½ÃÀ庸°í¼­
»óǰÄÚµå
1734801

¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB) ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, ½Ã½ºÅÛ À¯Çüº°, Á¦°øº°, Â÷·® À¯Çüº°, ±â¼úº°, ÆÇ¸Å ä³Îº°, Áö¿ªº° ºÐ¼®

Autonomous Emergency Braking Market Forecasts to 2032 - Global Analysis By Component, System Type, Offering, Vehicle Type, Technology, Sale Channels and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀåÀº 2025³â¿¡ 549¾ï 8,000¸¸ ´Þ·¯, 2032³â¿¡´Â 2,621¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 25%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB)¶õ, ´Ù¸¥ Â÷·®, º¸ÇàÀÚ ¶Ç´Â Àå¾Ö¹°°úÀÇ Ãæµ¹À» °¨ÁöÇϰí ÀÚµ¿À¸·Î ºê·¹ÀÌÅ©¸¦ ÀÛµ¿ÇÏ¿© Ãæ°ÝÀ» ÁÙÀ̰ųª ¿ÏÀüÈ÷ Á¤Áö½ÃŰ´Â ÀÚµ¿Â÷ÀÇ ¾ÈÀü ±â´ÉÀÔ´Ï´Ù. AEB´Â LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó µîÀÇ ¼¾¼­¸¦ »ç¿ëÇÏ¿© Â÷·® ÁÖº¯À» Áö¼ÓÀûÀ¸·Î ½ºÄµÇÕ´Ï´Ù. ½Ã½ºÅÛÀÌ Ãæµ¹ À§ÇèÀÌ ³ô´Ù°í °¨ÁöÇÏ°í ¿îÀüÀÚ°¡ Á¦¶§ ´ëÀÀÇÏÁö ¾ÊÀ¸¸é Á¦µ¿ ½Ã½ºÅÛÀÌ ÀÛµ¿ÇÏ¿© ¾ÈÀüÀ» °³¼±Çϰí À§±â »óȲ¿¡¼­ »ç°í¸¦ ¿¹¹æÇϰųª ÇÇÇØ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

µµ·Î »ç°í Áõ°¡ ¹× ¾ÈÀü¿¡ ´ëÇÑ °ü½É

»ç¸ÁÀÚ ¼ö¸¦ ÁÙÀ̱â À§ÇØ Á¤ºÎ¿Í ±ÔÁ¦ ±â°üÀº ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB)°ú °°Àº ¾ÈÀü Á¶Ä¡¸¦ Á¡ÁøÀûÀ¸·Î ¿ä±¸Çϰí ÀÖ½À´Ï´Ù. AEB ½Ã½ºÅÛÀº »ç°í °¡´É¼ºÀÌ °¨ÁöµÇ¸é ÀÚµ¿À¸·Î ºê·¹ÀÌÅ©¸¦ ÀÛµ¿ÇÏ¿© Ãæµ¹À» ¹æÁöÇÔÀ¸·Î½á µµ·Î ¾ÈÀü¼ºÀ» ³ôÀÌ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. ¶ÇÇÑ, Â÷·® ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚµéÀÇ Áö½ÄÀÌ ³ô¾ÆÁö¸é¼­ AEB°¡ ÀåÂøµÈ ÀÚµ¿Â÷¸¦ ¼±ÅÃÇÏ´Â µ¥ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¼ÒºñÀÚ ¼ö¿ä¸¦ ÃæÁ·ÇÏ°í ¹ý·üÀ» ÁؼöÇϱâ À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ´õ ¸¹Àº ¸ðµ¨¿¡ AEB¸¦ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. Â÷·® ¾ÈÀü°ú »ç°í ¿¹¹æ¿¡ ´ëÇÑ °³¼±ÀÌ Àý½ÇÈ÷ ¿ä±¸µÊ¿¡ µû¶ó AEB ½ÃÀåÀº Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¾ÇÁ¶°Ç¿¡¼­ÀÇ ÇѰè

