½ÃÀ庸°í¼­
»óǰÄÚµå
1755864

·Îº¿ ¼ÅƲ ¹× ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, Â÷Á¾º°, ÃßÁø À¯Çüº°, ÀÚÀ²ÁÖÇà ·¹º§º°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Robot Shuttles and Autonomous Buses Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software, and Services), Vehicle Type, Propulsion Type, Level of Autonomy, Application, End User, and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀåÀº 2025³â¿¡ 3¾ï 6,388¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 28.6%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 21¾ï 1,665¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

·Îº¿ ¼ÅƲ ¹× ÀÚÀ²ÁÖÇà ¹ö½º´Â Àΰ£ ¿îÀüÀÚ ¾øÀÌ ¿îÇàÇϵµ·Ï ¼³°èµÈ ÀÚÀ²ÁÖÇà ´ëÁß±³Åë Â÷·®ÀÔ´Ï´Ù. ¼¾¼­, AI, ÷´Ü ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀ» °®Ãß°í ÀÖÀ¸¸ç, È¿À²ÀûÀÌ°í ¾ÈÀüÇϸç ģȯ°æÀûÀÎ ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î Àü±â·Î ±¸µ¿µÇ´Â ÀÌ Â÷·®Àº µµ½Ã, Ä·ÆÛ½º, Æó¼âµÈ ȯ°æ¿¡¼­ ÆÛ½ºÆ® ¸¶Àϰú ¶ó½ºÆ® ¸¶ÀÏ ¿¬°á¼ºÀ» Á¦°øÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ½º¸¶Æ® ½ÃƼ ¹× Áö¼Ó°¡´ÉÇÑ ±³Åë ±¸»ó¿¡¼­ Àü ¼¼°è¿¡¼­ Áß¿äÇÑ Çõ½ÅÀÌ µÇ°í ÀÖ½À´Ï´Ù.

½º¸¶Æ®Çϰí Áö¼Ó°¡´ÉÇÑ ¸ðºô¸®Æ¼¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀÚÀ²ÁÖÇà ¼ÅÆ²¿¡ ´ëÇÑ ¼±È£µµ°¡ ³ô¾ÆÁö´Â ¹è°æ¿¡´Â È¿À²ÀûÀ̰í ģȯ°æÀûÀÎ ±³Åë ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ÀÖ½À´Ï´Ù. Àü ¼¼°è µµ½ÃµéÀº È¥Àâ°ú ¹è±â°¡½º ¹èÃâÀ» ÁÙÀ̱â À§ÇØ ½º¸¶Æ® ¸ðºô¸®Æ¼ ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ´ëÁß±³ÅëÀº Á¢±Ù¼º°ú ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÀÚÀ²ÁÖÇà ±â¼úÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. Àü±â ¹× ÀÚÀ²ÁÖÇà Â÷·®ÀÇ Ã¤Åà Áõ°¡´Â ±âÈÄ º¯È­ ¸ñÇ¥¿Í Áö¼Ó°¡´É¼º ±¸»ó¿¡ ºÎÇÕÇϸç, AI¿Í ¼¾¼­ ±â¼úÀÇ ¹ßÀüÀº ÀÚÀ²ÁÖÇà ¹ö½º¸¦ ´õ¿í ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù.

½Ã¹ÎµéÀÇ È¸ÀǷаú ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á

¸¹Àº ½Â°´µéÀº ¿ªµ¿ÀûÀÎ µµ½Ã ȯ°æ¿¡¼­ ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀ» ½Å·ÚÇÏ´Â °Í¿¡ ´ëÇØ ¿©ÀüÈ÷ ºÒ¾ÈÇØÇϰí ÀÖ½À´Ï´Ù. ³ôÀº ÀÎÁöµµ¸¦ °¡Áø »ç°í¿Í ±â¼úÀû ½ÇÆÐ´Â ½Å·Ú¼º°ú À§Çè °¨¼Ò Àü·«¿¡ ´ëÇÑ Àǹ®À» Á¦±âÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ¾÷°è ¸®´õµéÀº ±¹¹ÎÀ» ¾È½É½Ã۱â À§ÇØ Ç¥ÁØÈ­µÈ ¾ÈÀü ÇÁ·ÎÅäÄÝÀ» È®¸³Çϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ±¹¹ÎµéÀÇ ½Å·Ú¸¦ ¾ò±â À§Çؼ­´Â Áö¼ÓÀûÀÎ Å×½ºÆ®¿Í ½ÇÁ¦ »çȸ·ÎÀÇ µµÀÔÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¹èÃâ°¡½º Àú°¨À» À§ÇÑ Àü±âÀÚµ¿Â÷ µµÀÔ

