ¿£Áø°ú V6 ¿£Áø¿¡¼­´Â Áøµ¿À» ¿ÏÈ­ÇÏ°í ³»¿¬ ¿£ÁøÀÇ ¸Å²ô·¯¿òÀ» Çâ»ó½Ã۱â À§ÇØ ÇʼöÀûÀÎ ¿£Áø ºÎǰÀÌ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ®ÀÔ´Ï´Ù. ¹ë·±½º »þÇÁÆ®´Â ¼ÒÀ½, Áøµ¿, ÇϽ´³×½º(NVH) ·¹º§À» ÁÙÀ̰í, ¿£ÁøÀÇ ¼ö¸íÀ» ´Ã¸®°í, °úµµÇÑ Áøµ¿À» ÁÙ¿© ¿îÀüÀÇ ÄèÀû¼ºÀ» Çâ»ó½Ã۴µ¥ µµ¿òÀÌ µË´Ï´Ù.

±¹Á¦ÀÚµ¿Â÷°ø¾÷ȸ(OICA)¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷ »ý»ê ´ë¼ö´Â 2019³â ¾à 9,200¸¸´ë¿¡ ´ÞÇß½À´Ï´Ù.

³ô¾ÆÁö´Â Àú¹èÃâ °¡½º¡¤Àú¿¬ºñ ¿ä±¸

ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¾ö°ÝÇÑ ¿¬ºñ ±ÔÁ¦³ª ¹èÃâ °¡½º ±ÔÁ¦¿¡ ÀÇÇØ ¿¬·áÀÇ »ç¿ë·®À̳ª ¿Â½Ç È¿°ú °¡½ºÀÇ ¹èÃâ·®ÀÌ ÀûÀº Àú¿¬ºñÀÇ ³»¿¬ ±â°üÀ» ¸¸µé Çʿ信 °­¿äµÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â À¯·´ ¿¬ÇÕ(EU)¿¡ ÀÇÇÑ 2035³âÀÇ ³»¿¬ ±â°ü(ICE)Â÷ ±ÝÁö³ª ¹Ì±¹ÀÇ ±â¾÷ Æò±Õ ¿¬ºñ(CAFE) ±âÁØ µî, ¼¼°è °¢±¹ÀÇ Á¤ºÎ°¡ º¸´Ù ¾ö°ÝÇÑ CO2 ¹èÃâ·® ¸ñÇ¥¸¦ ½Ç½ÃÇϰí ÀÖ´Â °Í¿¡ µû¶ó, ¿¬ºñ¸¦ °³¼±ÇÏ´Â °æ·®À¸·Î ¸¶ÂûÀ» Àú°¨ÇÏ´Â ¹ë·±½º »þÇÁÆ®¸¦ Â¥³Ö¾î ¿£Áø ¼º´ÉÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù.

³ôÀº Á¦Á¶ ºñ¿ë°ú ¼³°èÀÇ º¹À⼺

¹ë·±½º »þÇÁÆ®´Â È¿À²°ú ±ä ¼ö¸íÀ» º¸ÀåÇϱâ À§ÇØ Á¤¹ÐÇÑ ¿£Áö´Ï¾î¸µ°ú °í±Þ Àç·á¸¦ »ç¿ëÇÏ¿© Á¦Á¶µË´Ï´Ù. º¸´Ù º¹ÀâÇÑ ¼³°è°¡ ÇÊ¿äÇϰí ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ Á¦Á¶ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. °æºñ¸¦ Àý°¨Çϰí ÀÌÀÍÀ» ³ôÀ̱â À§ÇØ ÀϺΠÁ¦Á¶¾÷ü´Â ¹ë·±½º »þÇÁÆ®¸¦ »ç¿ëÇÏÁö ¾Ê°í Áøµ¿À» ÁÙÀÌ´Â µà¾ó ¸Å½º ÇöóÀÌÈÙ°ú ¿ì¼öÇÑ ¿£Áø ¸¶¿îÆ®¿Í °°Àº ´ëü ±â¼úÀ» °í·ÁÇϰí ÀÖ½À´Ï´Ù.