¼¾¼­¿Í Ä«¸Þ¶ó¸¦ °¡¸± ¼ö ÀÖ´Â Áö¼ÓÀûÀÎ ºñ, ´«, ¾È°³¿Í °°Àº ¾ÇõÈÄ¿¡¼­´Â AEB ½Ã½ºÅÛÀÌ È¿°úÀûÀ¸·Î ÀÛµ¿ÇÏ´Â µ¥ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¹Ì²ô·¯¿î µµ·Î¿Í ½Ã¾ß °¨¼Ò´Â ½Ã½ºÅÛÀÇ ¹°Ã¼ °¨Áö ±â´ÉÀ» ¹æÇØÇϰųª Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Å·Ú¼º ¹®Á¦´Â äÅÃÀ» ÀúÇØÇÏ°í ¼ÒºñÀÚ ½Å·Ú¸¦ ¾àÈ­½Ãŵ´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â ¾î¶² ȯ°æ¿¡¼­µµ ÀÛµ¿ÇÏ´Â º¸´Ù ź·ÂÀûÀÎ ±â¼úÀ» °³¹ßÇϱâ À§ÇØ ´õ ¸¹Àº ºñ¿ëÀ» ÁöºÒÇØ¾ß ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ¾î·Á¿î »óȲ¿¡¼­ÀÇ ¾ÈÀü ¹®Á¦¿Í ±â¼úÀû ÇѰè´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÕ´Ï´Ù.

»ó¿ëÂ÷ ¹× Â÷·®¿¡ µµÀÔ

Â÷·® °ü¸®ÀÚ´Â ºñ¿ë È¿À²¼º°ú ¾ÈÀü¿¡ ³ôÀº ¿ì¼±¼øÀ§¸¦ µÎ°í ÀÖÀ¸¸ç, AEB ½Ã½ºÅÛÀº »ç°í¸¦ ÁÙ¿© º¸Çè ¹× ¼ö¸® ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. »ó¿ëÂ÷¿¡ AEB¸¦ Àǹ«È­ÇÏ´Â ¿©·¯ ±¹°¡ÀÇ ±ÔÁ¦ ±â°ü¿¡¼­ AEBÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ»ó°Å·¡°¡ ¼ºÀåÇÔ¿¡ µû¶ó ¹°·ù ȸ»çµéÀº Â÷·® ¼ö¸¦ ´Ã¸®°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ÃÖ÷´Ü ¾ÈÀü ±â´É¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ AEB´Â ¿îÀüÀÚ º¸Á¶ ±â´ÉÀ» °³¼±ÇÏ¿© Àå°Å¸® ¿îÇà¿¡¼­ ÀÎÀû ¿À·ù¸¦ ÁÙ¿©ÁÝ´Ï´Ù. °æÀï·ÂÀ» À¯ÁöÇÏ°í ±ÔÁ¤À» ÁؼöÇϱâ À§ÇØ »ó¿ëÂ÷ Á¦Á¶¾÷ü´Â Á¡ÁøÀûÀ¸·Î AEB¸¦ µµÀÔÇϰí ÀÖ½À´Ï´Ù.

