½ÃÀ庸°í¼­
»óǰÄÚµå
1755943

ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå ¿¹Ãø(-2032³â) : Â÷Á¾º°, Àüµµ À¯Çüº°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Automotive Pressure Sensors Market Forecasts to 2032 - Global Analysis By Vehicle Type, Transduction Type, Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀåÀº 2025³â¿¡ 148¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGR 11.03%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 307¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀÚµ¿Â÷ ¾Ð·Â ¼¾¼­´Â ŸÀ̾î, ¿¬·á ½Ã½ºÅÛ ¹× ¿£ÁøÀÇ ´Ù¾çÇÑ ¾Ð·Â ¼öÁØ¿¡ ´ëÇÑ Áß¿äÇÑ Á¤º¸¸¦ ÃßÀûÇϰí Àü´ÞÇϹǷΠÇö´ë ÀÚµ¿Â÷¿¡ ÇʼöÀûÀÎ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ¾Ð·Â º¯µ¿À» ½Äº°Çϰí Â÷·®ÀÇ ÀüÀÚ Á¦¾î Àåºñ(ECU)¿¡ ¾Ë·Á ÇÊ¿äÇÑ Á¶Á¤À» ¼öÇàÇÔÀ¸·Î½á ÃÖÀûÀÇ ¼º´É, ¾ÈÀü¼º ¹× È¿À²¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¸Å´ÏÆúµå Àý´ë¾Ð(MAP), ¿¬·á ·¹ÀÏ ¾Ð·Â, ¿ÀÀÏ ¾Ð·Â ¸ð´ÏÅ͸µÀÌ ´ëÇ¥ÀûÀÎ ¿ëµµÀÔ´Ï´Ù. ¶ÇÇÑ Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µåÂ÷ÀÇ º¸±ÞÀ¸·Î ÀÎÇØ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¾Ð·Â °¨ÁöÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ¼¾¼­ÀÇ ³»±¸¼º, ¼ÒÇüÈ­, ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)¿ÍÀÇ ÅëÇÕÀÌ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¹Ì±¹ ¿¡³ÊÁöºÎ¿¡ µû¸£¸é ŸÀÌ¾î °ø±â¾ÐÀÌ 1 PSI ³·¾ÆÁú ¶§¸¶´Ù °ø±â¾ÐÀÌ ºÎÁ·ÇÑ Å¸À̾î´Â ¿¬ºñ¸¦ ¾à 0.2% ¾ÇÈ­½ÃŲ´Ù°í ÇÕ´Ï´Ù. À̴ ŸÀÌ¾î °ø±â¾ÐÀÌ 10% °¨¼ÒÇÏ¸é ¿¬ºñ°¡ ¾à 1% °¨¼ÒÇÑ´Ù´Â ÀϹÝÀûÀÎ ÃßÁ¤Ä¡¿Í ÀÏÄ¡ÇÕ´Ï´Ù. ÀûÀýÇÑ Å¸ÀÌ¾î °ø±â¾ÐÀº ¿¬ºñ¸¦ ÃÖÀûÈ­ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, TPMS´Â ŸÀÌ¾î °ø±â¾ÐÀ» ¸ð´ÏÅ͸µÇÏ¿© ºÒÇÊ¿äÇÑ ¿¬·á ¼Õ½ÇÀ» ¹æÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