ź¼ÒÁ߸³ ±³Åë¼ö´ÜÀ» ÇâÇÑ ¿òÁ÷ÀÓÀº ÀÚÀ²ÁÖÇà ¼ÅÆ²¿¡ Å« ±âȸ°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. Á¤ºÎ¿Í ±â¾÷Àº ¹«°øÇØ ¸ñÇ¥¸¦ ¼³Á¤Çϰí Àü±â ÀÚÀ²ÁÖÇà Â÷·®À¸·ÎÀÇ ÀüȯÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Àü±â¹ö½º¿Í ÀÚÀ²ÁÖÇà ½Ã½ºÅÛÀÇ ÅëÇÕÀº ¿îÇà ºñ¿ë°ú ȯ°æ ¿µÇâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¹èÅ͸® ±â¼ú Çõ½Å°ú ÃæÀü ÀÎÇÁ¶óÀÇ È®´ë´Â Àü±â ·Îº¿ ¼ÅƲÀÇ º¸±ÞÀ» Áö¿øÇÕ´Ï´Ù. ģȯ°æ ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö¸é¼­ ÅõÀÚ¸¦ ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

È¥ÀâÇÑ ±³Åë »óȲ¿¡¼­ÀÇ ½Ç½Ã°£ ³»ºñ°ÔÀ̼ÇÀÇ º¹À⼺

ÀÚÀ²ÁÖÇà ¹ö½º¿¡ ÀÖÀ¸¸ç, ÀÌÁúÀûÀÎ ±³Åë »óȲÀ» Ž»öÇÏ´Â °ÍÀº ¿©ÀüÈ÷ Å« °úÁ¦ÀÔ´Ï´Ù. º¸ÇàÀÚ, ÀÚÀü°Å ¿îÀüÀÚ, ¿¹ÃøÇÒ ¼ö ¾ø´Â ¿îÀüÀÚ°¡ È¥ÀçÇϴ ȯ°æ¿¡¼­´Â AI°¡ ÁÖµµÇÏ´Â Á¤È®ÇÑ ÀÇ»ç°áÁ¤ÀÌ ¿ä±¸µË´Ï´Ù. ½Ç½Ã°£ ¼¾¼­ À¶ÇÕ°ú ¸Ó½Å·¯´×Àº º¯È­ÇÏ´Â µµ·Î ½Ã³ª¸®¿À¿¡ ²÷ÀÓ¾øÀÌ ÀûÀÀÇØ¾ß ÇÕ´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©´Â ÀÚÀ²ÁÖÇà ¸ðºô¸®Æ¼ÀÇ ºü¸¥ ±â¼ú ¹ßÀüÀ» µû¶óÀâ±â À§ÇØ °í±ººÐÅõÇϰí ÀÖ½À´Ï´Ù. ·¹°Å½Ã ÀÎÇÁ¶ó°¡ ÀÖ´Â µµ½Ã´Â ·Îº¿ ¼ÅƲÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» À§ÇÑ ½Ã¼³ÀÌ ÃæºÐÈ÷ °®Ãß¾îÁ® ÀÖÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