±â¼úÀû º¹À⼺ ¹× Ã¥ÀÓ

½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®, AI ¾Ë°í¸®Áò, ÷´Ü ¼¾¼­¿¡´Â ³ôÀº Á¤¹Ðµµ¿Í µ¿±âÈ­°¡ ÇÊ¿äÇϸç, ÀÌ·Î ÀÎÇØ ±¸ÃàÀÌ Áö¿¬µÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÇöÀç Â÷·® Ç÷§Æû°úÀÇ È£È¯¼º ¹®Á¦·Î ÀÎÇØ ±¸ÇöÀÌ ´õ¿í ¾î·Á¿öÁý´Ï´Ù. ¶ÇÇÑ ½Ã½ºÅÛ °íÀåÀ̳ª ¿ÀÀÛµ¿ °¡´É¼ºÀ¸·Î ÀÎÇØ ½Å·Ú¼º°ú ¾ÈÀü¼º¿¡ ´ëÇÑ Àǹ®ÀÌ Á¦±âµË´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â AEB ½Ã½ºÅÛ ¿ÀÀÛµ¿À¸·Î ÀÎÇÑ »ç°í¿¡ ´ëÇØ Ã¥ÀÓÀ» Á®¾ß ÇÒ ¼öµµ Àֱ⠶§¹®¿¡ Ã¥ÀÓ ¹®Á¦ ¶§¹®¿¡ µµÀÔÀ» ²¨¸®°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦´Â ÀÚÀ² Á¦µ¿ ±â¼ú¿¡ ´ëÇÑ °í°´ÀÇ ½Å·Ú¸¦ ¶³¾î¶ß¸®°í ±â¼ú µµÀÔÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ ´ëÀ¯ÇàÀº ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB) ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Ãʱ⿡´Â »ý»ê ¹× °ø±Þ¸Á¿¡ Â÷ÁúÀÌ »ý±â¸é¼­ AEB ±â¼ú µµÀÔÀÌ ´Ê¾îÁ³½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÀÌÈÄ ´õ ¾ÈÀüÇÑ Â÷·®¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 AEB¸¦ Æ÷ÇÔÇÑ Ã·´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)¿¡ ´ëÇÑ °ü½ÉÀÌ ±ÞÁõÇß½À´Ï´Ù. Â÷·® ¾ÈÀü Ç¥ÁØ¿¡ ´ëÇÑ ±ÔÁ¦ °­È­µµ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇßÀ¸¸ç, R&D ¹× ±â¼ú ÅëÇÕ¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϸ鼭 Àå±âÀûÀ¸·Î ȸº¹°ú È®ÀåÀ» À̲ø¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼¾¼­ ºÎ¹®ÀÌ °¡Àå Ŭ Àü¸Á

¼¾¼­ ºÎ¹®Àº Â÷·®ÀÌ Àå¾Ö¹°°ú ÀáÀçÀû Ãæµ¹À» °¨ÁöÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó¸¦ ÅëÇØ ½Ç½Ã°£ µ¥ÀÌÅ͸¦ Á¦°øÇϹǷΠAEB ½Ã½ºÅÛÀÌ ÁÖº¯ ȯ°æÀ» Á¤È®ÇÏ°Ô Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ÷´Ü ¾Ë°í¸®ÁòÀ» ÅëÇØ Ãæµ¹ÀÌ ÀÓ¹ÚÇϸé ÀÚµ¿ Á¦µ¿À» ÀÛµ¿½ÃÄÑ ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ¼¾¼­ ±â¼úÀÌ ´õ¿í Á¤±³ÇØÁü¿¡ µû¶ó AEB ½Ã½ºÅÛÀÇ Á¤È®µµ¿Í È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ½Â¿ëÂ÷, »ó¿ëÂ÷ µî ´Ù¾çÇÑ Â÷·® ºÎ¹®¿¡¼­ äÅÃÀ» ÃËÁøÇÏ¿© AEB ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

