![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1725179
¼¼°èÀÇ Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çü, Àü¾Ð, ¼³Ä¡, Á¢¼Ó À¯Çü, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Capacitor Bank Market Forecasts to 2032 - Global Analysis By Type, Voltage, Installation, Connection Type, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ½ÃÀåÀº 2025³â 51¾ï ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 76¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 5.8%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â Àü±â ¿¡³ÊÁö¸¦ ÀúÀåÇÏ°í °ü¸®Çϱâ À§ÇØ Á÷·Ä ¶Ç´Â º´·Ä·Î ¿¬°áµÈ ¿©·¯ °³ÀÇ Ä¿ÆÐ½ÃÅÍ ±×·ìÀÔ´Ï´Ù. Àü·Â ½Ã½ºÅÛ¿¡¼ ÀϹÝÀûÀ¸·Î »ç¿ëµÇ´Â Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â ¿ª·üÀ» °³¼±Çϰí Àü¾ÐÀ» Á¶ÀýÇÏ¸ç ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¹«È¿ Àü·Â ¼ö¿ä¸¦ º¸»óÇÔÀ¸·Î½á Àü·Â °ø±Þ ³×Æ®¿öÅ©ÀÇ È¿À²¼º°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ¹ðÅ©´Â »ê¾÷ ½Ã¼³, º¯Àü¼Ò, »ó¾÷¿ë °Ç¹°¿¡¼ Àü±â ÀåºñÀÇ ÃÖÀûÀÇ ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ ³Î¸® Ȱ¿ëµË´Ï´Ù. Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â ¾ÖÇø®ÄÉÀ̼ÇÀÇ ¿ä±¸ »çÇ׿¡ µû¶ó °íÁ¤½Ä ¶Ç´Â ÀÚµ¿½ÄÀÏ ¼ö ÀÖÀ¸¸ç, ÃֽŠ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.
¹Ì±¹ ¿¬¹æ¿¡³ÊÁö±ÔÁ¦À§¿øÈ¸(FERC)¿¡ µû¸£¸é 2023³â ¹Ì±¹ ³» ½Å±Ô ¹ßÀü ¿ë·®ÀÇ 49.3%¸¦ ž籤ÀÌ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ´Ù¸¥ ¾î¶² ¿¡³ÊÁö¿øº¸´Ù ¸¹Àº ¼öÄ¡ÀÔ´Ï´Ù.
Àü·Â ¼ö¿ä Áõ°¡
±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ, Àç»ý ¿¡³ÊÁö¿øÀÇ Ã¤Åà Áõ°¡¿¡ µû¸¥ Àü ¼¼°èÀûÀÎ Àü·Â ¼ö¿äÀÇ Áõ°¡°¡ ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Àü·Â ¹ðÅ©´Â Àü·Â ½Ã½ºÅÛÀÇ ¿ª·ü, Àü¾Ð ¾ÈÁ¤¼º ¹× Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²À» °³¼±ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. À¯Æ¿¸®Æ¼¿Í »ê¾÷°è°¡ ¼ÛÀü ¼Õ½ÇÀ» ÁÙÀÌ°í ±×¸®µå ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó Ä¿ÆÐ½ÃÅÍ ¹ðÅ©¿Í °°Àº ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¹× ºÐ¹è ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó ±ÞÁõÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Çö´ë Àü±â ÀÎÇÁ¶óÀÇ Çʼö ±¸¼º ¿ä¼Ò·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù.