ÇÏÀ̺긮µåÂ÷ ¹× Àüµ¿È­·ÎÀÇ Àüȯ

ÇÏÀ̺긮µå ¹× Àü±âÀÚµ¿Â÷ÀÇ Ã¤ÅÃÀº ÀÌ»êȭź¼Ò ¹èÃâ °¨¼Ò¿¡ ´ëÇÑ °­Á¶¿Í Àü ¼¼°è¿¡¼­ Áö¼Ó°¡´ÉÇÑ ¸ðºô¸®Æ¼ ¼Ö·ç¼ÇÀ¸·ÎÀÇ Àüȯ¿¡ ÀÇÇØ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ ¾Ð·Â ¼¾¼­´Â HVAC, ¿¬·áÀüÁö, ¹èÅ͸® ³Ã°¢, Á¦µ¿ ½Ã½ºÅÛ µî ´Ù¾çÇÑ ¼­ºê½Ã½ºÅÛÀÇ ¾Ð·ÂÀ» ¸ð´ÏÅ͸µÇϰí Á¦¾îÇϹǷΠÀü±â ¹× ÇÏÀ̺긮µåÂ÷(HEV)¿¡ ÇʼöÀûÀÎ ºÎǰÀÔ´Ï´Ù. ¶ÇÇÑ ³»¿¬±â°ü(ICE) ÀÚµ¿Â÷¸¦ ÆóÁöÇÏ°í ¹«°øÇØ ÀÚµ¿Â÷¸¦ Àå·ÁÇÏ´Â ¹ý·üÀ» Á¦Á¤ÇÏ´Â ±¹°¡°¡ ´Ã¾î³²¿¡ µû¶ó ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Çʿ伺ÀÌ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°í°¡ÀÇ Ã·´Ü ¼¾¼­ ±â¼ú

ÀÚµ¿Â÷ ¾Ð·Â ¼¾¼­´Â ƯÈ÷ ½ÅÈï ½ÃÀå¿¡¼­ »ó´ëÀûÀ¸·Î °í°¡¶ó´Â Á¡ÀÌ º¸±ÞÀ» °¡·Î¸·´Â Å« Àå¾Ö¹° Áß ÇϳªÀ̸ç, MEMS ±â¼úÀ» »ç¿ëÇϰųª ¹«¼± ¿¬°áÀ» Á¦°øÇϰųª EV Àü¿ë ¿ëµµ¸¦ À§ÇØ ¸¸µé¾îÁø °í±ÞÇü ¾Ð·Â ¼¾¼­´Â ±âº» ¾Ð·Â ¼¾¼­ÀÇ °¡°ÝÀÌ Àú·ÅÇÏ°í °³¹ß ¹× Á¦Á¶¿¡ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. Â÷·® žÀç ȯ°æÀÇ °í¿Â, Áøµ¿, ºÎ½Ä¼º À¯Ã¼¿¡ °ßµô ¼ö ÀÖ´Â ³»±¸¼º ÀÖ´Â Æ÷ÀåÀÌ ¿ä±¸µÇ¹Ç·Î ºñ¿ëÀº ´õ¿í »ó½ÂÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ãß°¡ ºñ¿ëÀº ¿£Æ®¸® ·¹º§ ÀÚµ¿Â÷ ¸ðµ¨À̳ª ºñ¿ë¿¡ ¹Î°¨ÇÑ ½ÃÀå¿¡¼­´Â ¾ïÁö·ÂÀÌ µÇ¾î OEMÀÌ ´õ Àú·ÅÇϰí Á¤±³ÇÑ ´ë¾ÈÀ» ã°Ô µÇ°í, ¼¾¼­ äÅÃÀ» ´ÊÃß°Ô µË´Ï´Ù.

Àç·á °úÇÐ ¹× ¼¾¼­ ±â¼ú Çõ½Å

ÀûÃþÁ¦Á¶, Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º, ³ª³ëÅ×Å©³î·¯Áö°ú °°Àº Àç·á, ¼¾¼­ ¾ÆÅ°ÅØÃ³, Á¦Á¶ °øÁ¤ÀÇ ¹ßÀüÀº ´õ ÀÛ°í °ß°íÇÏ¸ç ¿¡³ÊÁö È¿À²ÀûÀÎ Â÷¼¼´ë ¾Ð·Â ¼¾¼­¸¦ °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ºÎǰ ¼ö¸¦ ÁÙÀÌ°í ½Ã½ºÅÛ ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â ´Ù±â´É ¼¾¼­´Â ±×·¡ÇÉ ±â¹Ý ¼ÒÀç, ÇÇ¿¡Á¶ ÀúÇ× ¹× Á¤Àü ¿ë·® °¨Áö ¼ÒÀÚ, ¿Âµµ/½Àµµ °¨Áö¿ÍÀÇ ¼¾¼­ À¶ÇÕ°ú °°Àº ±â¼ú Çõ½ÅÀ» ÅëÇØ °¡´ÉÇØÁý´Ï´Ù. °í¼º´É ½ºÆ÷Ã÷Ä«, ¼ö¼Ò¿¬·áÀüÁöÂ÷, ÃʼÒÇü µµ½ÃÇü ¸ðºô¸®Æ¼ ¼Ö·ç¼Ç µî Ư¼öÇÑ ¿ëµµ¿¡ ÀûÇÕÇÑ ¼¾¼­ »ý»êÀÌ °¡´ÉÇØÁý´Ï´Ù.