·¹ÀÌ´õ ±â¹Ý AEB ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ·¹ÀÌ´õ ±â¹Ý AEB ºÎ¹®Àº ÀáÀçÀû Ãæµ¹À» °¨ÁöÇϰí ÀÚÀ²ÀûÀ¸·Î Á¦µ¿À» Æ®¸®°ÅÇÏ¿© °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ·¹ÀÌ´õ ¼¾¼­¸¦ »ç¿ëÇÏ¿© ȯ°æÀ» ¸ð´ÏÅ͸µÇϰí Àå¾Ö¹°À» ½Äº°ÇÏ¸ç ±Þ°ÝÇÑ ¼Óµµ º¯È­¸¦ °¨ÁöÇÕ´Ï´Ù. ·¹ÀÌ´õ´Â ´Ù¾çÇÑ ±â»ó Á¶°Ç¿¡¼­ ³ôÀº Á¤È®µµ¸¦ Á¦°øÇϱ⠶§¹®¿¡ AEBÀÇ ½Å·Ú¼º°ú ¼º´ÉÀ» Çâ»ó½ÃÄÑ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°¡ ¼±È£ÇÏ´Â ±â¼úÀÔ´Ï´Ù. Â÷·®ÀÇ ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ¾ö°ÝÇÑ ±ÔÁ¦ Ç¥ÁØÀ¸·Î ÀÎÇØ ·¹ÀÌ´õ ±â¹Ý AEB ½Ã½ºÅÛÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖÀ¸¸ç, ·¹ÀÌ´õ´Â ´õ ¾ÈÀüÇÏ°í ½º¸¶Æ®ÇÑ Â÷·®À» ±¸ÇöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ÀÇ Â÷·® »ý»ê·® ±ÞÁõ°ú µµ½ÃÈ­ Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶¿Í Áß»êÃþ ¼Òµæ ¼öÁØÀÇ Áõ°¡·Î ÷´Ü ¾ÈÀü ±â´ÉÀ» °®Ãá Â÷·®¿¡ ´ëÇÑ Á¢±Ù¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. Áß±¹ NCAP ¹× Àεµ NCAP¿Í °°Àº Ãæµ¹ ¾ÈÀü ÇÁ·Î±×·¥À» ÅëÇÑ Á¤ºÎÀÇ Áö¿øÀº AEB ÅëÇÕÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ÀνÄÀÌ ³ô¾ÆÁö°í ÀÖÁö¸¸ ºñ¿ë¿¡ ´ëÇÑ ¹Î°¨¼ºÀº ¿©ÀüÈ÷ äÅ÷ü¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ±×·¯³ª ±Û·Î¹ú OEMÀÇ Áõ°¡¿Í ±¹³» Çõ½ÅÀÌ ´Ù¾çÇÑ Â÷·® ºÎ¹®¿¡¼­ AEB ½Ã½ºÅÛ ¼ºÀåÀ» °ßÀÎÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº °­·ÂÇÑ ¾ÈÀü ±ÔÁ¦¿Í ¼ÒºñÀÚ ÀÎ½Ä »ó½ÂÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹ µµ·Î±³Åë¾ÈÀü±¹(NHTSA)°ú °°Àº ±â°üÀÇ Á¤ºÎ ±ÔÁ¦¿Í ÇÁ¸®¹Ì¾ö Â÷·®ÀÇ ADAS äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÚµ¿Â÷ Á¦Á¶¾÷ü´Â AEB ½Ã½ºÅÛÀ» ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹Àº źźÇÑ ÀÚµ¿Â÷ »ê¾÷°ú Àû±ØÀûÀÎ º¸Çè Àμ¾Æ¼ºê¿¡ ÈûÀÔ¾î ÀÌ Áö¿ªÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí OEM°ú ±â¼ú ±â¾÷ °£ÀÇ Çù·ÂÀÌ È®´ëµÇ¸é¼­ ½Â¿ëÂ÷ ¹× °æ»ó¿ëÂ÷ Àü¹Ý¿¡ °ÉÃÄ AEB äÅÃÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÈ­ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(Âü°í : Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼¾¼­
  • ÀüÀÚ Á¦¾î ÀåÄ¡(ECU)
  • ¾×Ãß¿¡ÀÌÅÍ
  • ¼ÒÇÁÆ®¿þ¾î ¹× ¾Ë°í¸®Áò
  • ±âŸ ÄÄÆ÷³ÍÆ®

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : ½Ã½ºÅÛ À¯Çüº°

  • Àü¹æ Ãæµ¹ °æº¸(FCW) ¹× ¿ÏÈ­ ±â´É
  • µµ½É AEB
  • °í¼Óµµ·Î AEB
  • º¸ÇàÀÚ °¨Áö AEB
  • ÀÚÀü°Å °¨Áö AEB
  • ±³Â÷·Î º¸Á¶ ¹× ¼±È¸ AEB
  • ÈÄÁø ÀÚµ¿ ºê·¹ÀÌÅ©(RAB)
  • ±âŸ ½Ã½ºÅÛ À¯Çü