ÆÒµ¥¹ÍÀº µµ½ÃµéÀÌ º¸´Ù ¾ÈÀüÇÑ ´ëü ±³Åë¼ö´ÜÀ» ã´Â °¡¿îµ¥ ºñÁ¢ÃË½Ä ÀÚÀ²ÁÖÇà ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ³ëµ¿·Â °¨¼Ò·Î ÀÎÇØ Áö¼ÓÀûÀÎ ´ëÁß ±³ÅëÀ» º¸ÀåÇϱâ À§ÇÑ ÀÚÀ²ÁÖÇàÂ÷ÀÇ °¡Ä¡°¡ °­Á¶µÇ¾ú½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â »ç¶÷°úÀÇ Á¢ÃËÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ ÀÚµ¿ ¿îÀü ¹× ¿ø°Ý Á¦¾î ±³Åë ¼ö´ÜÀ» ¿ì¼±¼øÀ§¿¡ µÎ¾ú½À´Ï´Ù. ÀÌ À§±â´Â µµ½Ã °èȹ¿¡¼­ °­·ÂÇÑ ÀÚµ¿È­µÈ ±³Åë¸ÁÀÇ Á߿伺À» °­Á¶Çß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ÅõÀÚ µ¿ÇâÀº ÀÚÀ²ÁÖÇà ¸ðºô¸®Æ¼ ±â¼úÀÇ Áö¼ÓÀûÀÎ ¼ºÀåÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß Çϵå¿þ¾î ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Çϵå¿þ¾î ºÎ¹®Àº ÷´Ü ¼¾¼­, AI ÇÁ·Î¼¼¼­, Åë½Å ¸ðµâ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ²ÁÖÇà ¹ö½º´Â Á¤È®ÇÑ ³»ºñ°ÔÀ̼ǰú Àå¾Ö¹° °¨Áö¸¦ À§ÇØ LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó ½Ã½ºÅÛ¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. °ß°íÇÑ Â÷·® ¾ÆÅ°ÅØÃ³ÀÇ Çʿ伺Àº ÀÚÀ²ÁÖÇà ±â¼ú ±¸¼º ¿ä¼ÒÀÇ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃ°ú ¿Âº¸µå AI ó¸®ÀÇ Çϵå¿þ¾î ¹ßÀüÀº ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» °³¼±Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ±³Åë ´ç±¹ ºÎ¹®

¿¹Ãø ±â°£ Áß ±³Åë ´ç±¹ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½º¸¶Æ® ½ÃƼ °³¹ßÀ» Áö¿øÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»óÀº Â÷·® ¹èÄ¡¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ´ëÁß±³Åë Çö´ëÈ­¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ AI ±â¹Ý ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ´ç±¹Àº È¿À²¼º°ú Áö¼Ó°¡´É¼ºÀ» °³¼±Çϱâ À§ÇØ ÀÚÀ²ÁÖÇàÂ÷ ȸ»ç¿Í ÆÄÆ®³Ê½ÊÀ» ¸Î°í ÀÖ½À´Ï´Ù. ±³Åë üÁõ°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á°¡ Ä¿Áö´Â °Íµµ ÀÌ·¯ÇÑ ÅõÀÚ È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í ´ë±Ô¸ð ½º¸¶Æ® ±³Åë¿¡ ´ëÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡´Â ÀÚÀ²ÁÖÇà ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀÇ Ãʱ⠵µÀÔ±¹ÀÔ´Ï´Ù. Á¤ºÎ Áö¿ø ½Ã¹ü ÇÁ·Î±×·¥ ¹× º¸Á¶±Ý Áö¿øÀ¸·Î ÀÚÀ²ÁÖÇà ¹ö½ºÀÇ »ó¿ëÈ­¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ´ëÁß±³Åë¸ÁÀÇ È®´ë¿Í ÀÎÇÁ¶ó ±¸ÃàÀÌ ½ÃÀå ¹ßÀüÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â °­·ÂÇÑ ±ÔÁ¦ Áö¿ø°ú Waymo, Cruise, Zoox¿Í °°Àº ±â¾÷ÀÌ ÀÚÀ²ÁÖÇà ¼Ö·ç¼ÇÀ» °³¹ßÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. µµ½Ã ¹× Ä·ÆÛ½º ȯ°æ¿¡¼­ ·Îº¿ ¼ÅƲÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå È®´ë°¡ ÃËÁøµÉ °ÍÀÔ´Ï´Ù. ±³Åë È¿À²¼º°ú ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö¸é¼­ µµ½Ã°¡ ÀÚÀ²ÁÖÇà ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ¸·Î ÇâÇϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¼¾¼­
    • GPS/GNSS ¸ðµâ
    • ÇÁ·Î¼¼¼­¡¤Á¦¾î À¯´Ö
    • Åë½Å ½Ã½ºÅÛ
    • Àü±â ¸ðÅÍ¡¤¹èÅ͸® ½Ã½ºÅÛ
  • ¼ÒÇÁÆ®¿þ¾î
    • AI ±â¹Ý ¿îÀü ¾Ë°í¸®Áò
    • ÁöµµÁ¦ÀÛ¡¤·ÎÄöóÀÌÁ¦À̼Ç
    • Â÷·® °ü¸® ½Ã½ºÅÛ
  • ¼­ºñ½º
    • ¹èÆ÷¡¤ÅëÇÕ
    • Á¤ºñ
    • ¸®¸ðÆ® Á¶ÀÛ

