![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1716289
¸Ó½Å·¯´×(ML) ½ÃÀå ¿¹Ãø(-2032³â) : ±¸¼º¿ä¼Òº°, ±â¾÷ ±Ô¸ðº°, Àü°³º°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Machine Learning (ML) Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Enterprise Size (SMEs and Large Enterprises), Deployment, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é, ¼¼°è ¸Ó½Å·¯´×(ML) ½ÃÀåÀº 2025³â 860¾ï 2,000¸¸ ´Þ·¯·Î ¿¹Ãø ±â°£ µ¿¾È 32.8%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 6,266¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¸Ó½Å·¯´×(ML)À̶ó´Â ÀΰøÁö´ÉÀÇ ÇÑ ºÐ¾ß´Â ÄÄÇ»ÅͰ¡ µ¥ÀÌÅͷκÎÅÍ ÇнÀÇÏ°í ¸í½ÃÀûÀÎ ÇÁ·Î±×·¡¹Ö ¾øÀ̵µ ÀÇ»ç°áÁ¤°ú ¿¹ÃøÀ» ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Åë°è ¸ðµ¨°ú ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®¿¡¼ ÆÐÅÏÀ» ¹ß°ßÇϰí Á¡Â÷ÀûÀ¸·Î ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ¸Ó½Å·¯´×(ML)Àº ¸¶ÄÉÆÃ, ±ÝÀ¶, ÇコÄɾî, ÀÚÀ² ½Ã½ºÅÛ µî ¸¹Àº »ê¾÷¿¡¼ ³Î¸® »ç¿ëµÇ¾î »ý»ê¼º°ú ÀÇ»ç°áÁ¤À» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ À̹ÌÁö ÀνÄ, ÀÚ¿¬¾î ó¸®, Ãßõ ½Ã½ºÅÛ µî º¹ÀâÇÑ ¹®Á¦µµ ML ¸ðµ¨À» ÅëÇØ ó¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Àü ¼¼°è µ¥ÀÌÅÍ Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÑ ¼³¹®Á¶»ç¿¡ µû¸£¸é, 45%ÀÇ ±â¾÷ÀÌ ¸Ó½Å·¯´×À» µµÀÔÇßÀ¸¸ç, 21%´Â ¸Ó½Å·¯´× Ȱ¿ëÀ» ¸ð»öÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ±¹°¡º° µµÀÔ·üÀº À̽º¶ó¿¤ 63%, ³×´ú¶õµå 57%, ¹Ì±¹ 56% µî ±¹°¡º°·Î Â÷À̰¡ ÀÖ½À´Ï´Ù. ´ë±â¾÷ÀÇ µµÀÔ·ü(61%)Àº Áß°ß±â¾÷(45%)À̳ª Áß¼Ò±â¾÷(33%)º¸´Ù ³ô½À´Ï´Ù.
µ¥ÀÌÅÍ Á¦Á¶ÀÇ ¼ºÀå