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : Á¦°øº°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : Â÷·® À¯Çüº°

  • ½Â¿ëÂ÷
  • ¼ÒÇü »ó¿ëÂ÷(LCV)
  • ´ëÇü »ó¿ëÂ÷(HCV)
  • Àü±âÀÚµ¿Â÷(EV)
  • ÀÚÀ²ÁÖÇàÂ÷(AV)
  • ±âŸ Â÷·® À¯Çü

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : ±â¼úº°

  • Ä«¸Þ¶ó ±â¹Ý AEB
  • ·¹ÀÌ´õ ±â¹Ý AEB
  • LiDAR ±â¹Ý AEB
  • ¼¾¼­ Ç»Àü AEB
  • ±âŸ ±â¼ú

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : ÆÇ¸Å ä³Îº°

  • OEM
  • ¾ÖÇÁÅ͸¶ÄÏ

Á¦11Àå ¼¼°èÀÇ ÀÚµ¿ ±ä±Þ Á¦µ¿ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Order Fulfillment
  • Bosch
  • Continental AG
  • Aptiv PLC
  • Denso Corporation
  • Mobileye
  • Delphi Technologies
  • TRW Automotive
  • Valeo SA
  • Autoliv Inc.
  • Toyota Tsusho Corporation
  • Magna International Inc.
  • ZF Friedrichshafen AG
  • Çö´ë¸ðºñ½º
  • Nissan Motor Co., Ltd.
  • Honda Motor Co., Ltd.
  • BorgWarner Inc.
  • Waymo
HBR 25.06.09

According to Stratistics MRC, the Global Autonomous Emergency Braking Market is accounted for $54.98 billion in 2025 and is expected to reach $262.18 billion by 2032 growing at a CAGR of 25% during the forecast period. Autonomous Emergency Braking (AEB) is a safety feature in cars those senses when a collision with another car, a pedestrian, or an obstruction is about to happen and automatically applies the brakes to lessen the impact or stop it completely. AEB continuously scans the area surrounding the car using sensors including lidar, radar, and cameras. The braking system is activated to improve safety and maybe prevent accidents or lessen damage during crises if the system detects a high risk of collision and the driver does not respond in time.

Market Dynamics:

Driver:

Rising road accidents & focus on safety

In an effort to lower the number of fatalities, governments and regulatory agencies are progressively requiring safety measures like Autonomous Emergency Braking (AEB). By automatically applying brakes when a possible accident is detected, AEB systems contribute to increased road safety by preventing collisions. Additionally, consumers' increased knowledge of vehicle safety has influenced their choice to buy automobiles with AEBs. In order to meet consumer demand and comply with laws, automakers are incorporating AEB into more models. As a result of the pressing need for improved vehicle safety and accident avoidance, the AEB market is expanding significantly.

Restraint:

Limitations in adverse conditions

In bad weather, like persistent rain, snow, or fog, which can block sensors and cameras, AEB systems frequently have trouble operating effectively. Slick roads and decreased visibility can hinder or delay the system's ability to detect objects. These dependability problems hinder adoption and erode consumer confidence. Additionally, automakers might have to pay more to create more resilient technologies that work in any setting. As a result, safety issues and technological limitations in difficult circumstances hinder market growth.

Opportunity:

Adoption in commercial vehicles & fleets

Fleet managers place a high priority on cost effectiveness and safety, and AEB systems assist cut down on accidents, which lowers insurance and repair costs. AEB's integration is being accelerated by regulatory agencies in a number of nations that require it in commercial vehicles. As e-commerce grows, logistics firms are growing their fleets, which raises the need for cutting-edge safety features. Additionally, AEB improves driver assistance, which lowers human error in lengthy operations. In order to remain competitive and compliant, commercial vehicle manufacturers are progressively implementing AEB.