Á¦6Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : Â÷Á¾º°

  • ÀÚÀ² ¼ÅƲ
  • ÀÚÀ²ÁÖÇà ¹ö½º

Á¦7Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : ÃßÁø À¯Çüº°

  • Àü±â
  • ÇÏÀ̺긮µå
  • ¼ö¼Ò¿¬·áÀüÁö
  • ³»¿¬±â°ü(ICE)

Á¦8Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : ÀÚÀ²ÁÖÇà ·¹º§º°

  • ·¹º§ 1(¿îÀü Áö¿ø)
  • ·¹º§ 2(ºÎºÐ ÀÚµ¿È­)
  • ·¹º§ 3(Á¶°ÇºÎ ÀÚµ¿È­)
  • ·¹º§ 4(°íÀÚµ¿È­)
  • ·¹º§ 5(¿ÏÀü ÀÚµ¿È­)

Á¦9Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : ¿ëµµº°

  • ´ëÁß±³Åë
  • ÇコÄɾÀºÅðÀÚ Ä¿¹Â´ÏƼ
  • °øÇס¤Ä·ÆÛ½º ¼ÅƲ
  • Å׸¶ÆÄÅ©¡¤À̺¥Æ®
  • °ü±¤
  • ºñÁî´Ï½º ÆÄÅ©¡¤»ê¾÷ ´ÜÁö
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Áö¹æÀÚÄ¡´Üü
  • ±³Åë ´ç±¹
  • ¹Î°£ »ç¾÷ÀÚ(Å×Å©³î·¯Áö ±â¾÷ ¶Ç´Â ¸ðºô¸®Æ¼ ±â¾÷)
  • ¹ýÀÎ °í°´
  • ´ëÇС¤Ä·ÆÛ½º
  • ±âŸ

Á¦11Àå ¼¼°èÀÇ ·Îº¿ ¼ÅƲ¡¤ÀÚÀ²ÁÖÇà ¹ö½º ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Waymo
  • Baidu
  • EasyMile
  • Navya
  • May Mobility
  • Cruise
  • Zoox
  • Nuro
  • Mobileye
  • NVIDIA
  • Toyota
  • WeRide
  • Pony.ai
  • Local Motors
  • BYD
  • Daimler Truck Holding AG
  • Transdev
  • Continental
KSA 25.07.02

According to Stratistics MRC, the Global Robot Shuttles and Autonomous Buses Market is accounted for $363.88 million in 2025 and is expected to reach $2116.65 million by 2032 growing at a CAGR of 28.6% during the forecast period. Robot shuttles and autonomous buses are self-driving public transport vehicles designed to operate without a human driver. Equipped with sensors, AI, and advanced navigation systems, they provide efficient, safe, and eco-friendly mobility solutions. Typically electric-powered, these vehicles are used in urban areas, campuses, and closed environments to offer first-mile and last-mile connectivity. They represent a key innovation in smart city and sustainable transportation initiatives worldwide.