¼Ò¼È ¹Ìµð¾î, ±â¾÷¿ë ¾Û, E-Commerce Ç÷§Æû, »ç¹°ÀÎÅÍ³Ý ±â±â µî ´Ù¾çÇÑ ¼Ò½º·ÎºÎÅÍÀÇ Æø¹ßÀûÀÎ µ¥ÀÌÅÍ »ý¼ºÀº »ê¾÷ Àü¹ÝÀÇ µðÁöÅÐ ÀüȯÀÇ Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ´ë·®ÀÇ Á¤Çü ¹× ºñÁ¤Çü µ¥ÀÌÅÍ´Â Á¶Á÷ÀÌ ¼öÀÛ¾÷À¸·Î ó¸®ÇÏ°í ºÐ¼®ÇÏ±â ¾î·Æ½À´Ï´Ù. ±â¾÷Àº ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ µµ¿òÀ» ¹Þ¾Æ ÆÐÅÏÀ» ã°í, °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ®¸¦ µµÃâÇϰí, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤À» Áï°¢ÀûÀ¸·Î ³»¸± ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºòµ¥ÀÌÅÍ ºÐ¼® Ç÷§ÆûÀÇ µîÀåÀ¸·Î ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
³ôÀº º¹À⼺°ú µµÀÔ ºñ¿ë
¸Ó½Å·¯´×ÀÇ Àå±âÀûÀÎ ÀÌÁ¡¿¡µµ ºÒ±¸Çϰí, ÀÎÇÁ¶ó, À¯´ÉÇÑ Á÷¿ø, ¸ðµ¨ ÈÆ·Ã¿¡ ÇÊ¿äÇÑ Ãʱâ ÅõÀÚºñ¿ëÀº ¸¹Àº ±â¾÷¿¡°Ô ³Ê¹« ºñ½Î°Ô ´À²¸Áú ¼ö ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ ML ¸ðµ¨À» ¼º°øÀûÀ¸·Î °³¹ßÇÏ°í ±¸ÇöÇÏ·Á¸é °·ÂÇÑ ÄÄÇ»ÅÍ ¸®¼Ò½º, ¿ì¼öÇÑ µ¥ÀÌÅͼ¼Æ®, ÃÖ÷´Ü ¼ÒÇÁÆ®¿þ¾î µµ±¸¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ, ¸Ó½Å·¯´×(ML)À» ±âÁ¸ ±â¾÷ ½Ã½ºÅÛ°ú ÅëÇÕÇÏ´Â °ÍÀº ¾î·Æ°í Àü¹®ÀûÀÎ ¼Ö·ç¼ÇÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀÌ ´õ¿í Áõ°¡ÇÕ´Ï´Ù. Áß¼Ò±â¾÷(SME)ÀÌ ¸Ó½Å·¯´×(ML) ÇÁ·ÎÁ§Æ®¿¡ ÀÚ±ÝÀ» ÅõÀÚÇÒ ¼ö ¾ø´Ù´Â Á¡ÀÌ º¸±ÞÀ» ´ÊÃß°í ÀÖ½À´Ï´Ù.
AI¸¦ Ȱ¿ëÇÑ »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ÏÁî Áõ°¡ Ãß¼¼
»çÀ̹ö °ø°ÝÀÇ °íµµÈ¿Í ºóµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó MLÀ» Ȱ¿ëÇÑ »çÀ̹ö º¸¾È ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, AI ±â´ÉÀ» °®Ãá º¸¾È ½Ã½ºÅÛÀº ºÎÁ¤ÇàÀ§¸¦ ½Äº°Çϰí À§ÇùÀ» ¿¹ÃøÇϸç Áï°¢ÀûÀÎ ´ëÀÀÀ» ÀÚµ¿ÈÇÏ¿© À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. »çÀ̹ö ¹æ¾î¸¦ °ÈÇϱâ À§ÇØ ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ³×Æ®¿öÅ© º¸¾È ¸ð´ÏÅ͸µ, »ç±â ŽÁö, ½Å¿ø È®Àο¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸Ó½Å·¯´×(ML)À» Ȱ¿ëÇÑ À§Çù ÀÎÅÚ¸®Àü½º Ç÷§Æû°ú Çൿ ºÐ¼® ¼Ö·ç¼ÇÀº Á¤ºÎ¿Í ±â¾÷ÀÌ »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥ ½ÃÀå È®´ëÀÇ ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù.