Threat:

Technological complexity & liability

High precision and synchronisation are needed for real-time data processing, AI algorithms, and advanced sensors, which frequently causes deployment delays. Implementation is made more difficult by compatibility problems with current vehicle platforms. Furthermore, the possibility of system failure or malfunction raises questions of dependability and safety. Manufacturers are also discouraged by liability concerns because they may be held accountable for mishaps brought on by AEB system malfunctions. These issues reduce customer confidence in autonomous braking technologies and impede their adoption.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the Autonomous Emergency Braking (AEB) market. The initial disruptions in production and supply chains slowed down the adoption of AEB technologies. However, as demand for safer vehicles increased post-pandemic, there was a surge in interest in advanced driver-assistance systems (ADAS), including AEB. Regulatory push for vehicle safety standards also contributed to the market's growth, with increased investments in R&D and technology integration driving recovery and expansion in the long term.

The sensors segment is expected to be the largest during the forecast period

The sensors segment is expected to account for the largest market share during the forecast period by enabling vehicles to detect obstacles and potential collisions. They provide real-time data through radar, lidar, and cameras, allowing AEB systems to assess the surrounding environment accurately. With advanced algorithms, these sensors trigger automatic braking when a collision is imminent, improving safety. As sensor technology becomes more sophisticated, the accuracy and efficiency of AEB systems have significantly increased. This progress is driving adoption across various vehicle segments, including passenger cars and commercial vehicles, contributing to the expansion of the AEB market.

The radar-based AEB segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the radar-based AEB segment is predicted to witness the highest growth rate by detecting potential collisions and triggering braking autonomously. These systems utilize radar sensors to monitor the environment, identifying obstacles and detecting sudden changes in speed. As radar offers high accuracy in different weather conditions, it increases AEB reliability and performance, making it a preferred technology for automakers. The growing demand for safety features in vehicles and strict regulatory standards are driving the adoption of radar-based AEB systems. This has led to the rapid growth of the Autonomous Emergency Braking market, with radar being a crucial enabler of safer, smarter vehicles.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to a surge in vehicle production and rising urbanization, particularly in China, Japan, and South Korea. Cost-effective manufacturing and rising middle-class income levels are enabling greater access to vehicles with advanced safety features. Government support through crash safety programs like China NCAP and India NCAP is accelerating AEB integration. While consumer awareness is growing, cost sensitivity still influences adoption rates. However, the increasing presence of global OEMs and domestic innovation are expected to drive AEB system growth across various vehicle segments.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by strong safety regulations and rising consumer awareness. Government mandates by agencies like the NHTSA and growing adoption of ADAS in premium vehicles are pushing automakers to integrate AEB systems. The U.S. leads the region, supported by a robust automotive sector and proactive insurance incentives. Increasing investments in autonomous driving technologies and collaboration between OEMs and tech firms further contribute to the expansion of AEB adoption across passenger and light commercial vehicles.

Key players in the market

Some of the key players profiled in the Autonomous Emergency Braking Market include Bosch, Continental AG, Aptiv PLC, Denso Corporation, Mobileye, Delphi Technologies, TRW Automotive, Valeo SA, Autoliv Inc., Toyota Tsusho Corporation, Magna International Inc., ZF Friedrichshafen AG, Hyundai Mobis, Nissan Motor Co., Ltd., Honda Motor Co., Ltd., BorgWarner Inc., Waymo and Uber ATG.

Key Developments:

In February 2024, Bosch partnered with Plus, an automated driving solutions provider, to jointly develop advanced driver-assist and autonomous emergency braking systems for commercial vehicles. This collaboration combines Bosch's sensor technology with Plus's AI-based perception software to enhance safety, particularly in complex traffic scenarios and long-haul trucking applications.

