½ÃÀ庸°í¼­
»óǰÄÚµå
1700178

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : Á¦Ç° À¯Çü, ±¸¼º ¿ä¼Ò, ¹èÆ÷ À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(-2032³â)

Automotive Robotics Market Forecasts to 2032 - Global Analysis By Product Type, Component, Deployment Type, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀåÀº 2025³â 114¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 15.2%¸¦ ³ªÅ¸³»¸ç 2032³â¿¡´Â 307¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º¶õ È¿À²¼º, Á¤¹Ðµµ, »ý»ê¼ºÀ» ³ôÀ̱â À§ÇØ ÀÚµ¿Â÷ÀÇ Á¦Á¶¡¤Á¶¸³ °øÁ¤¿¡ ·Îº¿ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â °ÍÀ» °¡¸®Åµ´Ï´Ù. Çùµ¿ÀÛ¿ë·Îº¿(ÄÚº¿)µµ Àα⸦ ²ø°í ÀÖÀ¸¸ç, »ý»êȯ°æ¿¡¼­ Àΰ£°ú ·Îº¿ÀÌ ¾ÈÀüÇÏ°Ô °øµ¿ÀÛ¾÷À» ÇÒ ¼ö ÀÖ°Ô Çϰí ÀÖ½À´Ï´Ù.

±¹Á¦·Îº¿¿¬¸Í¿¡ µû¸£¸é Çѱ¹ÀÇ ¹ÝµµÃ¼ÀåÄ¡ °ø±Þ¾÷ü°¡ 77´ëÀÇ ±¹»êÇùµ¿·Îº¿À» µµÀÔÇß½À´Ï´Ù.

Á¦Á¶¿¡¼­ÀÇ ÀÚµ¿È­ ¼ö¿ä Áõ°¡

ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ÀÇ ÀÚµ¿È­ µµÀÔ Áõ°¡´Â »ý»ê °øÁ¤ÀÇ È¿À²°ú Á¤¹Ðµµ¸¦ ³ôÀ̱â À§ÇÑ ·Îº¿ ¼ö¿ä¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. º¿¿¡ ÀÇÇÑ ÀÚµ¿È­¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. AI¸¦ žÀçÇÑ ·Îº¿À̳ª ¸Ó½Å·¯´× ¿ëµµ µîÀÇ ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ »ý»ê ´É·ÂÀº ÇÑÃþ ´õ Çâ»óÇϰí ÀÖ½À´Ï´Ù.

±âÁ¸ ½Ã½ºÅÛ°úÀÇ º¹ÀâÇÑ ÅëÇÕ

÷´Ü ·Îº¿ ½Ã½ºÅÛÀ» ±âÁ¸ÀÇ Á¦Á¶ ¶óÀο¡ ÅëÇÕÇÏ´Â °ÍÀº ȣȯ¼º°ú ¿î¿ë»óÀÇ È¥¶õ¿¡ ÀÇÇÑ °úÁ¦¸¦ °¡Á®¿É´Ï´Ù. ÇÏÁö¸¸ ÇÊ¿äÇÑ °Íµµ µµÀÔÀÇ º¹À⼺¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. Ãʱâ ÅõÀÚ ºñ¿ëÀÌ ³ô°í, µµÀԽÿ¡ ´Ù¿îŸÀÓÀÌ ¹ß»ýÇÒ °¡´É¼ºµµ ½ÃÀåÀÇ ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.

Çùµ¿ ·Îº¿(ÄÚº¿) ¼ö¿ä Áõ°¡

ÀÚµ¿Â÷ »ý»ê ¶óÀο¡ À־ÀÇ Çùµ¿ ·Îº¿(ÄÚº¿)ÀÇ Ã¤¿ëÀÌ Áõ°¡Çϰí ÀÖ¾î »õ·Î¿î ½ÃÀå ±âȸ°¡ ź»ýÇϰí ÀÖ½À´Ï´Ù. Á¾·¡ÀÇ »ê¾÷¿ë ·Îº¿°ú´Â ´Þ¸®, ÄÚº¿Àº Àΰ£ÀÇ ¿ÀÆÛ·¹ÀÌÅÍ¿Í ÇÔ²² ÀÛ¾÷Çϱ⠶§¹®¿¡ Á¦Á¶ ȯ°æ¿¡ À־ÀÇ »ý»ê¼º°ú ¾ÈÀü¼ºÀÌ Çâ»óÇÕ´Ï´Ù. ½±°í ¿ªµ¿Àû ÀÎ »ý»ê ¿ä±¸¿¡ ÀûÀÀÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡°Ô ¸Å·ÂÀûÀÎ Á¸Àç°¡µÇ°í ÀÖ½À´Ï´Ù.