ºÎÀûÀýÇÑ ÀÛµ¿À¸·Î ÀÎÇÑ ±×¸®µå ¾ÈÁ¤¼º ¹®Á¦
Ä¿ÆÐ½ÃÅÍ ¹ðÅ©ÀÇ ºÎÀûÀýÇÑ ÀÛµ¿À¸·Î ÀÎÇØ ¹ß»ýÇÏ´Â ±×¸®µå ¾ÈÁ¤¼º ¹®Á¦´Â ½ÃÀå¿¡ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. À߸ø Á¶Á¤µÈ ½ºÀ§Äª ¶Ç´Â À߸øµÈ »çÀÌ¡Àº Àü¾Ð º¯µ¿, °íÁ¶ÆÄ ¿Ö°î, Àåºñ ¼Õ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â Àü·Â ǰÁúÀ» ÀúÇϽÃŰ°í ¿¹±âÄ¡ ¾ÊÀº Á¤ÀüÀ̳ª ½Ã½ºÅÛ Àå¾Ö¸¦ ÃÊ·¡ÇÏ¿© Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ¼Ö·ç¼Ç¿¡ ´ëÇÑ ½Å·Ú¸¦ ¾àȽÃų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÌ·¯ÇÑ ºÒ¾ÈÁ¤¼ºÀº À¯Áöº¸¼ö ºñ¿ë Áõ°¡¿Í ±ÔÁ¦ Á¶»ç·Î À̾îÁú ¼ö ÀÖÀ¸¸ç, Á¦´ë·Î ±¸ÇöµÇ¾úÀ» ¶§ ±â¼úÀÇ Àü¹ÝÀûÀÎ ÀÌÁ¡¿¡µµ ºÒ±¸Çϰí ÀáÀçÀû »ç¿ëÀÚ¸¦ ³«´ã½ÃŰ°í ½ÃÀå äÅÃÀ» ´ÊÃâ ¼ö ÀÖ½À´Ï´Ù.
¿¡³ÊÁö È¿À²°ú ºñ¿ë Àý°¨ Áß½Ã
¿¡³ÊÁö È¿À²°ú ºñ¿ë Àý°¨¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ½ÃÀåÀÌ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¿ª·üÀ» °³¼±ÇÏ°í ¹«È¿ Àü·Â ¼Õ½ÇÀ» ÃÖ¼ÒÈÇÔÀ¸·Î½á Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â Àü±â ¿ä±ÝÀ» ³·Ãß°í Àü±â ÀÎÇÁ¶óÀÇ ºÎ´ãÀ» ÁÙÀÌ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í Àåºñ ¼ö¸íÀ» ¿¬ÀåÇϸç Àü·Â ǰÁú ÀúÇÏ·Î ÀÎÇÑ ºÒÀÌÀÍÀ» ÇÇÇϱâ À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» µµÀÔÇÏ´Â »ê¾÷ü¿Í À¯Æ¿¸®Æ¼°¡ Á¡Á¡ ´õ ´Ã¾î³ª°í ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÌ »ó½ÂÇÔ¿¡ µû¶ó Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â ¿¡³ÊÁö »ç¿ëÀ» ÃÖÀûÈÇϰí Áö¼Ó °¡´ÉÇÑ Àü·Â °ü¸®¸¦ º¸ÀåÇÏ´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
Æó±â¿¡ °üÇÑ °úÁ¦
Ä¿ÆÐ½ÃÅÍ ¹ðÅ©ÀÇ Æó±â´Â ƯÈ÷ ±¸Çü À¯´ÖÀÇ PCB(Æú¸®¿°ÈºñÆä´Ò)¿Í °°Àº À¯ÇØ ¹°ÁúÀ» ´Ù·ê ¶§ ȯ°æÀûÀ¸·Î ½É°¢ÇÑ ¹®Á¦¸¦ ¾ß±âÇÕ´Ï´Ù. ºÎÀûÀýÇÑ Æó±â´Â Åä¾ç°ú ¼öÁú ¿À¿°À¸·Î À̾îÁ® °øÁß º¸°Ç°ú ȯ°æ¿¡ À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÈÀüÇÑ ÀçȰ¿ë ¹æ¹ý°ú ȯ°æ ±ÔÁ¦ Áؼö¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¦Á¶¾÷ü¿Í »ç¿ëÀÚÀÇ ¿î¿µ ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Æó±â ¹®Á¦´Â ±â¾÷µéÀÌ Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸® °üÇàÀ» ±¸ÇöÇØ¾ß ÇÑ´Ù´Â ¾Ð¹Ú¿¡ Á÷¸éÇÏ¸é¼ Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ½ÃÀåÀÇ ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ ´ëÀ¯ÇàÀº Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÄ Á¦Á¶ ¹× °ø±Þ¸Á¿¡ È¥¶õÀ» ¾ß±âÇß½À´Ï´Ù. »ê¾÷°è°¡ ¿î¿µÀ» Áß´ÜÇÏ°í °Ç¼³ ¹× ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®°¡ °¨¼ÒÇÏ¸é¼ Ã³À½¿¡´Â Ä¿ÆÐ½ÃÅÍ ¹ðÅ©¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ÇÏÁö¸¸ »ê¾÷ÀÌ Àç°³µÇ°í Àç»ý ¿¡³ÊÁö¿Í Àü·Â¸Á Çö´ëÈ¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áö¸é¼ ½ÃÀåÀº ȸº¹ Á¶ÁüÀ» º¸¿´½À´Ï´Ù. È¿À²ÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç°ú Àü·Â ǰÁú °ü¸®¿¡ ´ëÇÑ Çʿ伺ÀÌ Áõ°¡ÇÏ¸é¼ ÆÒµ¥¹Í ÀÌÈÄ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °íÁ¤ Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