°í¼º´É °æ·® Àç·á °³¹ß

¹ë·±½º »þÇÁÆ®ÀÇ Ã·´Ü Àç·á Çõ½ÅÀÇ ±âȸ´Â ¿¬ºñ Çâ»ó°ú ÀÌ»êȭź¼Ò ¹èÃâ·® °¨ÃàÀ» ¸ñÀûÀ¸·Î ÇÑ Â÷·® ºÎǰÀÇ °æ·®È­ÀÇ ¿òÁ÷ÀÓ¿¡ ÀÇÇØ ¸¸µé¾îÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ È¿À²¼ºÀ» Èñ»ýÇÏÁö ¾Ê°í ´õ¿í °æ·®È­ÇÒ ¼ö ÀÖ´Â Áß°ø ¹ë·±½º »þÇÁÆ®ÀÇ °³¹ß¿¡ ´ëÇÑ °ü½Éµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

´Ù¸¥ ¿£Áø ±â¼ú°úÀÇ °æÀï

÷´Ü ÇÏÀ̺긮µå ½Ã½ºÅÛ°ú ¼ö¼Ò ¿¬·áÀüÁö´Â ÀÚµ¿Â÷ ±â¼úÀÇ ¹ßÀü°ú ÇÔ²² º¸±ÞµÇ°í ÀÖ´Â 2°³ÀÇ »õ·Î¿î ÆÄ¿öÆ®·¹ÀÎÀÇ ¼±ÅûçÇ×ÀÔ´Ï´Ù. ¶ÇÇÑ ±âÁ¸ÀÇ ¹ë·±½º »þÇÁÆ® ½ÃÀåÀ» À§ÅÂ·Ó°Ô ÇÏ´Â °ÍÀº ´ç¿¬È÷ Áøµ¿ÀÌ ÀûÀº ·ÎÅ͸® ¿£ÁøÀ̳ª ÇÁ¸®ÇǽºÅæ ¿£ÁøÀÇ °³¹ßÀÔ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ À¯ÇàÀº ÀÚµ¿Â÷ ¹ë·±½º »þÇÁÆ® ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, ´ëºÎºÐÀº ÀÚµ¿Â÷ ÆÇ¸Å °¨¼Ò, °øÀå Æó¼â, ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ¿¡ ÀÇÇÑ °ÍÀ̾ú½À´Ï´Ù. ÀÚµ¿Â÷ »ý»êÀÇ ±ØÀûÀΠħü¸¦ ÀÏÀ¸Ä×½À´Ï´Ù. ÀϺΠÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¿î¿µÀ» ÀϽà ÁßÁö ÇÑ °á°ú ¹ë·±½º »þÇÁÆ® ¹× ±âŸ ¿£Áø ºÎǰ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀζóÀÎ 4 ±âÅë ¿£Áø ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

ÀζóÀÎ 4±âÅë ¿£Áø ºÎ¹®Àº ºñ¿ë È¿°ú, Ãâ·Â, ¿¬ºñ È¿À²ÀÇ ÀÌ»óÀûÀÎ ºñÀ² ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç ÀζóÀÎ 4±âÅë ¿£ÁøÀº ´Ù¾çÇÑ ÀÚµ¿Â÷ ºÎ¹®¿¡¼­ ³Î¸® ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. Çϱ⠶§¹®¿¡ ºÎµå·¯¿î ¿îÀü°ú ¿£Áø ¼ÒÀ½ÀÇ Àú°¨¿¡´Â ¹ë·±½º »þÇÁÆ®°¡ ÇÊ¿äÇÕ´Ï´Ù.ÀζóÀÎ 4 ±âÅë ¿£ÁøÀº ¼ÒÇüÀ¸·Î Á¦Á¶°¡ ¿ëÀÌÇϰí, °¡¼Ö¸°°ú µðÁ© ¾çÂÊÀÇ ÆÄ¿öÆ®·¹Àο¡ ´ëÀÀÇÒ ¼ö Àֱ⠶§¹®¿¡ Áß±Þ ¼¼´Ü, SUV, ¼ÒÇü Æ®·°¿¡ ÀÚÁÖ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¼ÒÇü»ó¿ëÂ÷(LCV) ºÎ¹®Àº ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