¿¬°áµÈ ·Îº¿ÀÇ »çÀ̹ö º¸¾È À§Çè

ÀÚµ¿Â÷ Á¦Á¶¿¡ À־ÀÇ Ä¿³ØÆ¼µå¡¤IoT ´ëÀÀ ·Îº¿ ½Ã½ºÅÛÀÇ ´ëµÎ´Â À̰͵éÀ» »çÀ̹ö º¸¾ÈÀÇ À§Çù¿¡ ³ëÃâ½Ãŵ´Ï´Ù. ·Îº¿ ÀÚµ¿È­¸¦ ¸ñÇ¥·Î ÇÑ »çÀ̹ö °ø°ÝÀº »ý»ê Áß´Ü, µ¥ÀÌÅÍ Ä§ÇØ, °øÀå ¿î¿µÀÇ ¾ÈÀü À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå Á¦¾î ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ¹«´Ü ¾×¼¼½º ¹× ½Ã½ºÅÛ Ãë¾àÁ¡¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. °­·ÂÇÑ »çÀ̹ö º¸¾È ÇÁ·ÎÅäÄݰú ½Ç½Ã°£ À§Çù °¨Áö¸¦ º¸ÀåÇÏ´Â °ÍÀº »ê¾÷¿ë ·Îº¿ ³×Æ®¿öÅ©¸¦ º¸È£ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¶ÇÇÑ Á¦Á¶ ½Ã¼³¿¡ ´ëÇÑ ·£¼¶¿þ¾î °ø°ÝÀÇ °¡´É¼ºÀº ½ÃÀå ¾ÈÁ¤¼º¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå¿¡ Ç÷¯½º¿Í ¸¶À̳ʽºÀÇ ¾ç¸é¿¡¼­ Å« ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ÇÑÆíÀ¸·Î´Â »çȸÀû ¸Ö¸®Ã¥°ú ³ëµ¿·Â ºÎÁ·ÀÌ Á¦Á¶¾÷¿¡ÀÇ ·Îº¿ µµÀÔÀ» °¡¼Ó½ÃÄ×½À´Ï´Ù. ±â¾÷ÀÌ »ç¶÷ÀÇ °³ÀÔÀ» ÁÙÀ̸鼭 »ý»ê È¿À²À» À¯ÁöÇÏ·Á°í Ç߱⠶§¹®¿¡ ÀÚµ¿È­ ¼ö¿ä°¡ ±ÞÁõÇß½À´Ï´Ù. ±×·¯³ª °ø±Þ¸ÁÀÇ È¥¶õ°ú °æÁ¦ÀÇ ¼±Çà ºÒÅõ¸í°¨À¸·Î ÀÎÇØ ·Îº¿ ½Ã½ºÅÛÀÇ µµÀÔ¿¡ Áö¿¬ÀÌ ¹ß»ýÇß½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¿¡µµ ºÒ±¸ÇÏ°í ÆÒµ¥¹ÍÀº ÀÚµ¿È­ÀÇ Á߿伺À» °­È­Çϰí ÀÚµ¿Â÷ »ý»ê¿ë ·Îº¿¿¡ Àå±â ÅõÀÚ¸¦ ÃËÁøÇß½À´Ï´Ù.

