![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1725199
ÇÎÅ© ¼ö¼Ò ½ÃÀå : À¯Çüº°, ¼øµµº°, ÇÁ·Î¼¼½ºº°, ±â¼úº°, Áö¿ªº° ºÐ¼® ¿¹Ãø(-2030³â)Pink Hydrogen Market Forecasts to 2030 - Global Analysis By Type (Liquid and Gas), Purity Level, Process, Technology and By Geography |
Stratistics MRC¿¡ µû¸£¸é ÇÎÅ© ¼ö¼Ò ¼¼°è ½ÃÀåÀº 2025³â¿¡ 39¾ï ´Þ·¯, ¿¹Ãø ±â°£ Áß CAGRÀº 17.5%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç, 2032³â¿¡´Â 101¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
Àç»ý°¡´É¿¡³ÊÁö¸¦ ÀÌ¿ëÇÏ´Â ±×¸°¼ö¼Ò¿Í ´Þ¸® ÇÎÅ©¼ö¼Ò´Â ¿øÀڷ¿¡ ÀÇÁ¸ÇÏ¿© ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐÇØÇÕ´Ï´Ù. ÀÌ ¹ýÀº ¾ÈÁ¤ÀûÀ̰í È¿À²ÀûÀÎ ¼ö¼Ò °ø±ÞÀ» °¡´ÉÇÏ°Ô ÇÏ°í º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö Àüȯ¿¡ °øÇåÇÕ´Ï´Ù.
¶óÀÚµåÀÇ °ßÀû¿¡ µû¸£¸é, ÀÌ·¯ÇÑ º¸Á¶±ÝÀº ºÐÈ«»ö ¼ö¼Ò ÆòÁØÈ ¼ö¼Ò ºñ¿ë(LCOH)À» ų·Î±×·¥´ç ¾à 0.5À¯·Î·Î ÁÙÀÌ°í º¸Á¶±Ý ¾øÀÌ Å³·Î±×·¥´ç 3.20-7À¯·ÎÀÇ ±×¸° ¼ö¼Òº¸´Ù Àú·ÅÇÒ ¼ö ÀÖ½À´Ï´Ù.
°í¿Â ÀüÇØ ±â¼ú Çõ½Å
°í¿Â ÀüÇØ, ƯÈ÷ °íü »êȹ° ÀüÇØ ¼¿(SOEC)ÀÇ ±â¼ú Áøº¸´Â ÇÎÅ©»ö ¼ö¼Ò Á¦Á¶¿¡ ÀÖ¾î¼ÀÇ ¿¡³ÊÁö È¿À²À» ´ëÆø Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. Çâ»óµÈ ¿ °ü¸®¿Í Àü±Ø Àç·á´Â ´õ ±ä ¼ö¸í°ú ´õ ³ªÀº ¼º´É¿¡ ±â¿©ÇÕ´Ï´Ù. Á¤ºÎÀÇ ÀÚ±Ý ¿øÁ¶´Â Żź¼Òȸ¦ ¸ñÇ¥·Î ÇÏ´Â ³ª¶óµé¿¡¼ÀÇ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.
±ä °³¹ß ±â°£
ÇÎÅ© ¼ö¼Ò ÇÁ·ÎÁ§Æ®´Â ±â¼úÀû º¹À⼺°ú ±ÔÁ¦ ´ç±¹ÀÇ ¾ö°ÝÇÑ ¸ð´ÏÅ͸µÀ» À§ÇØ °³¹ß ÁÖ±âÀÇ Àå±âÈ¿¡ Á÷¸éÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¶óÀ̼±½º, ȯ°æ ¿µÇ⠺м®, ÀÌÇØ°ü°èÀÚ Âü¿©´Â Áö¿¬À» °¡Áß½Ãŵ´Ï´Ù. °èȹ, Çã°¡, °Ç¼³¿¡ ÇÊ¿ä·Î ÇÏ´Â ½Ã°£Àº ¹Î°£ ¼½ÅÍÀÇ ÅõÀÚ¸¦ ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö¼Ò °¡°ÝÀ̳ª ¿øÀÚ·Â Á¤Ã¥À» µÑ·¯½Ñ ºÒÈ®½Ç¼ºÀÌ, ÇÑÃþ ´õ Áö¿¬À» °¡¼Ó½Ãŵ´Ï´Ù.