¿¹Ãø±â°£ Áß ¼ÒÇü»ó¿ëÂ÷(LCV) ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. LCV¿¡¼­ÀÇ ¹ë·±½º »þÇÁÆ®ÀÇ »ç¿ëÀº Åͺ¸Â÷Àú°¡ ÀåÂøµÈ ÀζóÀÎ 4±âÅë ¿£Áø µîÀÇ ÃÖ÷´Ü ¿£Áø ±â¼úÀÇ Ã¤¿ë¿¡ ÀÇÇØ ´õ¿í µÞ¹ÞħµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Àú¿¬ºñ ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó, ¼º´É Çâ»óÀ̳ª Áøµ¿ Àú°¨À» À§ÇØ ³»¿¬ ±â°ü¿¡ ä¿ëµÇ´Â ÄÉÀ̽º°¡ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ª ½ÃÀå ÁöÀ§´Â ´ëÇü ÀÚµ¿Â÷ Á¦Á¶¾÷ü³ª ºÎǰ Á¦Á¶¾÷ü°¡ Á¸ÀçÇØ, Àú·ÅÇÑ °¡°ÝÀ¸·Î »ý»êÇÒ ¼ö ÀÖ´Â °Í¿¡ ÀÇÇØ °­È­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ¿£Áø ±â¼ú Çâ»ó°ú ¿¬·á ¼Òºñ·®ÀÌ ÀûÀº ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Çö´ëÀÇ ³»¿¬ ±â°ü¿¡ À־ÀÇ ¹ë·±½º »þÇÁÆ®ÀÇ »ç¿ëÀº ¹Ì±¹ ȯ°æ º¸È£Ã»(EPA)µîÀÇ Á¶Á÷ÀÌ Á¤ÇÑ ¾ö°ÝÇÑ ¹èÃâ ±âÁØ, °æ·®À¸·Î °í¼º´ÉÀÇ ¿£Áø¿¡ÀÇ ¿ä¸Á¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ ÁöÁ¤ ¿ÀÆÛ¸µ :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : ¿£Áø À¯Çüº°

  • ÀζóÀÎ 3±âÅë ¿£Áø
  • ÀζóÀÎ 4±âÅë ¿£Áø
  • ÀζóÀÎ 5±âÅë ¿£Áø
  • V6 ¿£Áø

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : Á¦Á¶ °øÁ¤º°

  • ´ÜÁ¶
  • ÁÖÁ¶

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : ÆÇ¸Å ä³Îº°

  • ÁÖ¹®ÀÚ »óÇ¥ ºÎÂø »ý»ê
  • ¾ÖÇÁÅ͸¶ÄÏ

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : ¿ëµµº°

  • ½Â¿ëÂ÷
  • ¼ÒÇü »ó¿ëÂ÷
  • ´ëÇü »ó¿ëÂ÷

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¹ë·±½º »þÇÁÆ® ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Linamar Corporation
  • ZF Friedrichshafen AG
  • Bharat Forge Limited
  • Schaeffler AG
  • Musashi Seimitsu Industry Co., Ltd.
  • TFO Corporation
  • Hirschvogel Holding GmbH
  • Mitec-Jensen Automotive Systems(Dalian) Co Ltd
  • American Axle & Manufacturing, Inc.
  • SAC Engine Components Pvt. Ltd.
  • Engine Power Components, Inc.
  • MAT Foundry Group Ltd.
  • Otics Corporation
  • Thyssenkrupp AG
  • Sansera Engineering Limited
KTH

According to Stratistics MRC, the Global Automotive Balance Shaft Market is accounted for $17.67 billion in 2025 and is expected to reach $30.29 billion by 2032 growing at a CAGR of 8.0% during the forecast period. An essential engine part intended to lessen vibrations and improve internal combustion engine smoothness, especially in inline-four and V6 configurations, is an automotive balance shaft. The secondary imbalance brought about by the engine's reciprocating motion is offset by these shafts, which are usually installed in pairs and rotate in opposite directions. Balance shafts help reduce noise, vibration, and harshness (NVH) levels, increase engine longevity, and improve driving comfort by reducing excessive vibrations. Modern materials and manufacturing processes have produced balance shafts that are strong and lightweight, improving engine performance and efficiency.

According to the International Organization of Motor Vehicle Manufacturers (OICA), global vehicle production indeed reached approximately 92 million units in 2019.