¿øÀÚÀç ¹× ºÎǰ °ø±Þ¸ÁÀÇ ºÒ¾ÈÁ¤¼º

ÀÚµ¿Â÷ ¾Ð·Â ¼¾¼­ ½ÃÀåÀº ½Ç¸®ÄÜ, ±Ý¼Ó, ¹ÝµµÃ¼, Ư¼ö Æú¸®¸Ó ¹× ±âŸ Àç·á¿¡ Å©°Ô ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ±× Áß »ó´ç¼ö´Â ¼¼°è °ø±Þ¸Á È¥¶õ¿¡ Ãë¾àÇÕ´Ï´Ù. ÀÚ¿¬ÀçÇØ, ¹«¿ª Á¦ÇÑ, Àü¿°º´, ÁöÁ¤ÇÐÀû ±äÀå µîÀº ¿øÀÚÀç ¹× ÇÙ½É ºÎǰÀÇ Áö¼ÓÀûÀÎ È帧À» ¹æÇØÇÏ´Â ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù. Á¦Á¶ ÀÏÁ¤, ºñ¿ë »ó½Â, ÀÌÀÍ·ü °¨¼Ò, ¿µÇâÀ» ¹Þ´Â °ø±Þ¾÷ü·ÎºÎÅÍÀÇ Á¶´Þ¿¡ ´ëÇÑ ÀÚµ¿Â÷ Á¦Á¶¾÷üÀÇ ½Å·Ú´Â ¸ðµÎ ÀÌ·¯ÇÑ ¿¹ÃøÇÒ ¼ö ¾ø´Â »óȲÀ¸·Î ÀÎÇØ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù. ¼¼°èÈ­µÈ ½ÃÀå¿¡¼­ Àû½Ã »ý»ê ¸ðµ¨ÀÌ ³Î¸® ÆÛÁ® ÀÖÀ¸¹Ç·Î ÀÌ·¯ÇÑ À§ÇùÀº ƯÈ÷ ½É°¢ÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