¿øÀÚ·Â ¿¡³ÊÁöÀÇ ½Å·Ú¼º
¿øÀÚ·ÂÀÇ °í¿ë·® °è¼ö´Â ¼ö¼Ò »ý¼º¿¡ ¾ÈÁ¤µÈ Àϰü¼º ÀÖ´Â Àü¿øÀ» Á¦°øÇÏ°í °£ÇæÀûÀÎ Àç»ý °¡´É ¿¡³ÊÁö¿¡ ´ëÇÑ Àü·«Àû ¿ìÀ§¼ºÀ» Á¦°øÇÕ´Ï´Ù. ¿øÀÚ·Â ±×¸®µå¿¡ ÅëÇÕÇÔÀ¸·Î½á Àü¹ÝÀûÀÎ ¿¡³ÊÁö È¿À²ÀÌ Çâ»óµË´Ï´Ù. ¼ö¼Ò Á¦Á¶ Àü¿ë ¼ÒÇü ¸ðµâ·Î(SMR)¸¦ ¸ð»öÇϰí ÀÖ´Â Áö¿ªµµ ÀÖ½À´Ï´Ù.
¹Ý¿øÀü °¨Á¤°ú NIMBYÁÖÀÇ
¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á¿Í °ú°Å »ç°í·Î ÀÎÇÑ ¿øÀÚ·Â ¿¡³ÊÁö¿¡ ´ëÇÑ ¿©·ÐÀÇ ¹Ý¹ßÀº ÇÎÅ© ¼ö¼Ò °³¹ß¿¡ ½É°¢ÇÑ Ç³Æò ÇÇÇØ¸¦ ÃÊ·¡ÇÕ´Ï´Ù. ´Ôºñ(NOT In My Backardy)ÀÇ Åµµ´Â Áö¿ª ÀúÇ×À¸·Î ÀÎÇØ ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¸¦ Áö¿¬½ÃŰ°Å³ª Â÷´ÜÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯ°æ ¿îµ¿°¡µéÀº Àå±âÀûÀÎ Æó±â¹° °ü¸® ¹®Á¦¸¦ ÀÌÀ¯·Î ÇÙ-¼ö¼Ò ÅëÇÕ¿¡ ¹Ý´ëÇÏ´Â ·Îºñ Ȱµ¿À» ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¨Á¤Àº Á¤Ã¥ ÀԾȿ¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÚ±Ý Á¶´Þ°ú ½ÂÀο¡ ´ëÇÑ ÁöÁö¸¦ ÀúÇϽÃų ¼ö ÀÖ½À´Ï´Ù.
ÆÒµ¥¹Í¿¡ ÀÇÇØ °ø±Þ üÀÎÀÌ ²÷¾îÁ® ¿øÀÚ·Â ¹× ¼ö¼Ò °ü·Ã ÀÎÇÁ¶óÀÇ °Ç¼³ÀÌ ´Ê¾îÁ³½À´Ï´Ù. °¢ ±¹ Á¤ºÎ¿¡ ¿øÀڷ°ú ¼ö¼ÒÀÇ ½Ã³ÊÁö È¿°ú¸¦ ¸ð»öÇϵµ·Ï Ã˱¸Çß½À´Ï´Ù. ¶ô´Ù¿î µ¿¾È ¿ø°Ý °¨½Ã ±â¼úÀº Á߿伺À» ´Ã¸®°í ÇÁ·ÎÁ§Æ® °ü¸®ÀÇ È¿À²À» ³ô¿´½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾ËÄ®¸® ÀüÇØ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á
¾ËÄ®¸® ÀüÇØºÐ¾ß´Â ±â¼úÀû ¼º¼÷µµ¿Í ºñ±³Àû ³·Àº ÀÚº»ºñ¿ëÀ¸·Î ¿¹Ãø±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °íÃâ·ÂÀÇ ¿¡³ÊÁö¿ø°úÀÇ ÅëÇÕÀ̳ª ½ºÄÉÀϾ÷ÀÌ ¿ëÀÌÇÕ´Ï´Ù. PEMÀ̳ª SOEC ½Ã½ºÅÛ¿¡ ºñÇØ, °íµµÀÇ Ã˸Ÿ¦ ÇÊ¿ä·Î ÇÏÁö ¾Ê½À´Ï´Ù. ÀÌ Á¢±Ù¼ºÀÇ ³ôÀ̰¡, »ê¾÷°è Àüü¿¡ÀÇ º¸±ÞÀ» ÁöÁöÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â ¾×ü ºÎ¹®
¿¹Ãø ±â°£ µ¿¾È È¿À²ÀûÀÎ ÀúÀå°ú Àå°Å¸® ¼ö¼Û °¡´É¼ºÀ¸·Î ÀÎÇØ ¾×ü ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àú¿Â ½Ã½ºÅÛ°ú ¿ë±â ¼³°èÀÇ Çõ½ÅÀº ºñ¿ë°ú ¿¡³ÊÁö ¼ÒºñÀÇ ¿ª»çÀû °úÁ¦¸¦ ´Ù·ç°í ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¹Î°£ ±â¾÷Àº ¾×È Ç÷£Æ®¿Í À¯Åë ÀÎÇÁ¶ó¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ûÁ¤ ¼ö¼Ò ÀÌ´Ï¼ÅÆ¼ºê¿Í ¼±Áø ¿øÀÚ·Â ÇÁ·Î±×·¥¿¡ ´ëÇÑ Á¤ºÎÀÇ °·ÂÇÑ Áö¿øÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀϺ»°ú Çѱ¹°ú °°Àº ±¹°¡µéÀº ÀÎÅÍ³Ý Á¦·Î ¸ñÇ¥ÀÇ ÀÏȯÀ¸·Î ¼ö¼Ò °ø±Þ¸Á¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Áß±¹µµ Áß°ø¾÷ÀÇ Å»Åº¼Òȸ¦ À§ÇØ ¿øÀڷ°ú ¼ö¼ÒÀÇ ÅëÇÕÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ ¿øÀÚ·Â ¹ßÀü ¿ë·®°ú »õ·Î¿î ¿øÀÚ·Î °³¹ßÀº ÀÌ Áö¿ªÀ» ÁÖ¿ä ±â¾÷À¸·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù. Àü·Âȸ»ç, ¿¡³ÊÁö±â¾÷, ±â¼ú °³¹ßÀÚÀÇ Çù·Â°ü°è°¡ ½ÃÀåÀÇ ¼º¼÷µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.