¿¹Ãø±â°£ Áß ´Ù°üÀý ·Îº¿ ºÐ¾ß°¡ ÃÖ´ëÈ­µÉ Àü¸Á

´Ù°üÀý ·Îº¿Àº ÀÚµ¿Â÷ Á¶¸³ ¹× ¿ëÁ¢ ÀÀ¿ë ºÐ¾ß¿¡ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´Ù°üÀý ·Îº¿¿¡ AI³ª ºñÀü ½Ã½ºÅÛÀÌ Å¾ÀçµÇ°Ô µÊÀ¸·Î½á, ·Îº¿ÀÇ ÀûÀÀ¼ºÀÌ ÇÑÃþ ´õ Çâ»óÇϰí ÀÖ¾î ÀÚµ¿Â÷ °øÀå¿¡ À־ÀÇ °í¼º´É ·Îº¿ ¾Ï¿¡ ´ëÇÑ ¼ö¿ä°¡, ÀÌ ºÐ¾ßÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø±â°£ Áß ¸Ó½Å·¯´×¡¤ÀΰøÁö´É ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø±â°£ Áß ÀÚÀ²Çü ·Îº¿½Ã½ºÅÛÀÇ Áøº¸¿¡ ÀÇÇØ ¸Ó½Å·¯´×¡¤ÀΰøÁö´ÉºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®°ú ½º¸¶Æ® Á¦Á¶ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó ·Îº¿ ¿£Áö´Ï¾î¸µÀÇ AI äÅÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ºÐ¾ß¿¡¼­ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤ºÎÀÇ Áö¿øÀÌ ·Îº¿ÀÇ Ã¤¿ëÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷¿Í ÀÚÀ² ÁÖÇàÂ÷ ¼ö¿ä Áõ°¡´Â »ý»ê¿¡ À־ÀÇ Ã·´Ü ·Îº¿ÀÇ Çʿ伺À» ÇÑÃþ ´õ ³ô¿©ÁÖ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø±â°£ Áß ºÏ¹Ì°¡ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå¿¡¼­ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ·Îº¿ Á¦Á¶¿¡ À־ÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀΰǺñÀÇ »ó½Â°ú Á¤¹Ð °øÇÐÀÇ Çʿ伺ÀÌ, Á¦Á¶¾÷ü¸¦ ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ¹Ð¾î ¿Ã¸®°í ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ ÁöÁ¤ ¿ÀÆÛ¸µ :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : Á¦Ç° À¯Çü

  • ´Ù°üÀý ·Îº¿
    • 4Ãà ·Îº¿
    • 6Ãà ·Îº¿
  • Á÷±³ ·Îº¿
  • ¿øÅëÇü ·Îº¿
  • ½ºÄ«¶ó ·Îº¿
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : ±¸¼º ¿ä¼Òº°

  • Çϵå¿þ¾î
    • ÄÁÆ®·Ñ·¯
    • ·Îº¿ ÆÈ
    • ¿£µå ÀÌÆåÅÍ
  • ¼¾¼­
    • ºñÀü ¼¾¼­
    • Èû/ÅäÅ© ¼¾¼­
  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º
  • ±âŸ ±¸¼º ¿ä¼Ò

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : ¹èÆ÷ À¯Çüº°

  • °íÁ¤ ·Îº¿
  • À̵¿ ·Îº¿
    • ¹«ÀÎ ¹Ý¼ÛÂ÷(AGV)
    • ÀÚÀ² À̵¿ ·Îº¿(AMR)
  • ±âŸ ¹èÆ÷ À¯Çü

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : ±â¼úº°

  • ¸Ó½Å·¯´× ¹× ÀΰøÁö´É
  • 3D ºñÀü ½Ã½ºÅÛ
  • IoT ÅëÇÕ
  • Ŭ¶ó¿ìµå ·Îº¸Æ½½º
  • ±âŸ ±â¼ú

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : ¿ëµµº°

  • ÀÚÀç Ãë±Þ
  • Á¶¸³/ºÐÇØ
  • ¿ëÁ¢
    • ½ºÆý ¿ëÁ¢
    • ¾ÆÅ© ¿ëÁ¢
  • ÆäÀÎÆÃ
  • Àý´Ü
  • ±âŸ ¿ëµµ

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÚµ¿Â÷ Á¦Á¶¾÷ü
  • ÀÚµ¿Â÷ ºÎǰ Á¦Á¶¾÷ü
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ·Îº¸Æ½½º ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • ABB
  • Comau SpA
  • Denso Wave
  • Durr AG
  • Fanuc Corporation
  • Harmonic Drive System
  • Kawasaki Heavy Industries
  • KUKA Robotics
  • Nachi-Fujikoshi Corp
  • Omron Corporation
  • Panasonic Welding Systems Co. Ltd.
  • Reis Gmbh & Co.
  • Rockwell Automation
  • Seiko Epson Corporation
  • Staubli
  • Universal Robots
KTH 25.05.07

According to Stratistics MRC, the Global Automotive Robotics Market is accounted for $11.4 billion in 2025 and is expected to reach $30.7 billion by 2032 growing at a CAGR of 15.2% during the forecast period. Automotive robotics refers to the integration of robotic systems in vehicle manufacturing and assembly processes to enhance efficiency, precision, and productivity. These robots are widely used in tasks such as welding, painting, material handling, and assembly, ensuring consistent quality and reducing production time. Collaborative robots (cobots) are also gaining traction, allowing humans and robots to work together safely in production environments. The adoption of robotics in the automotive industry helps minimize errors, improve workplace safety, and lower operational costs.

According to the International Federation of Robotics, 77 domestic collaborative robots were installed by a semiconductor equipment supplier in Korea.