¼¼°è °ø±Þ¸ÁÀÇ ±¤¹üÀ§ÇÑ È¥¶õ, °øÀå °¡µ¿ Áß´Ü, 2020³â ÀÚµ¿Â÷ »ý»ê ¹× ÆÇ¸ÅÀÇ ±Þ°ÝÇÑ °¨¼Ò·Î ÀÎÇØ COVID-19 ÆÒµ¥¹ÍÀº ÀÚµ¿Â÷ ¾Ð·Â ¼¾¼­ ½ÃÀå¿¡ ´Ü±âÀûÀ¸·Î Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÀÚµ¿Â÷ °øÀåÀÇ °¡µ¿·ü ÀúÇÏ¿Í ÀϽÃÀûÀÎ °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇØ ¾Ð·Â ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇÏ¿© °ø±Þ¸Á ¸ÅÃâ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ±×·¯³ª Àü¿°º´Àº µðÁöÅÐ Àüȯ, ÀÚµ¿Â÷ Àüµ¿È­, ¿ø°Ý Áø´Ü ¹× ¿¹Ãø Á¤ºñ¸¦ À§ÇÑ ½º¸¶Æ® ¼¾¼­ÀÇ »ç¿ë°ú °°Àº Àå±âÀûÀÎ Ãß¼¼¸¦ °¡¼ÓÈ­ÇÏ¿© Àü¿°º´ ÀÌÈÄ ¾÷°èÀÇ °ß°íÇÑ È¸º¹°ú Çõ½Å ÁÖµµÀÇ È®ÀåÀ» À§ÇÑ Åä´ë¸¦ ¸¶·ÃÇß½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÇÇ¿¡Á¶ ÀúÇ×Çü ºÎ¹®ÀÌ °¡Àå Å« ºÎ¹®ÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÇÇ¿¡Á¶ ÀúÇ×Çü ºÎ¹®Àº ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇÇ¿¡Á¶ ÀúÇ×½Ä ¾Ð·Â ¼¾¼­´Â °í¿Â, Áøµ¿, ¾Ð·Â º¯µ¿°ú °°Àº °¡È¤ÇÑ È¯°æ¿¡¼­µµ °ß°íÇϰí, Á¤È®µµ°¡ ³ô°í, ½Å·Ú¼ºÀÌ ³ôÀ¸¸ç, ÀÚµ¿Â÷ ȯ°æ¿¡¼­ ÈçÈ÷ º¼ ¼ö Àִ Ư¼ºÀ¸·Î ÀÎÇØ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. Àü±âÀÚµ¿Â÷(EV)¿Í ³»¿¬±â°üÂ÷(ICE)´Â ¿¡¾î¹é Àü°³, ºê·¹ÀÌÅ© ½Ã½ºÅÛ, ¿¬·á ºÐ»ç, ¿£Áø Á¦¾î¿Í °°Àº Áß¿äÇÑ ½Ã½ºÅÛ¿¡ ³Î¸® »ç¿ëµÇ¹Ç·Î ÀÌ·¯ÇÑ ¼¾¼­¿¡ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤±³ÇÑ ±â¼ú, ÇÕ¸®ÀûÀÎ °¡°Ý, ÀüÀÚÁ¦¾îÀåºñ(ECU)¿ÍÀÇ ÅëÇÕ ¿ëÀ̼º µîÀÌ ¼¼°è ÀÚµ¿Â÷ ¿ëµµ¿¡¼­ÀÇ ¿ìÀ§¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(MEMS) ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(MEMS) ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ¸ç, MEMS ±â¹Ý ¾Ð·Â ¼¾¼­´Â Å©±â°¡ ÀÛ°í ¿¡³ÊÁö È¿À²ÀÌ ³ôÀ¸¸ç ½Å·Ú¼ºÀÌ ³ô¾Æ ÀÚµ¿È­ ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» À§ÇØ ¿©·¯ ¼¾¼­ ÅëÇÕÀÌ ÇÊ¿äÇÑ ÃֽŠÀÚµ¿Â÷¿¡ ÀûÇÕÇÕ´Ï´Ù. ¼ÒÇüÀ̱⠶§¹®¿¡ Àü±âÀÚµ¿Â÷(EV) ¹èÅ͸® °ü¸® ½Ã½ºÅÛ, ŸÀÌ¾î ¾Ð·Â ¸ð´ÏÅ͸µ ½Ã½ºÅÛ(TPMS), ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS)¿¡ ÅëÇÕÇÒ ¼ö ÀÖÀ¸¸ç, MEMS ¼¾¼­ÀÇ È®À强°ú ºñ¿ë È¿À²¼ºÀÌ ºü¸¥ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ Áß Áß±¹, ÀϺ», Çѱ¹, Àεµ µî ÀÚµ¿Â÷ »ý»êÀÇ ÁÖ¿ä °ÅÁ¡ÀÌ ÀÖ´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Þ¼ÓÇÑ µµ½ÃÈ­, ³ôÀº ÀÚµ¿Â÷ »ý»ê·®, ½Â¿ëÂ÷ ¹× »ó¿ëÂ÷ ¼ö¿ä Áõ°¡´Â ¸ðµÎ ÀÌ Áö¿ª¿¡ ÇýÅÃÀ» °¡Á®´ÙÁÖ°í ÀÖ½À´Ï´Ù. ¹è±â°¡½º ±ÔÁ¦, ÀÚµ¿Â÷ ¾ÈÀü, Àü±âÀÚµ¿Â÷(EV) »ç¿ëÀ» Áö¿øÇÏ´Â Á¤ºÎ Á¤Ã¥µµ ¼¾¼­ µµÀÔ¿¡ ÈûÀ» ½Ç¾îÁÖ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Ð·Â ¼¾¼­ÀÇ ´ë·® ÅëÇÕÀº ÀÌ Áö¿ªÀÇ ÅºÅºÇÑ ºÎǰ °ø±Þ¾÷ü ±â¹Ý°ú ÀÚµ¿Â÷¿ë ÀÏ·ºÆ®·Î´Ð½º ±â¼ú °³¹ß·Î Áö¿øµÇ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶¿Í ±¹³» ¼Òºñ Áõ°¡·Î ÀÎÇØ ÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ÀÚµ¿Â÷ ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü, Àü±â ¹× ¹«ÀÎ ÀÚµ¿Â÷ÀÇ Àαâ Áõ°¡, ¹è±â°¡½º ¹× ÀÚµ¿Â÷ ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ ¶§¹®ÀÎ °ÍÀ¸·Î ºÐ¼®µË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù¿¡´Â ÃÖ°íÀÇ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ¼¾¼­ ±â¼ú Çõ½Å°¡µéÀÌ Á¸ÀçÇϹǷΠ°­·ÂÇÑ R&D ÅõÀÚ¿Í Ã·´Ü ¼¾¼­ ¼Ö·ç¼ÇÀÇ Á¶±â µµÀÔ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤±³ÇÑ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» °®Ãá °í¼º´É ÀÚµ¿Â÷¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ°¡ ³ô¾ÆÁö°í Ä¿³ØÆ¼µåÄ« ¹× ½º¸¶Æ®Ä«¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ´Ù¾çÇÑ ¿ëµµ¿¡ ¾Ð·Â ¼¾¼­ÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, ÀÌ´Â ÀÌ Áö¿ª ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå : Â÷Á¾º°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
    • ¼ÒÇü »ó¿ëÂ÷(LCV)
    • Áß´ëÇü »ó¿ëÂ÷(HCV)
  • ´ëü¿¬·áÂ÷ À¯Çü
    • ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)
    • ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)
    • ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV)
    • Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå : Àüµµ À¯Çüº°