¿¹Ãø±â°£ µ¿¾È ºÏ¹Ì´Â È®´ëµÇ´Â ¿øÀÚ·Â ÀÎÇÁ¶ó¿Í Àû±ØÀûÀΠŻź¼ÒÈ ¸ñÇ¥¿¡ ÈûÀÔ¾î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ ¼ö¼Ò ÇÁ·Î±×·¥°ú SMRÀÇ Àü°³°¡ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ij³ª´Ù´Â Ŭ¸° ¼ö¼Ò ¼öÃâ¿¡ ÈûÀ» ½ñ°í ÀÖÀ¸¸ç ´õ¿í ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. Áö¿ª ÀÌ´Ï¼ÅÆ¼ºê´Â ¿øÀڷ°ú ÀüÇØ ±â¼úÀ» ÅëÇÕÇÑ ¼ö¼Ò ÇãºêÀÇ ¼³¸³À» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. Áö¿ø ¹ý·ü°ú °ü¹Î ÆÄÆ®³Ê½ÊÀº ÇÁ·ÎÁ§Æ® ÆÄÀÌÇÁ¶óÀÎÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº ÇÎÅ© ¼ö¼Ò »ç¾÷ È®´ë¸¦ À§ÇÑ °ß°íÇÑ È¯°æÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Pink Hydrogen Market is accounted for $3.9 billion in 2025 and is expected to reach $10.1 billion by 2032 growing at a CAGR of 17.5% during the forecast period.Pink hydrogen refers to hydrogen produced using nuclear energy through electrolysis. Unlike green hydrogen, which uses renewable energy, pink hydrogen relies on nuclear power to split water into hydrogen and oxygen. It is considered a low-carbon alternative, as nuclear energy does not produce direct greenhouse gas emissions. This method offers a stable and efficient hydrogen supply, contributing to cleaner energy transitions. Pink hydrogen is gaining attention as countries explore diverse hydrogen production methods to support sustainable and reliable energy systems.
According to Lazard's estimates, these subsidies could reduce the levelized cost of hydrogen (LCOH) for pink hydrogen to about 0.5 euros per kilogram, making it cheaper than green hydrogen, which can cost between 3.20 and 7 euros per kilogram without subsidies.
Innovations in high-temperature electrolysis
Technological advancements in high-temperature electrolysis, especially Solid Oxide Electrolysis Cells (SOECs), are significantly enhancing energy efficiency in pink hydrogen production. These systems utilize waste heat from nuclear plants, reducing electricity consumption and operational costs. Improved thermal management and electrode materials contribute to longer lifespans and better performance. Government funding is supporting pilot projects in countries pursuing decarbonization goals. These factors collectively position high-temperature electrolysis as a pivotal driver in market expansion.