°íǰÁú µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±Ù¼º¿¡ ´ëÇÑ ÀÇÁ¸µµ
MLÀÇ ¼º´ÉÀº ÆíÇâµÇÁö ¾ÊÀº ´Ù¾çÇÏ°í ¾çÁúÀÇ µ¥ÀÌÅÍ¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. ±×·¯³ª ¸¹Àº »ê¾÷¿¡¼ AI ¸ðµ¨ÀÇ À¯È¿¼ºÀº ÀûÀýÇÑ µ¥ÀÌÅͼ¼Æ®¿Í °íǰÁú µ¥ÀÌÅͼ¼Æ®ÀÇ ºÎÁ·À¸·Î ÀÎÇØ Á¦¾à¹Þ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÆÄÆíÈ, ¼Ò½º °£ ºÒÀÏÄ¡, ÇÁ¶óÀ̹ö½Ã Á¦ÇÑ µîÀº µ¥ÀÌÅÍ ¼öÁýÀ» ¾î·Æ°Ô ¸¸µå´Â ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù. ¶ÇÇÑ, Á¤È®¼ºÀ» À¯ÁöÇϱâ À§Çؼ´Â ¸Ó½Å·¯´× ¸ðµ¨À» »õ·Î¿î µ¥ÀÌÅÍ·Î ÀÚÁÖ ¾÷µ¥ÀÌÆ®ÇØ¾ß ÇÏÁö¸¸, µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á¢±ÙÀº ¼ÒÀ¯±ÇÀ̳ª ±ÔÁ¦»óÀÇ Á¦¾àÀ¸·Î ÀÎÇØ Á¦ÇѵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù. ÃæºÐÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅͼ¼Æ®°¡ ¾ø´Ù¸é, ¸Ó½Å·¯´× ¸ðµ¨Àº ½Ã´ë¿¡ µÚ¶³¾îÁö°Å³ª À߸øµÈ, ¶Ç´Â ¿ÀÇØÀÇ ¼ÒÁö°¡ ÀÖ´Â ÀλçÀÌÆ®¸¦ »ý¼ºÇÒ À§ÇèÀÌ ÀÖ¾î ±â¾÷ÀÇ Àü¹ÝÀûÀÎ À¯¿ë¼ºÀ» ¶³¾î¶ß¸± ¼ö ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ±â¾÷°ú Á¶Á÷ÀÌ È¥¶õ¿¡ ´ëóÇÒ ¼ö Àִ âÀÇÀûÀÎ ¹æ¹ýÀ» ¸ð»öÇÏ¸é¼ ¸¹Àº »ê¾÷ ºÐ¾ß¿¡¼ ¸Ó½Å·¯´×(ML)ÀÇ Ã¤ÅÃÀ» Å©°Ô °¡¼ÓÈÇß½À´Ï´Ù. µ¥ÀÌÅÍ ºÐ¼®, ¿¹Ãø ¸ðµ¨¸µ, ½Ç½Ã°£ ÀÇ»ç°áÁ¤, ¿ø°Ý ±Ù¹«, µðÁöÅÐ ¼ºñ½º, ÀÚµ¿È¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó ´õ ³ôÀº ¼öÁØÀÇ AI ±â¹Ý ½Ã½ºÅÛÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á ºÐ¾ß¿¡¼´Â ¸Ó½Å·¯´×ÀÌ ¹é½Å°ú Áø´Ü ±â±â °³¹ß, ȯÀÚ Ä¡·á °³¼±¿¡ Áß¿äÇÑ ¿ªÇÒÀ» Çß½À´Ï´Ù. ±ÝÀ¶ ¼ºñ½º, °ø±Þ¸Á °ü¸®, E-Commerce¿¡¼µµ ºÎÁ¤ÇàÀ§ ŽÁö, ¼ö¿ä ¿¹Ãø, °³ÀÎÈµÈ °í°´ °æÇè Á¦°øÀ» À§ÇØ ¸Ó½Å·¯´×(ML)ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾Ë°í¸®ÁòÀÇ ÆíÇ⼺, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, À¯´ÉÇÑ ¸Ó½Å·¯´× Àü¹®°¡ ºÎÁ· µîÀÇ ¹®Á¦µµ À̹ø ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ µå·¯³µ½À´Ï´Ù.