Market Dynamics:

Driver:

Rising demand for automation in manufacturing

The increasing adoption of automation in the automotive sector is fueling the demand for robotics to enhance efficiency and precision in production processes. Automakers are integrating robotic systems to streamline operations, reduce labor costs, and minimize errors in assembly lines. The need for consistent quality and high-speed manufacturing is driving investment in robotic automation. Technological advancements, such as AI-powered robots and machine learning applications, are further improving production capabilities. Additionally, government initiatives supporting smart manufacturing are accelerating the adoption of automotive robotics.

Restraint:

Complex integration with existing systems

Integrating advanced robotic systems into conventional manufacturing lines poses challenges due to compatibility and operational disruptions. Many automotive manufacturers rely on legacy systems, making it difficult to incorporate modern robotics without costly modifications. The requirement for skilled personnel to manage and program these robots adds to the complexity of adoption. High initial investment costs and potential downtime during implementation also hinder market growth. Additionally, ensuring seamless communication between robotic automation and existing industrial control systems remains a critical challenge.

Opportunity:

Rising demand for collaborative robots (cobots)

The increasing adoption of collaborative robots (cobots) in automotive production lines is creating new market opportunities. Unlike traditional industrial robots, cobots work alongside human operators, enhancing productivity and safety in manufacturing environments. These robots are cost-effective, easy to program, and adaptable to dynamic production needs, making them attractive to automakers. Advancements in sensor technology and AI-driven automation are further improving cobots' precision and efficiency. The growing trend of flexible manufacturing and customization in vehicle production is also fueling the demand for cobots.

Threat:

Cybersecurity risks in connected robotics

The rise of connected and IoT-enabled robotic systems in automotive manufacturing exposes them to cybersecurity threats. Cyberattacks targeting robotic automation can lead to production disruptions, data breaches, and safety hazards in factory operations. The increasing reliance on cloud-based control systems raises concerns over unauthorized access and system vulnerabilities. Ensuring robust cybersecurity protocols and real-time threat detection is becoming essential to protect industrial robotic networks. Additionally, the potential for ransomware attacks on manufacturing facilities presents a significant risk to market stability.

Covid-19 Impact:

The COVID-19 pandemic significantly influenced the automotive robotics market, both positively and negatively. On one hand, social distancing measures and labor shortages accelerated the adoption of robotics in manufacturing. The demand for automation surged as companies sought to maintain production efficiency while reducing human intervention. However, supply chain disruptions and economic uncertainty caused delays in robotic system deployments. Despite these challenges, the pandemic reinforced the importance of automation, driving long-term investment in robotics for automotive production.

The articulated robots segment is expected to be the largest during the forecast period

The Articulated Robots segment is expected to account for the largest market share during the forecast period due to its widespread use in vehicle assembly and welding applications. These robots offer high flexibility, precision, and efficiency, making them ideal for handling complex manufacturing tasks. Automakers are increasingly deploying articulated robots to enhance production speed and maintain product consistency. The rising integration of AI and vision systems in articulated robots is further improving their adaptability, and the demand for high-performance robotic arms in automotive plants is driving segment growth.

The machine learning and artificial intelligence segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the Machine Learning And Artificial Intelligence segment is predicted to witness the highest growth rate due to advancements in autonomous robotic systems. AI-powered robotics enhance decision-making, predictive maintenance, and process optimization in automotive manufacturing. Machine learning algorithms are improving robotic automation by enabling self-learning and adaptive behavior. The increasing need for real-time data analytics and smart manufacturing solutions is fueling AI adoption in robotics. Furthermore, AI-driven robots are enhancing quality control processes, reducing errors, and improving overall production efficiency.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share in the automotive robotics sector. The region's dominance is driven by the presence of leading automotive manufacturers in countries like China, Japan, and South Korea. Rapid industrialization and government support for smart manufacturing are accelerating robotic adoption. The growing demand for electric and autonomous vehicles is further boosting the need for advanced robotics in production. Additionally, investments in AI-powered automation and Industry 4.0 initiatives are strengthening market growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR in the automotive robotics market. The increasing adoption of automation in vehicle production, coupled with advancements in AI-driven robotics, is driving regional growth. The presence of major automakers and robotics companies is fostering innovation in robotic manufacturing. Additionally, rising labor costs and the need for precision engineering are pushing manufacturers toward automated solutions. Government incentives and research funding for smart factories are further supporting robotics expansion of market.