Long development timelines
Pink hydrogen projects often face extended development cycles due to technical complexity and stringent regulatory scrutiny. Integration with nuclear infrastructure demands rigorous safety and feasibility assessments. Licensing, environmental impact analysis, and stakeholder engagement add to delays. The time required for planning, permitting, and construction can deter private sector investment. Uncertainties around hydrogen pricing and nuclear policy further compound delays. These long timelines hinder the pace at which pink hydrogen can contribute to global hydrogen supply.
Nuclear energy reliability
The high-capacity factor of nuclear energy provides a stable and consistent power source for hydrogen generation, offering a strategic advantage over intermittent renewables. As aging nuclear reactors are modernized or repurposed, they create new pathways for pink hydrogen production. The integration of hydrogen generation into existing nuclear grids enhances overall energy efficiency. Some regions are exploring small modular reactors (SMRs) dedicated to hydrogen production. Favorable policy incentives for low-carbon energy diversification further unlock opportunities in this space.
Anti-nuclear sentiment and NIMBYism
Public opposition to nuclear energy, fueled by safety concerns and past incidents, poses a serious reputational threat to pink hydrogen development. NIMBY (Not In My Backyard) attitudes can delay or block infrastructure projects due to local resistance. Environmental activists may also lobby against nuclear-hydrogen integration, citing long-term waste management issues. These sentiments influence policymaking, potentially reducing support for funding and approvals. Negative media coverage can erode public trust and investor confidence.
The pandemic disrupted supply chains and delayed construction of both nuclear and hydrogen-related infrastructure. Budget reallocations toward immediate public health concerns temporarily slowed funding for green hydrogen initiatives. The crisis also underscored the need for energy resilience, prompting governments to explore nuclear-hydrogen synergies. Remote monitoring technologies gained importance during lockdowns, enhancing project management efficiency. Overall, while short-term setbacks were observed, long-term growth drivers have gained strength.
The alkaline electrolysis segment is expected to be the largest during the forecast period
The alkaline electrolysis segment is expected to account for the largest market share during the forecast period due to its technological maturity and relatively lower capital costs. This method is widely used in established hydrogen production setups, ensuring reliability and cost-efficiency. Alkaline systems are easier to scale and integrate with high-output energy sources like nuclear power. They require less sophisticated catalysts compared to PEM or SOEC systems. This accessibility supports wider adoption across industries. Continued improvements in cell materials and system designs are enhancing performance and durability.
The liquid segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the liquid segment is predicted to witness the highest growth rate due to its potential for efficient storage and long-distance transport. Liquefaction allows hydrogen to be stored in higher densities, which is crucial for applications in aerospace, marine, and international trade. Innovations in cryogenic systems and container design are addressing historical cost and energy consumption challenges. Governments and private entities are investing in liquefaction plants and distribution infrastructure. Emerging hydrogen corridors and export markets are further accelerating demand.
During the forecast period, the Asia Pacific region is expected to hold the largest market share driven by strong government support for clean hydrogen initiatives and advanced nuclear programs. Countries like Japan and South Korea are actively investing in hydrogen supply chains as part of net-zero targets. China is also exploring nuclear-hydrogen integration to decarbonize heavy industries. Existing nuclear capacity, along with new reactor development, positions the region as a major player. Collaborations between utilities, energy companies, and technology developers enhance market maturity.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR underpinned by expanding nuclear infrastructure and aggressive decarbonization goals. The U.S. Department of Energy's hydrogen programs and SMR deployments are driving innovation. Canada's focus on clean hydrogen exports adds further momentum. Regional initiatives aim to establish hydrogen hubs integrating nuclear and electrolysis technologies. Supportive legislation and public-private partnerships are accelerating project pipelines. These developments collectively create a robust environment for pink hydrogen expansion.
Key players in the market
Some of the key players in Pink Hydrogen Market include Siemens Energy, Air Products and Chemicals, OKG Aktiebolag, Linde Plc, Exelon Corporation, Air Liquide, Nel ASA, Hydrogen Systems, Iberdrola SA, SGH2Energy, Sumitomo Corporation, Toshiba Corporation, SK Group, Hyundai Heavy Industries, and Sembcorp Industries.
In March 2025, Siemens Energy introduced the H2Pink Electrolyzer System, a nuclear-powered electrolysis unit for pink hydrogen production, optimized for integration with small modular reactors, delivering 20% higher efficiency.
In March 2025, Linde Plc announced the Linde PinkPure System, a nuclear-driven hydrogen purification platform for pink hydrogen, ensuring 99.999% purity for fuel cell applications with real-time quality monitoring.
In February 2025, Air Products and Chemicals launched the PinkH2 Industrial Generator, a scalable pink hydrogen production system for chemical manufacturing, using nuclear energy to achieve carbon-neutral hydrogen output.