  • ÇÇ¿¡Á¶ ÀúÇ×Çü
  • Á¤Àü¿ë·®½Ä
  • °ø¸í
  • ±¤ÇÐ
  • ±âŸ Àüµµ À¯Çü

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå : ±â¼úº°

  • MEMS(Micro-Electro Mechanical System)
  • ½ºÆ®·¹ÀÎ °ÔÀÌÁö
  • ¼¼¶ó¹Í

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ¾ÈƼ ¶ô ºê·¹ÀÌÅ© ½Ã½ºÅÛ(ABS)
  • ¿¡¾î¹é ½Ã½ºÅÛ
  • Á÷Á¢ ŸÀÌ¾î °ø±â¾Ð °¨½Ã ½Ã½ºÅÛ
  • ¿£Áø Á¦¾î ½Ã½ºÅÛ
    • ¿£Áø
    • ¿¬·á ºÐ»ç ÆßÇÁ
    • ¹è±â
  • HVAC ½Ã½ºÅÛ
  • ÆÄ¿ö½ºÆ¼¾î¸µ
    • À¯¾Ð ÆÄ¿ö½ºÆ¼¾î¸µ
    • Àüµ¿ À¯¾Ð ÆÄ¿ö½ºÆ¼¾î¸µ(EHPS)
  • º¯¼Ó±â ½Ã½ºÅÛ
  • ÀÚµ¿º¯¼Ó±â(AT)
  • ¿ÀÅä¸Åƽ ¼öµ¿º¯¼Ó±â(AMT)
  • ¹«´Üº¯¼Ó±â(CVT)
  • µà¾ó Ŭ·¯Ä¡ º¯¼Ó±â(DCT)