°íÁ¤ Ä¿ÆÐ½ÃÅÍ ¹ðÅ© ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¹ðÅ©´Â ÀϹÝÀûÀ¸·Î ¹«È¿ Àü·Â º¸»óÀ» Á¦°øÇϱâ À§ÇØ »ê¾÷, »ó¾÷ ¹× À¯Æ¿¸®Æ¼ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¼³Ä¡µË´Ï´Ù. ÀÚµ¿ ¶Ç´Â ½ºÀ§Ä¡ Ä¿ÆÐ½ÃÅÍ ¹ðÅ©¿Í ´Þ¸® °íÁ¤ Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â Á¶Á¤ ¾øÀÌ Áö¼ÓÀûÀÎ ¹«È¿ Àü·ÂÀ» Á¦°øÇϹǷΠ½Ã½ºÅÛ È¿À²¼ºÀ» À¯ÁöÇϱâ À§ÇÑ ¾ÈÁ¤ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ³»±¸¼º, ³·Àº À¯Áöº¸¼ö, ºñ¿ë È¿À²¼ºÀ¸·Î ÀÎÇØ Àü¾Ð ·¹º§À» ¾ÈÁ¤ÈÇÏ°í ¹èÀü ³×Æ®¿öÅ©¸¦ ÃÖÀûÈÇÏ´Â µ¥ ³Î¸® »ç¿ëµË´Ï´Ù.
Àü¾Ð ¾ÈÁ¤È ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È Àü¾Ð ¾ÈÁ¤È ºÎ¹®Àº °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹«È¿ Àü·Â º¸»óÀ» Á¦°øÇÔÀ¸·Î½á Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â ´Ù¾çÇÑ ºÎÇÏ·Î ÀÎÇÑ Àü¾Ð º¯µ¿À» ÁÙ¿© Àü±â ÀåºñÀÇ ¾ÈÁ¤ÀûÀÎ ÀÛµ¿À» º¸ÀåÇÕ´Ï´Ù. ÀÌ´Â Á¦Á¶ ¹× À¯Æ¿¸®Æ¼¿Í °°ÀÌ Àü·Â ¼ö¿ä°¡ ¸¹Àº »ê¾÷¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. Àü¾Ð ¾ÈÁ¤È¸¦ À§ÇØ Ä¿ÆÐ½ÃÅÍ ¹ðÅ©¸¦ »ç¿ëÇϸé Àü±â ½Ã½ºÅÛÀÇ È¿À²¼º°ú ¼ö¸íÀÌ Çâ»óµÇ´Â µ¿½Ã¿¡ Àü¾Ð ºÒ¾ÈÁ¤À̳ª ¼Áö·Î ÀÎÇÑ ÀáÀçÀû ¼Õ»óÀ» ¹æÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº Áß±¹, Àεµ, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡¿¡¼ ±Þ¼ÓÇÑ »ê¾÷È, µµ½ÃÈ ¹× È¿À²ÀûÀÎ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Ä¿ÆÐ½ÃÅÍ ¹ðÅ©´Â ¿ª·ü º¸Á¤, Àü¾Ð ¾ÈÁ¤È, Àç»ý ¿¡³ÊÁö¿øÀ» ±×¸®µå¿¡ ÅëÇÕÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ½ÃÀåÀº ¿¡³ÊÁö È¿À²°ú ½º¸¶Æ® ±×¸®µå ±â¼úÀ» Àå·ÁÇÏ´Â Á¤ºÎ ³ë·Â¿¡ ÀÇÇØ ´õ¿í Áö¿øµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ³ëÈÄÈµÈ ±×¸®µå ÀÎÇÁ¶ó¸¦ Çö´ëÈÇϰí, Àç»ý ¿¡³ÊÁö¿øÀ» ÅëÇÕÇϸç, Àü·Â ǰÁúÀ» Çâ»ó½ÃÄÑ¾ß ÇÒ Çʿ伺¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀúÀü¾Ð Ä¿ÆÐ½ÃÅÍ ¹ðÅ©(10kV ¹Ì¸¸)´Â ÁÖ°Å¿ë ¹× »ó¾÷¿ë¿¡¼ ³Î¸® »ç¿ëµÇ±â ¶§¹®¿¡ Áö¹èÀûÀÎ ºÎ¹®ÀÔ´Ï´Ù. Ç»Áî ¾ø´Â ¼³°è ¹× Æú ÀåÂø ½Ã½ºÅÛ°ú °°Àº ±â¼ú ¹ßÀüÀ¸·Î ½ÃÀå äÅÃÀÌ ´õ¿í ÃËÁøµÇ°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Capacitor Bank Market is accounted for $5.1 billion in 2025 and is expected to reach $7.6 billion by 2032 growing at a CAGR of 5.8% during the forecast period. A capacitor bank is a group of several capacitors connected together in either series or parallel to store and manage electrical energy. Commonly used in electrical power systems, capacitor banks help improve power factor, regulate voltage, and