Key players in the market

Some of the key players in Automotive Robotics Market include ABB, Comau SpA, Denso Wave, Durr AG, Fanuc Corporation, Harmonic Drive System, Kawasaki Heavy Industries, KUKA Robotics, Nachi-Fujikoshi Corp, Omron Corporation, Panasonic Welding Systems Co. Ltd., Reis GmbH & Co., Rockwell Automation, Seiko Epson Corporation, Staubli, and Universal Robots.

Key Developments:

In January 2025, Richtech Robotics, based in Las Vegas, announced its expansion into the automotive sector with a range of industrial robots. Their lineup includes Medbot for medical deliveries, Titan for heavy payloads, and Matradee Plus for service applications

In November 2024, Chinese EV manufacturer Xpeng introduced the Iron robot, a 6-foot-tall humanoid designed to assist in factories and stores. Developed over five years, the Iron robot shares AI technology with Xpeng's electric vehicles and boasts extensive articulation for versatile movement

In October 2024, Tesla unveiled the Cybercab, a self-driving robotaxi, in California. Set for production in 2026, the Cybercab is a two-seater vehicle without pedals or a steering wheel, priced under $30,000, and operating at 20 cents per mile.

Product Types Covered:

  • Articulated Robots
  • Cartesian Robots
  • Cylindrical Robots
  • Scara Robots
  • Other Product Types

Components Covered:

  • Hardware
  • Sensors
  • Software
  • Service
  • Other Components

Deployment Types Covered:

  • Fixed Robots
  • Mobile Robots
  • Other Deployment Types

Technologies Covered:

  • Machine Learning And Artificial Intelligence
  • 3D Vision Systems
  • IoT Integration
  • Cloud Robotics
  • Other Technologies

Applications Covered:

  • Material Handling
  • Assembly/Disassembly
  • Welding
  • Painting
  • Cutting
  • Other Applications

End Users Covered:

  • Vehicle Manufacturers
  • Automotive Component Manufacturers
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Robotics Market, By Product Type

  • 5.1 Introduction
  • 5.2 Articulated Robots
    • 5.2.1 4-Axis robots
    • 5.2.2 6-Axis robots
  • 5.3 Cartesian Robots
  • 5.4 Cylindrical Robots
  • 5.5 Scara Robots
  • 5.6 Other Product Types

6 Global Automotive Robotics Market, By Component

  • 6.1 Introduction
  • 6.2 Hardware
    • 6.2.1 Controller
    • 6.2.2 Robot Arm
    • 6.2.3 End-Effector
  • 6.3 Sensors
    • 6.3.1 Vision Sensors
    • 6.3.2 Force/Torque Sensors
  • 6.4 Software
  • 6.5 Service
  • 6.6 Other Components

7 Global Automotive Robotics Market, By Deployment Type

  • 7.1 Introduction
  • 7.2 Fixed Robots
  • 7.3 Mobile Robots
    • 7.3.1 Automated Guided Vehicles (AGVs)
    • 7.3.2 Autonomous Mobile Robots (AMRs)
  • 7.4 Other Deployment Types

8 Global Automotive Robotics Market, By Technology

  • 8.1 Introduction
  • 8.2 Machine Learning And Artificial Intelligence
  • 8.3 3D Vision Systems
  • 8.4 IoT Integration
  • 8.5 Cloud Robotics
  • 8.6 Other Technologies

9 Global Automotive Robotics Market, By Application

  • 9.1 Introduction
  • 9.2 Material Handling
  • 9.3 Assembly/Disassembly
  • 9.4 Welding
    • 9.4.1 Spot welding
    • 9.4.2 Arc welding
  • 9.5 Painting
  • 9.6 Cutting
  • 9.7 Other Applications

10 Global Automotive Robotics Market, By End User

  • 10.1 Introduction
  • 10.2 Vehicle Manufacturers
  • 10.3 Automotive Component Manufacturers
  • 10.4 Other End Users

11 Global Automotive Robotics Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 ABB
  • 13.2 Comau SpA
  • 13.3 Denso Wave
  • 13.4 Durr AG
  • 13.5 Fanuc Corporation
  • 13.6 Harmonic Drive System
  • 13.7 Kawasaki Heavy Industries
  • 13.8 KUKA Robotics
  • 13.9 Nachi-Fujikoshi Corp
  • 13.10 Omron Corporation
  • 13.11 Panasonic Welding Systems Co. Ltd.
  • 13.12 Reis Gmbh & Co.
  • 13.13 Rockwell Automation
  • 13.14 Seiko Epson Corporation
  • 13.15 Staubli
  • 13.16 Universal Robots
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