Á¦9Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¾Ð·Â¼¾¼­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Denso Corporation
  • Honeywell International Inc.
  • Infineon Technologies AG
  • Continental AG
  • Allegro Microsystems, LLC
  • NXP Semiconductors
  • CTS Corporation
  • Robert Bosch GmbH
  • Analog Devices Inc.
  • Sensata Technologies Inc.
  • TE Connectivity
  • BorgWarner Inc.
  • STMicroelectronics NV
  • Texas Instruments Incorporated
  • Elmos Semiconductor Inc
KSA 25.07.01

According to Stratistics MRC, the Global Automotive Pressure Sensors Market is accounted for $14.81 billion in 2025 and is expected to reach $30.79 billion by 2032 growing at a CAGR of 11.03% during the forecast period. Automotive pressure sensors are essential components of contemporary automobiles because they track and communicate critical information regarding the different pressure levels in the tires, fuel system, and engine. By identifying variations in pressure and notifying the vehicle's electronic control unit (ECU) to make the required adjustments, these sensors guarantee optimum performance, safety, and efficiency. Manifold absolute pressure (MAP), fuel rail pressure, and oil pressure monitoring are typical uses. Moreover, the need for accurate and dependable pressure sensing is increasing due to the popularity of electric and hybrid cars, which is spurring advancements in sensor durability, miniaturization, and integration with advanced driver assistance systems (ADAS).

According to the U.S. Department of Energy states that under-inflated tires can lower gas mileage by about 0.2% for every 1 PSI drop in tire pressure. This aligns with the general estimate that a 10% drop in tire pressure can reduce fuel economy by approximately 1%. Proper tire inflation is crucial for optimizing fuel efficiency, and TPMS plays a key role in monitoring tire pressure to prevent unnecessary fuel loss.

Market Dynamics:

Driver:

Transition to hybrid vehicles and electrification

The adoption of hybrid and electric vehicles is being propelled by the increased emphasis on carbon emission reduction and the shift to sustainable mobility solutions on a global scale. Automotive pressure sensors are essential components of electric and hybrid vehicles (HEVs) because they monitor and control pressure in a number of subsystems, including the HVAC, fuel cell, battery cooling, and brake systems. Additionally, the need for these sensors is anticipated to increase dramatically as more nations enact laws eliminating internal combustion engine (ICE) vehicles and encouraging zero-emission vehicles.

Restraint:

Expensive advanced sensor technologies

The relatively high cost of automotive pressure sensors, particularly in developing markets, is one of the major obstacles preventing their widespread adoption. Advanced versions, like those that use MEMS technology or provide wireless connectivity or are made for EV-specific applications, can be costly to develop and produce, even though basic pressure sensors are reasonably priced. The requirement for durable packaging to endure high temperatures, vibrations, and corrosive fluids in automotive environments drives up the costs even more. These extra costs can serve as a deterrent for entry-level car models and cost-sensitive markets, driving OEMs to look for less expensive or sophisticated substitutes, which slows sensor adoption.

Opportunity:

Innovation in material science and sensor technology

Next-generation pressure sensors that are more compact, robust, and energy-efficient are becoming possible owing to ongoing developments in materials, sensor architectures, and manufacturing processes like additive manufacturing, flexible electronics, and nanotechnology. Multifunctional sensors that can lower component counts and increase system reliability are made possible by innovations such as graphene-based materials, piezoresistive and capacitive sensing elements, and sensor fusion with temperature/humidity detection. Manufacturers' addressable market is increased by these technological advancements, which enable them to produce sensors appropriate for specialized applications like high-performance sports cars, hydrogen fuel cell vehicles, and ultra-compact urban mobility solutions.

Threat:

Supply chain volatility for raw materials and components

The market for automotive pressure sensors is largely dependent on materials such as silicon, metals, semiconductors, and specialty polymers, many of which are vulnerable to supply chain disruptions on a global scale. Natural disasters, trade restrictions, pandemics, and geopolitical tensions are some of the factors that can disrupt the continuous flow of raw materials or critical components. Schedules for manufacturing, cost inflation, profit margin reduction, and automakers' trust in sourcing from impacted suppliers can all are negatively impacted by such unpredictability. Because just-in-time production models are prevalent in globalized markets, this threat is especially serious.