Market Dynamics:

Driver:

Rising demand for smart and sustainable mobility

The growing preference for autonomous shuttles is driven by the need for efficient, eco-friendly transportation solutions. Cities worldwide are investing in smart mobility systems to reduce congestion and emissions. Public transportation authorities are embracing self-driving technology to improve accessibility and reliability. Increased adoption of electric and autonomous fleets aligns with climate goals and sustainability initiatives. Advancements in AI and sensor technology are making autonomous buses safer and more efficient.

Restraint:

Public skepticism and safety concerns

Many passengers still have reservations about trusting autonomous systems in dynamic urban environments. High-profile accidents and technical failures raise questions about reliability and risk mitigation strategies. Governments and industry leaders are working to establish standardized safety protocols to reassure the public. Continuous testing and real-world deployments are required to build public confidence.

Opportunity:

Electric vehicle adoption for emission reduction

The push toward carbon-neutral transportation is a significant opportunity for autonomous shuttles. Governments and corporations are setting zero-emission targets, accelerating the shift to electric self-driving fleets. Integration of electric buses with autonomous systems reduces operational costs and environmental impact. Battery innovations and charging infrastructure expansion support the widespread deployment of electric robot shuttles. Growing consumer preference for green mobility solutions further drives investment.

Threat:

Complexities in real-time navigation in mixed traffic

Navigating heterogeneous traffic conditions remains a major challenge for autonomous buses. Mixed environments with pedestrians, cyclists, and unpredictable drivers require precise AI-driven decision-making. Real-time sensor fusion and machine learning must continually adapt to changing road scenarios. Regulatory frameworks struggle to keep pace with rapid technological advancements in autonomous mobility. Cities with legacy infrastructure may not be fully equipped for seamless robotic shuttle integration.

Covid-19 Impact

The pandemic accelerated interest in contactless, autonomous transit solutions as cities sought safer transportation alternatives. Reduced workforce availability emphasized the value of self-driving vehicles in ensuring continuous public transportation. Governments prioritized automated and remote-controlled transit options to minimize human interaction. The crisis highlighted the importance of resilient, automated transportation networks in urban planning. Post-pandemic investment trends indicate sustained growth in autonomous mobility technologies.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is expected to account for the largest market share during the forecast period, due to growing demand for advanced sensors, AI processors, and communication modules. Autonomous buses rely heavily on LiDAR, radar, and camera systems for precise navigation and obstacle detection. The need for robust vehicle architecture drives continuous innovation in self-driving technology components. Hardware advancements in edge computing and onboard AI processing are improving real-time decision-making.

The transportation authorities segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the transportation authorities segment is predicted to witness the highest growth rate. Government initiatives supporting smart city development accelerate fleet deployment. Increased focus on public transit modernization encourages investment in AI-powered mobility solutions. Authorities are partnering with autonomous vehicle firms to improve efficiency and sustainability. Rising concerns over traffic congestion and environmental impact fuel expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid urbanization and large-scale smart transportation investments. Countries like China, Japan, and South Korea are early adopters of autonomous mobility solutions. Government-backed pilot programs and subsidies accelerate the commercial deployment of self-driving buses. Expanding public transit networks and infrastructure development support market growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong regulatory support and technological leadership. Companies like Waymo, Cruise, and Zoox are pioneering autonomous transit solutions. Increasing adoption of robotic shuttles in urban and campus environments drives market expansion. Rising concerns over traffic efficiency and environmental impact push cities toward self-driving mobility solutions.

Key players in the market

Some of the key players profiled in the Robot Shuttles and Autonomous Buses Market include Waymo, Baidu, EasyMile, Navya, May Mobility, Cruise, Zoox, Nuro, Mobileye, NVIDIA, Toyota, WeRide, Pony.ai, Local Motors, BYD, Daimler Truck Holding AG, Transdev, and Continental.

Key Developments:

In June 2025, Daimler Truck, logistics provider DHL Group and commercial vehicle rental provider hylane GmbH signed a cooperation agreement in the field of fully electric trucks at the "transport logistic" trade fair in Munich. The partnership stipulates that DHL will obtain 30 electric trucks of the type Mercedes-Benz eActros 600 through hylane's "Transport as a Service model."