¿¹Ãø ºÐ¼® ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ºÐ¼® ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ºÎ¹®Àº ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© ¹Ì·¡ °á°ú¸¦ ¿¹ÃøÇÏ°í °ú°Å µ¥ÀÌÅ͸¦ ºÐ¼®Çϱ⠶§¹®¿¡ ¼Ò¸Å, ÇコÄɾî, ±ÝÀ¶À» Æ÷ÇÔÇÑ ¸¹Àº »ê¾÷¿¡¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿¹Ãø ºÐ¼®Àº ±â¾÷ÀÌ Æ®·»µå, °í°´ Çൿ, ¾÷¹« ¿ä±¸ »çÇ×À» ¿¹ÃøÇÒ ¼ö ÀÖµµ·ÏÇÔÀ¸·Î½á ´õ ³ªÀº ÀÇ»ç°áÁ¤, ÇÁ·Î¼¼½º ÃÖÀûÈ, °í°´ °æÇèÀ» Áö¿øÇÕ´Ï´Ù. ¼ö¿ä ¿¹Ãø, ¸®½ºÅ© °ü¸®, Àç°í ÃÖÀûÈ´Â ±× ¸¹Àº ¿ëµµ Áß ÀϺο¡ ºÒ°úÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¹Ãø ºÐ¼®ÀÌ ¸Ó½Å·¯´× ½ÃÀåÀ» Àå¾ÇÇϰí ÀÖ´Â ÁÖ¿ä ÀÌÀ¯ Áß Çϳª´Â µ¥ÀÌÅÍ ±â¹Ý ÀλçÀÌÆ®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í »ê¾÷ Àü¹Ý¿¡¼ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ÇコÄÉ¾î ºÎ¹®
°³ÀÎÈµÈ ÀǷḦ °¡´ÉÇÏ°Ô Çϰí, Áø´Ü Á¤È®µµ¸¦ ³ôÀ̰í, ȯÀÚ °á°ú¸¦ °³¼±ÇÏ´Â ¸Ó½Å·¯´×Àº ÇコÄÉ¾î ºÐ¾ß¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖÀ¸¸ç, MLÀº ¹æ´ëÇÑ ¾çÀÇ ÀÇ·á µ¥ÀÌÅ͸¦ ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î Áúº´ÀÇ Á¶±â ¹ß°ß, Ä¡·á ÃÖÀûÈ, ½Å¾à °³¹ß¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ML ¾Ë°í¸®ÁòÀº ÇコÄɾî ÀÚµ¿È, ¿¹Ãø ºÐ¼®, ÀÇ·á ¿µ»ó Áø´ÜÀÇ È¿À²¼º Çâ»ó ¹× ºñ¿ë Àý°¨¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇâÈÄ ¸î ³â µ¿¾È ÀÇ·á ¼ºñ½º Á¦°øÀÚµéÀÌ µðÁöÅÐ ÀüȯÀ» °è¼Ó äÅÃÇÔ¿¡ µû¶ó ¾î·Á¿î ¹®Á¦¸¦ ÇØ°áÇϰí ȯÀÚ Ä¡·á¸¦ °ÈÇϱâ À§ÇÑ °í±Þ ¸Ó½Å·¯´× ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç, Á¤±³ÇÑ ÀÎÇÁ¶ó, ´ë±Ô¸ð R&D ºñ¿ëÀÌ ÀÌ·¯ÇÑ ¿ìÀ§ÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, IT, ÀÚµ¿Â÷ µî ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¼ö¸¹Àº ½ºÅ¸Æ®¾÷°ú ±âÁ¸ ±â¾÷µéÀÌ ML ¼Ö·ç¼ÇÀ» µµÀÔÇÏ¿© ÀÌ Áö¿ªÀ» AI ¹× ML Çõ½ÅÀÇ Áß½ÉÁö·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ML µµÀÔÀÇ Áõ°¡´Â Á¤ºÎ ÇÁ·Î±×·¥ ¹× AI ±â¹Ý ±â¼ú¿¡ ´ëÇÑ ´õ ¸¹Àº ÀÚ±Ý Á¶´ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â °·ÂÇÑ µ¥ÀÌÅÍ ¼öÁý ¹× ó¸® ´É·Â°ú ³ôÀº ±â¼ú ÀνÄÀ¸·Î ¼¼°è ¸Ó½Å·¯´× ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ¿øµ¿·ÂÀº ºü¸¥ µðÁöÅÐ Çõ½Å, AI ±â¼ú Ȱ¿ë È®´ë, µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¿¡ ±âÀÎÇÕ´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº Á¦Á¶, ±ÝÀ¶, ÇコÄÉ¾î µî ´Ù¾çÇÑ »ê¾÷¿¡ ¸Ó½Å·¯´×(ML)À» ÅëÇÕÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ML ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÌ Áö¿ªÀÇ ¸¹Àº Àα¸, ½º¸¶Æ®Æù º¸±Þ·üÀÇ Áõ°¡, ÀÎÅÍ³Ý ¿¬°áÀÇ È®´ë·Î ÀÎÇØ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ½º¸¶Æ® ±â¼úÀ» Àå·ÁÇÏ´Â Á¤ºÎÀÇ ³ë·Â°ú ±¹Á¦ÀûÀÎ ÇÏÀÌÅ×Å© ±â¾÷ÀÇ Áõ°¡·Î ÀÎÇØ ¸Ó½Å·¯´× µµÀÔÀÌ °¡Àå ºü¸£°Ô ÁøÇàµÇ°í ÀÖ´Â Áö¿ªÀ¸·Î ²ÅÈ÷°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Machine Learning (ML) Market is accounted for $86.02 billion in 2025 and is expected to reach $626.62 billion by 2032 growing at a CAGR of 32.8% during the forecast period. Computers can learn from data and make decisions or predictions without explicit programming owing to a subfield of artificial intelligence called machine learning (ML). Through the use of statistical models and algorithms, it finds patterns in large datasets, gradually improving performance. Machine learning (ML) is widely used in many industries, such as marketing, finance, healthcare, and autonomous systems, where it improves productivity and decision-making. Moreover, complex issues like image recognition, natural language processing, and recommendation systems can be handled by ML models.