Covid-19 Impact:

Due to widespread disruptions in global supply chains, factory shutdowns, and a sharp drop in vehicle production and sales in 2020, the COVID-19 pandemic had a significant short-term impact on the automotive pressure sensors market. The demand for pressure sensors crashed as a result of auto factories running at reduced capacity or temporarily ceasing operations, which had an impact on supply chain revenues. The pandemic did, however, also hasten long-term trends like digital transformation, vehicle electrification, and the use of smart sensors for remote diagnostics and predictive maintenance, laying the groundwork for a robust post-pandemic recovery and innovation-driven expansion in the industry.

The piezoresistive segment is expected to be the largest during the forecast period

The piezoresistive segment is expected to account for the largest market share during the forecast period. Since piezoresistive pressure sensors are robust, highly accurate, and dependable in harsh environments like high temperatures, vibrations, and pressure fluctuations-all of which are typical in automotive settings-they are widely used. Electric vehicles (EVs) and internal combustion engines (ICEs) both depend on these sensors because they are widely utilized in vital systems like airbag deployment, brake systems, fuel injection, and engine control. Additionally, supporting their dominance in global automotive applications are their sophisticated technology, affordability, and simplicity of integration with electronic control units (ECUs).

The micro-electro mechanical systems (MEMS) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the micro-electro mechanical systems (MEMS) segment is predicted to witness the highest growth rate. MEMS-based pressure sensors are perfect for modern cars that need multiple sensor integrations for automation and real-time monitoring because they are small, energy-efficient, and extremely dependable. They can be integrated into electric vehicle (EV) battery management systems, tire pressure monitoring systems (TPMS), and advanced driver-assistance systems (ADAS) owing to their small size. Fast growth is being driven by MEMS sensors' scalability and cost-effectiveness as automakers embrace smart and connected technologies more and more.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, fueled by the existence of important centers for the production of automobiles, including China, Japan, South Korea, and India. Rapid urbanization, high vehicle production volumes, and rising passenger and commercial vehicle demand all benefit the area. Sensor deployment is also being aided by government policies that support emission control, vehicle safety, and the use of electric vehicles (EVs). Furthermore, mass integration of pressure sensors is supported by the region's robust component supplier base and technological developments in automotive electronics. Asia-Pacific dominates this market due to its cost-effective manufacturing and rising domestic consumption.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR because of the quick development of automotive technology, the growing popularity of electric and driverless cars, and the strict regulations governing emissions and vehicle safety. Strong R&D investments and early adoption of state-of-the-art sensor solutions are encouraged by the presence of top automakers and sensor technology innovators in the United States and Canada. Additionally, consumers' increasing preference for high-performance cars with sophisticated monitoring systems and their growing demand for connected and smart cars are speeding up the integration of pressure sensors across applications, which are propelling the region's market expansion.

Key players in the market

Some of the key players in Automotive Pressure Sensors Market include Denso Corporation, Honeywell International Inc., Infineon Technologies AG, Continental AG, Allegro Microsystems, LLC, NXP Semiconductors, CTS Corporation, Robert Bosch GmbH, Analog Devices Inc., Sensata Technologies Inc., TE Connectivity, BorgWarner Inc., STMicroelectronics NV, Texas Instruments Incorporated and Elmos Semiconductor Inc.

Key Developments:

In April 2025, Infineon Technologies AG is accelerating the build-up of its system capabilities for software-defined vehicles with the acquisition of Marvell Technology's Automotive Ethernet business, complementing and expanding its own market-leading microcontroller business. Infineon and Marvell Technology, Inc. have entered into a definitive transaction agreement for a purchase price of US$2.5 billion in cash.