In January 2024, Continental partnered with Ambarella Inc., a semiconductor company specializing in AI vision chips, to develop next-generation Advanced Driver Assistance Systems (ADAS) and Autonomous Driving technologies. This collaboration focuses on enhancing safety features like Autonomous Emergency Braking (AEB) through AI-powered camera and radar fusion.

Components Covered:

  • Sensors
  • Electronic Control Unit (ECU)
  • Actuators
  • Software and Algorithms
  • Other Components

System Types Covered:

  • Forward Collision Warning (FCW) with Mitigation
  • City AEB
  • Highway AEB
  • Pedestrian Detection AEB
  • Cyclist Detection AEB
  • Junction Assist/Turning AEB
  • Reverse Automatic Braking (RAB)
  • Other System Types

Offerings Covered:

  • Hardware
  • Software

Vehicle Types Covered:

  • Passenger Cars
  • Light Commercial Vehicles (LCVs)
  • Heavy Commercial Vehicles (HCVs)
  • Electric Vehicles (EVs)
  • Autonomous Vehicles (AVs)
  • Other Vehicle Types

Technologies Covered:

  • Camera-Based AEB
  • Radar-Based AEB
  • LiDAR-Based AEB
  • Sensor Fusion AEB
  • Other Technologies

Sale Channels Covered:

  • Original Equipment Manufacturer (OEM)
  • Aftermarket

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Emerging Markets
  • 3.7 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Autonomous Emergency Braking Market, By Component

  • 5.1 Introduction
  • 5.2 Sensors
  • 5.3 Electronic Control Unit (ECU)
  • 5.4 Actuators
  • 5.5 Software and Algorithms
  • 5.6 Other Components

6 Global Autonomous Emergency Braking Market, By System Type

  • 6.1 Introduction
  • 6.2 Forward Collision Warning (FCW) with Mitigation
  • 6.3 City AEB
  • 6.4 Highway AEB
  • 6.5 Pedestrian Detection AEB
  • 6.6 Cyclist Detection AEB
  • 6.7 Junction Assist/Turning AEB
  • 6.8 Reverse Automatic Braking (RAB)
  • 6.9 Other System Types

7 Global Autonomous Emergency Braking Market, By Offering

  • 7.1 Introduction
  • 7.2 Hardware
  • 7.3 Software

8 Global Autonomous Emergency Braking Market, By Vehicle Type

  • 8.1 Introduction
  • 8.2 Passenger Cars
  • 8.3 Light Commercial Vehicles (LCVs)
  • 8.4 Heavy Commercial Vehicles (HCVs)
  • 8.5 Electric Vehicles (EVs)
  • 8.6 Autonomous Vehicles (AVs)
  • 8.7 Other Vehicle Types

9 Global Autonomous Emergency Braking Market, By Technology

  • 9.1 Introduction
  • 9.2 Camera-Based AEB
  • 9.3 Radar-Based AEB
  • 9.4 LiDAR-Based AEB
  • 9.5 Sensor Fusion AEB
  • 9.6 Other Technologies

10 Global Autonomous Emergency Braking Market, By Sale Channels

  • 10.1 Introduction
  • 10.2 Original Equipment Manufacturer (OEM)
  • 10.3 Aftermarket

11 Global Autonomous Emergency Braking Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Order Fulfillment
  • 13.2 Bosch
  • 13.3 Continental AG
  • 13.4 Aptiv PLC
  • 13.5 Denso Corporation
  • 13.6 Mobileye
  • 13.7 Delphi Technologies
  • 13.8 TRW Automotive
  • 13.9 Valeo SA
  • 13.10 Autoliv Inc.
  • 13.11 Toyota Tsusho Corporation
  • 13.12 Magna International Inc.
  • 13.13 ZF Friedrichshafen AG
  • 13.14 Hyundai Mobis
  • 13.15 Nissan Motor Co., Ltd.
  • 13.16 Honda Motor Co., Ltd.
  • 13.17 BorgWarner Inc.
  • 13.18 Waymo
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