Market Dynamics:

Driver:

Growing need for low emissions and fuel efficiency

Automakers are being forced to create fuel-efficient internal combustion engines that use less fuel and release fewer greenhouse gases due to strict fuel economy regulations and emission standards. Engine refinement relies heavily on balance shafts, which allow engines to be downsized for increased fuel efficiency while maintaining smooth operation. Additionally, automobile manufacturers are enhancing engine performance by incorporating lightweight, friction-reducing balance shafts that improve fuel economy in response to governments around the world enforcing stricter CO2 emission targets, such as the European Union's 2035 ban on internal combustion engine (ICE) vehicles and the U.S. Corporate Average Fuel Economy (CAFE) standards.

Restraint:

High production costs and design complexity

Balance shafts are manufactured using precise engineering and premium materials to guarantee efficiency and longevity. Heat treatment, balancing techniques, and precision machining are all part of the production process, which raises the overall cost of manufacturing. Furthermore, the incorporation of balance shafts into contemporary engines necessitates a more intricate design, raising the cost of production for automakers. In an effort to reduce expenses and boost profits, some manufacturers are looking into alternate techniques like dual-mass flywheels and better engine mounts to reduce vibration without the use of balancing shafts.

Opportunity:

Developments in high-performance, lightweight materials

Opportunities for advanced material innovations in balancing shafts are being created by the move toward lightweight vehicle components to improve fuel efficiency and lower carbon emissions. Because they are lighter without sacrificing strength or performance, aluminum, magnesium, and composite alloys are replacing traditional steel-based balancing shafts. There is increasing interest in the development of hollow balance shafts, which further reduce weight without sacrificing efficiency. Moreover, balance shaft manufacturers now have new growth opportunities as automakers use these cutting-edge materials more frequently to increase powertrain efficiency.

Threat:

Competition from other engine technologies

Advanced hybrid systems and hydrogen fuel cells are two new powertrain options that are becoming more popular as automotive technology develops. The need for balancing shafts is lessened by the smoother operation of hydrogen-powered internal combustion engines and fuel cell electric vehicles (FCEVs), which have fewer moving parts. Furthermore, endangering the conventional balance shaft market are developments in rotary and free-piston engines, which naturally produce fewer vibrations. Future car models may require balancing shafts in a very different way if automakers experiment with these new technologies.

Covid-19 Impact:

The COVID-19 pandemic significantly affected the automotive balance shaft market, mostly as a result of decreased vehicle sales, factory closures, and disruptions in global supply chains. Lockdown measures during the first few months of the pandemic caused a dramatic drop in automobile production as labor shortages, logistical difficulties, and limited supplies of raw materials plagued manufacturers. Balance shafts and other engine parts were in lower demand as a result of the temporary suspension of operations by several automakers. Declining car purchases as a result of economic uncertainty and consumers priorities shifting toward necessities had an adverse effect on market expansion.

The inline 4-cylinder engine segment is expected to be the largest during the forecast period

The inline 4-cylinder engine segment is expected to account for the largest market share during the forecast period because of their ideal ratio of cost-effectiveness, power output, and fuel efficiency, inline 4-cylinder engines are extensively utilized in a variety of automotive segments. Balance shafts are necessary to improve smooth operation and lower engine noise because the design of these engines naturally produces secondary vibrations. Inline 4-cylinder engines are a popular option for mid-range sedans, SUVs, and small trucks because of their small size, ease of manufacturing, and ability to work with both gasoline and diesel powertrains.

The light commercial vehicles (LCVs) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the light commercial vehicles (LCVs) segment is predicted to witness the highest growth rate. The need for LCVs has increased due to the growing use of last-mile delivery services and e-commerce, especially in urban and suburban areas. Automakers are also being pushed to create smaller, high-performance engines with balancing shafts in order to improve durability and lessen vibrations due to tighter emission standards and fuel efficiency laws. The use of balancing shafts in LCVs is further supported by the incorporation of cutting-edge engine technologies, such as turbocharged inline 4-cylinder engines. Additionally, the role of balance shafts in LCV engines is growing in importance as fleet operators place a higher priority on dependability and cost-effectiveness, which is bolstering the segment's robust market expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share. The high production and sales of passenger cars and light commercial vehicles, especially in China, the largest automobile market in the world, are responsible for the region's dominance. Balance shafts are increasingly being used in internal combustion engines to improve performance and lessen vibrations as a result of stricter emission regulations and rising demand for fuel-efficient automobiles. Furthermore, the region's market position is strengthened by the presence of significant automakers and component manufacturers as well as affordable production capabilities.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR driven by improvements in engine technology and the growing demand for cars that use less fuel. Leading automakers and suppliers in the area concentrate on lowering engine vibrations and enhancing performance, especially in passenger cars and light commercial vehicles. The use of balancing shafts in contemporary internal combustion engines is being propelled by strict emission standards established by organizations such as the U.S. Environmental Protection Agency (EPA) and the desire for lightweight, high-performance engines.