According to a worldwide survey of data professionals, 45% of companies have adopted machine learning methods, with an additional 21% exploring their use. Adoption rates vary by country, with Israel at 63%, the Netherlands at 57%, and the United States at 56%. Larger enterprises show higher adoption rates (61%) compared to medium (45%) and small companies (33%).
Growth in data manufacturing
An explosion of data generation from various sources, such as social media, enterprise apps, e-commerce platforms, and Internet of Things devices, has resulted from the rise of digital transformation across industries. This massive volume of structured and unstructured data is difficult for organizations to manually process and analyze. Businesses can find patterns, derive valuable insights, and make data-driven decisions instantly with the aid of machine learning algorithms. Additionally, the adoption of machine learning solutions has been further accelerated by the availability of big data analytics platforms.
High complexity and implementation costs
The initial investment needed for infrastructure, qualified staff, and model training can be too high for many businesses, even though machine learning has long-term advantages. For businesses to successfully develop and implement ML models, they must invest in strong computer resources, superior datasets, and cutting-edge software tools. Furthermore, integrating machine learning (ML) with current enterprise systems can be challenging and necessitate specialized solutions, which raise costs even more. Widespread adoption is slowed by small and medium-sized businesses' (SMEs') inability to devote funds to machine learning (ML) projects.
Growing need for cyber security solutions powered by AI
There is a significant need for ML-driven cyber security solutions due to the growing sophistication and frequency of cyber attacks. Security systems with AI capabilities are able to identify irregularities, anticipate threats, and automate in-the-moment reactions to reduce risks. To bolster cyber defenses, machine learning algorithms are being applied to network security monitoring, fraud detection, and identity verification. Moreover, machine learning (ML)-powered threat intelligence platforms and behavioral analytics solutions offer a profitable opportunity for market expansion as governments and corporations prioritize cyber security investments.
Reliance on access to high-quality data
ML performance is highly dependent on unbiased, diverse, and high-quality data. The efficacy of AI models is, however, constrained by the lack of adequate or high-quality datasets in many industries. Data fragmentation, inconsistencies between sources, and privacy restrictions are some of the factors that make data collection difficult. Furthermore, in order to maintain accuracy, machine learning models need to be updated frequently with new data; however, data access is frequently restricted by proprietary and regulatory constraints. Without sufficient and trustworthy datasets, machine learning models run the risk of generating outdated, false, or misleading insights, which lowers their overall usefulness to companies.