reduce energy losses. By compensating for reactive power demand, they enhance the efficiency and stability of power supply networks. These banks are widely utilized in industrial facilities, substations, and commercial buildings to ensure optimal performance of electrical equipment. Capacitor banks can be fixed or automatic, depending on the application's requirements, and they play a vital role in modern energy management systems.
According to the Federal Energy Regulatory Commission (FERC), solar provided 49.3% of new domestic generating capacity in 2023 in the U.S., more than any other energy source.
Increasing demand for electricity
The rising global demand for electricity, driven by rapid industrialization, urbanization, and the growing adoption of renewable energy sources, is significantly fueling the market. These banks play a vital role in improving power factor, voltage stability, and overall energy efficiency in power systems. As utilities and industries strive to reduce transmission losses and enhance grid performance, the need for reliable energy storage and distribution solutions like capacitor banks continues to surge, making them essential components in modern electrical infrastructure.
Grid stability concerns due to improper operation
Grid stability concerns arising from the improper operation of capacitor banks can negatively impact the market. Poorly coordinated switching or incorrect sizing can lead to voltage fluctuations, harmonic distortion, and equipment damage. These issues compromise power quality and can result in unplanned outages or system failures, undermining trust in capacitor bank solutions. Additionally, such instability may lead to increased maintenance costs and regulatory scrutiny, discouraging potential users and slowing market adoption despite the technology's overall benefits when properly implemented.
Focus on energy efficiency and cost reduction
The market is witnessing growth driven by a strong focus on energy efficiency and cost reduction. By improving power factor and minimizing reactive power losses, capacitor banks help lower electricity bills and reduce strain on electrical infrastructure. Industries and utilities are increasingly adopting these systems to enhance operational efficiency, extend equipment life, and avoid penalties associated with poor power quality. As energy costs rise, capacitor banks offer a cost-effective solution for optimizing energy usage and ensuring sustainable power management.