In April 2025, Continental has launched three all-new MTB tires, designed to provide riders with increased performance, durability, and ultimate grip on every trail. These tires, Dubnital, Trinotal, and Magnotal sit alongside the acclaimed Gravity range, ensuring that every rider, from XC racers to trail enthusiasts, finds the perfect tire for their chosen terrain.

Components Covered:

  • Hardware
  • Software
  • Services

Vehicle Types Covered:

  • Autonomous Shuttles
  • Autonomous Buses

Propulsion Types Covered:

  • Electric
  • Hybrid
  • Hydrogen Fuel Cell
  • Internal Combustion Engine (ICE)

Levels of Autonomy Covered:

  • Level 1 (Driver Assistance)
  • Level 2 (Partial Automation)
  • Level 3 (Conditional Automation)
  • Level 4 (High Automation)
  • Level 5 (Full Automation)

Applications Covered:

  • Public Transportation
  • Healthcare and Retirement Communities
  • Airport & Campus Shuttles
  • Theme Parks and Events
  • Tourism & Sightseeing
  • Business Parks & Industrial Campuses
  • Other Applications

End Users Covered:

  • Municipal Governments
  • Transportation Authorities
  • Private Operators (Tech or Mobility Companies)
  • Corporate Clients
  • Universities & Campuses
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robot Shuttles and Autonomous Buses Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Sensors
    • 5.2.2 GPS/GNSS modules
    • 5.2.3 Processors and control units
    • 5.2.4 Communication systems
    • 5.2.5 Electric motors and battery systems
  • 5.3 Software
    • 5.3.1 AI-based driving algorithms
    • 5.3.2 Mapping & localization
    • 5.3.3 Fleet management systems
  • 5.4 Services
    • 5.4.1 Deployment & integration
    • 5.4.2 Maintenance
    • 5.4.3 Remote operations

6 Global Robot Shuttles and Autonomous Buses Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Autonomous Shuttles
  • 6.3 Autonomous Buses

7 Global Robot Shuttles and Autonomous Buses Market, By Propulsion Type

  • 7.1 Introduction
  • 7.2 Electric
  • 7.3 Hybrid
  • 7.4 Hydrogen Fuel Cell
  • 7.5 Internal Combustion Engine (ICE)

8 Global Robot Shuttles and Autonomous Buses Market, By Level of Autonomy

  • 8.1 Introduction
  • 8.2 Level 1 (Driver Assistance)
  • 8.3 Level 2 (Partial Automation)
  • 8.4 Level 3 (Conditional Automation)
  • 8.5 Level 4 (High Automation)
  • 8.6 Level 5 (Full Automation)

9 Global Robot Shuttles and Autonomous Buses Market, By Application

  • 9.1 Introduction
  • 9.2 Public Transportation
  • 9.3 Healthcare and Retirement Communities
  • 9.4 Airport & Campus Shuttles
  • 9.5 Theme Parks and Events
  • 9.6 Tourism & Sightseeing
  • 9.7 Business Parks & Industrial Campuses
  • 9.8 Other Applications

10 Global Robot Shuttles and Autonomous Buses Market, By End User

  • 10.1 Introduction
  • 10.2 Municipal Governments
  • 10.3 Transportation Authorities
  • 10.4 Private Operators (Tech or Mobility Companies)
  • 10.5 Corporate Clients
  • 10.6 Universities & Campuses
  • 10.7 Other End Users

11 Global Robot Shuttles and Autonomous Buses Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Waymo
  • 13.2 Baidu
  • 13.3 EasyMile
  • 13.4 Navya
  • 13.5 May Mobility
  • 13.6 Cruise
  • 13.7 Zoox
  • 13.8 Nuro
  • 13.9 Mobileye
  • 13.10 NVIDIA
  • 13.11 Toyota
  • 13.12 WeRide
  • 13.13 Pony.ai
  • 13.14 Local Motors
  • 13.15 BYD
  • 13.16 Daimler Truck Holding AG
  • 13.17 Transdev
  • 13.18 Continental
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