Key players in the market

Some of the key players in Automotive Balance Shaft Market include Linamar Corporation, ZF Friedrichshafen AG, Bharat Forge Limited, Schaeffler AG, Musashi Seimitsu Industry Co., Ltd., TFO Corporation, Hirschvogel Holding GmbH, Mitec-Jensen Automotive Systems (Dalian) Co Ltd, American Axle & Manufacturing, Inc., SAC Engine Components Pvt. Ltd., Engine Power Components, Inc., MAT Foundry Group Ltd., Otics Corporation, Thyssenkrupp AG and Sansera Engineering Limited.

Key Developments:

In January 2025, Linamar Corporation has announced an investment of over $1 billion to advance automotive technology in the province. This significant investment focuses on developing cutting-edge vehicle powertrain solutions and green automotive technologies, including components for electric vehicles (EVs) and hybrid systems.

In December 2024, Industriewerk Schaeffler INA-Ingenieurdienst GmbH has signed a share purchase agreement to acquire 100 percent of the shares in Dhruva Automation & Controls (P) Ltd. (hereinafter referred to as "Dhruva"). Dhruva, based in Pune, India, is an engineering and service provider specializing in smart industrial automation and software solutions in the Asia/Pacific region.

In May 2024, ZF Friedrichshafen AG and Hon Hai Technology Group (Foxconn) have officially completed their joint venture, establishing a new entity known as ZF Foxconn Chassis Modules. The joint venture officially commenced with Foxconn acquiring a 50% stake in ZF Chassis Modules GmbH.

Engine Types Covered:

  • Inline 3-cylinder Engine
  • Inline 4-cylinder Engine
  • Inline 5-cylinder Engine
  • V6 Engine

Manufacturing Processes Covered:

  • Forging
  • Casting

Sales Channels Covered:

  • Original Equipment Manufacturer
  • Aftermarket

Applications Covered:

  • Passenger Cars
  • Light Commercial Vehicles
  • Heavy Commercial Vehicles

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Balance Shaft Market, By Engine Type

  • 5.1 Introduction
  • 5.2 Inline 3-cylinder Engine
  • 5.3 Inline 4-cylinder Engine
  • 5.4 Inline 5-cylinder Engine
  • 5.5 V6 Engine

6 Global Automotive Balance Shaft Market, By Manufacturing Process

  • 6.1 Introduction
  • 6.2 Forging
  • 6.3 Casting

7 Global Automotive Balance Shaft Market, By Sales Channel

  • 7.1 Introduction
  • 7.2 Original Equipment Manufacturer
  • 7.3 Aftermarket

8 Global Automotive Balance Shaft Market, By Application

  • 8.1 Introduction
  • 8.2 Passenger Cars
  • 8.3 Light Commercial Vehicles
  • 8.4 Heavy Commercial Vehicles

9 Global Automotive Balance Shaft Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Linamar Corporation
  • 11.2 ZF Friedrichshafen AG
  • 11.3 Bharat Forge Limited
  • 11.4 Schaeffler AG
  • 11.5 Musashi Seimitsu Industry Co., Ltd.
  • 11.6 TFO Corporation
  • 11.7 Hirschvogel Holding GmbH
  • 11.8 Mitec-Jensen Automotive Systems (Dalian) Co Ltd
  • 11.9 American Axle & Manufacturing, Inc.
  • 11.10 SAC Engine Components Pvt. Ltd.
  • 11.11 Engine Power Components, Inc.
  • 11.12 MAT Foundry Group Ltd.
  • 11.13 Otics Corporation
  • 11.14 Thyssenkrupp AG
  • 11.15 Sansera Engineering Limited
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