Challenges associated with disposal
The disposal of capacitor banks presents significant environmental challenges, particularly when dealing with harmful materials like PCBs (polychlorinated biphenyls) in older units. Improper disposal can lead to soil and water contamination, posing risks to public health and the environment. The rising need for safe recycling methods and adherence to environmental regulations adds operational costs for manufacturers and users. These disposal challenges can hinder the growth of the capacitor bank market, as companies face increasing pressure to implement sustainable waste management practices.
Covid-19 Impact
The COVID-19 pandemic significantly impacted the capacitor bank market, causing disruptions in manufacturing and supply chains. With industries halting operations and a decrease in construction and infrastructure projects, demand for capacitor banks initially dropped. However, as industries resumed and the push for renewable energy and grid modernization grew, the market showed signs of recovery. The increasing need for efficient energy storage solutions and power quality management has helped drive the market's growth in the post-pandemic era.
The fixed capacitor banks segment is expected to be the largest during the forecast period
The fixed capacitor banks segment is expected to account for the largest market share during the forecast period. These banks are typically installed in industrial, commercial, and utility applications to provide reactive power compensation. Unlike automatic or switched capacitor banks, fixed capacitor banks provide continuous reactive power without adjustment, offering a reliable solution for maintaining system efficiency. Their durability, low maintenance, and cost-effectiveness make them a popular choice for stabilizing voltage levels and optimizing power distribution networks.
The voltage stabilization segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the voltage stabilization segment is predicted to witness the highest growth rate. By providing reactive power compensation, capacitor banks reduce voltage fluctuations caused by varying loads, ensuring stable operation of electrical equipment. This is especially crucial in industries with high-power demands, such as manufacturing and utilities. The use of capacitor banks for voltage stabilization enhances the efficiency and longevity of electrical systems while preventing potential damage from voltage instability or surges.
During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by rapid industrialization, urbanization, and a rising demand for efficient energy systems across countries like China, India, Japan, and South Korea. Capacitor banks play a crucial role in power factor correction, voltage stabilization, and integrating renewable energy sources into the grid. The market is further supported by government initiatives promoting energy efficiency and smart grid technologies.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR. This growth is driven by the need to modernize aging grid infrastructure, integrate renewable energy sources, and enhance power quality. Low-voltage capacitor banks (<10 kV) are the dominant segment, owing to their widespread use in residential and commercial applications. Technological advancements, such as fuse-less designs and pole-mounted systems, are further boosting market adoption.
Key players in the market
Some of the key players profiled in the Capacitor Bank Market include Siemens AG, S&C Electric Company, Schneider Electric, Toshiba Corporation, ABB Ltd., Mitsubishi Electric Corporation, Eaton Corporation, Nissin Electric Co., Ltd., General Electric (GE), Bharat Heavy Electricals Limited (BHEL), Emerson Electric Co., Eaton Power Quality, Larsen & Toubro Limited (L&T), Fuji Electric Co., Ltd., CG Power and Industrial Solutions Limited and Nissin Electric Co., Ltd.
In April 2025, Bharat Heavy Electricals Limited (BHEL), in consortium partnership with Hitachi Energy India Limited, has signed a contract with Rajasthan Part I Power Transmission Limited, a 100% subsidiary of Adani Energy Solutions Limited (AESL), to design and execute 6,000 MW, +-800 kV, bi-pole and bi-directional high-voltage direct current (HVDC) terminals to transmit renewable energy from Bhadla in Rajasthan to the industrial and transport hub in Fatehpur, Uttar Pradesh.
In August 2024, KEPCO, South Korea's largest electric utility, and ABB have signed an agreement to install the country's first synchronous capacitor coupled to a high inertia flywheel on Jeju Island. The project aims to maintain the stability and reliability of the island's power grid as it increases its share of renewable energies.