The COVID-19 pandemic greatly sped up the adoption of machine learning (ML) in a number of industries as companies and organizations looked for creative ways to deal with disruptions. For data analysis, predictive modelling, and real-time decision-making, more sophisticated AI-driven systems are required, as evidenced by the growing dependence on remote work, digital services, and automation. In the medical field, machine learning played a key role in the creation of vaccines, diagnostic instruments, and patient care enhancement. Financial services, supply chain management, and e-commerce have also used machine learning (ML) to detect fraud, forecast demand, and provide individualized customer experiences. Moreover, problems like algorithmic bias, data privacy issues, and a lack of qualified machine learning specialists were also brought to light by the pandemic.
The predictive analytics segment is expected to be the largest during the forecast period
The predictive analytics segment is expected to account for the largest market share during the forecast period. This segment is crucial to a number of industries, including retail, healthcare, and finance, because it uses machine learning algorithms to forecast future results and analyze historical data. Predictive analytics aids in better decision-making, process optimization, and customer experience by empowering companies to forecast trends, customer behavior, and operational requirements. Demand forecasting, risk management, and inventory optimization are just a few of its many uses. Additionally, one of the main reasons predictive analytics is dominating the machine learning market is the growing reliance on data-driven insights and the volume of data generated across industries.
The healthcare segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the healthcare segment is predicted to witness the highest growth rate because it allows for personalized medicine, increases diagnostic precision, and improves patient outcomes, machine learning is revolutionizing the healthcare sector. ML is helping with early disease detection, treatment optimization, and drug discovery because of its capacity to analyze enormous volumes of medical data. Furthermore, ML algorithms are being used to improve efficiency and drastically lower costs in healthcare automation, predictive analytics, and medical imaging. In the upcoming years, there will likely be a significant increase in demand for sophisticated machine learning solutions to handle challenging problems and enhance patient care as healthcare providers continue to embrace digital transformation.
During the forecast period, the North America region is expected to hold the largest market share. The existence of important technology companies, sophisticated infrastructure, and large R&D expenditures are the main drivers of this dominance. Numerous startups and well-established businesses are implementing ML solutions in a variety of industries, including healthcare, finance, IT, and automotive, making the region a center for AI and ML innovation. The rise in ML adoption has also been aided by government programs and more financing for AI-powered technologies. Moreover, North America leads the global machine learning market due to its strong data collection and processing capabilities and high degree of technological awareness.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This growth is being driven by the quick digital transformation, growing use of AI technologies, and large investments in data analytics. Countries like China, India, and Japan are putting a lot of effort into integrating machine learning (ML) into a variety of industries, such as manufacturing, finance, and healthcare. Additionally, the demand for ML solutions is further fueled by the region's sizable population, increasing smartphone adoption, and expanding internet connectivity. Asia-Pacific is now the fastest-growing region for machine learning adoption due to government initiatives to promote smart technologies and the growing number of international tech companies in the region.
Key players in the market
Some of the key players in Machine Learning (ML) Market include Amazon Web Services, Inc., IBM Corporation, Microsoft Corporation, SAP SE, Google Cloud, Xicom Technologies, Nvidia Inc, Vention, Intel Corporation, SAS Institute Inc., Hewlett Packard Enterprise Company, Oracle Corporation, Altoros, MobiDev and BigML, Inc.
In December 2024, Amazon Web Services (AWS) and Atlassian Corporation announced a multi-year strategic collaboration agreement (SCA) to expedite cloud transformation and deliver advanced AI and security capabilities to enterprise customers. The SCA will help drive the migration of millions of enterprise users from Atlassian's Data Center business - which generates over $1 billion in annual revenue - to Atlassian Cloud over a multi-year timeline.
In July 2024, IBM announced that it has secured a five-year contract with $26 million in initial funding from the U.S. Agency for International Development (USAID) to support its Cybersecurity Protection and Response (CPR) program aimed to expand and enhance the agency's cybersecurity response support for host governments in the Europe and Eurasia (E&E) region.
In June 2024, Microsoft Corp. and Hitachi Ltd. announced a projected multibillion-dollar collaboration over the next three years that will accelerate social innovation with generative AI. Through this strategic alliance, Hitachi will propel growth of the Lumada business, with a planned revenue of 2.65 trillion yen (18.9 billion USD)*1 in FY2024, and will promote operational efficiency and productivity improvements for Hitachi Group's 270,000 employees.