In December 2024, Honeywell announced the signing of a strategic agreement with Bombardier, a global leader in aviation and manufacturer of world-class business jets, to provide advanced technology for current and future Bombardier aircraft in avionics, propulsion and satellite communications technologies. The collaboration will advance new technology to enable a host of high-value upgrades for the installed Bombardier operator base, as well as lay innovative foundations for future aircraft. Honeywell estimates the value of this partnership to the company at $17 billion over its life.

In September 2024, Denso Corporation and ROHM Co., Ltd. hereby announce that the two companies have agreed to start consideration of strategic partnership in the semiconductor field. As the development and spread of electric vehicles accelerate toward the realization of carbon neutrality, the demand for electronic components and semiconductors required for electrification of vehicles is rapidly increasing.

Vehicle Types Covered:

  • Passenger Cars
  • Commercial Vehicles
  • Alternative Fuel Vehicle Type

Transduction Types Covered:

  • Piezoresistive
  • Capacitive
  • Resonant
  • Optical
  • Other Transduction Types

Technologies Covered:

  • Micro-Electro Mechanical System (MEMs)
  • Strain Gauge
  • Ceramic

Applications Covered:

  • Antilock Braking System (ABS)
  • Airbag System
  • Direct Tire Pressure Monitoring System
  • Engine Control System
  • HVAC System
  • Power Steering
  • Transmission System
  • Automatic Transmission (AT)
  • Automatic Manual Transmission (AMT)
  • Continuously Variable Transmission (CVT)
  • Dual-Clutch Transmission (DCT)

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Pressure Sensors Market, By Vehicle Type

  • 5.1 Introduction
  • 5.2 Passenger Cars
  • 5.3 Commercial Vehicles
    • 5.3.1 Light Commercial Vehicles (LCVs)
    • 5.3.2 Medium and Heavy Commercial Vehicles (HCVs)
  • 5.4 Alternative Fuel Vehicle Type
    • 5.4.1 Battery Electric Vehicle (BEV)
    • 5.4.2 Fuel Cell Electric Vehicle (FCEV)
    • 5.4.3 Hybrid Electric Vehicle (HEV)
    • 5.4.4 Plug-In Hybrid Electric Vehicle (PHEV)

6 Global Automotive Pressure Sensors Market, By Transduction Type

  • 6.1 Introduction
  • 6.2 Piezoresistive
  • 6.3 Capacitive
  • 6.4 Resonant
  • 6.5 Optical
  • 6.6 Other Transduction Types

7 Global Automotive Pressure Sensors Market, By Technology

  • 7.1 Introduction
  • 7.2 Micro-Electro Mechanical System (MEMs)
  • 7.3 Strain Gauge
  • 7.4 Ceramic

8 Global Automotive Pressure Sensors Market, By Application

  • 8.1 Introduction
  • 8.2 Antilock Braking System (ABS)
  • 8.3 Airbag System
  • 8.4 Direct Tire Pressure Monitoring System
  • 8.5 Engine Control System
    • 8.5.1 Engine
    • 8.5.2 Fuel Injection Pump
    • 8.5.3 Exhaust
  • 8.6 HVAC System
  • 8.7 Power Steering
    • 8.7.1 Hydraulic Power Steering
    • 8.7.2 Electrohydraulic Power Steering (EHPS)
  • 8.8 Transmission System
  • 8.9 Automatic Transmission (AT)
  • 8.10 Automatic Manual Transmission (AMT)
  • 8.11 Continuously Variable Transmission (CVT)
  • 8.12 Dual-Clutch Transmission (DCT)

9 Global Automotive Pressure Sensors Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Denso Corporation
  • 11.2 Honeywell International Inc.
  • 11.3 Infineon Technologies AG
  • 11.4 Continental AG
  • 11.5 Allegro Microsystems, LLC
  • 11.6 NXP Semiconductors
  • 11.7 CTS Corporation
  • 11.8 Robert Bosch GmbH
  • 11.9 Analog Devices Inc.
  • 11.10 Sensata Technologies Inc.
  • 11.11 TE Connectivity
  • 11.12 BorgWarner Inc.
  • 11.13 STMicroelectronics NV
  • 11.14 Texas Instruments Incorporated
  • 11.15 Elmos Semiconductor Inc
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