![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1755959
´Ü¹éÁú ¿£Áö´Ï¾î¸µ ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç°, À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®Protein Engineering Market Forecasts to 2032 - Global Analysis By Product (Instruments, Consumables and Software & Services), Type, Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ´Ü¹éÁú ¿£Áö´Ï¾î¸µ ½ÃÀåÀº 2025³â¿¡ 35¾ï ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 16.2%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 86¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.
´Ü¹éÁú ¿£Áö´Ï¾î¸µÀº ƯÁ¤ ±â´ÉÀ» °ÈÇϰųª »ý¼ºÇϱâ À§ÇØ ´Ü¹éÁúÀ» ¼³°èÇÏ°í º¯ÇüÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. °úÇÐÀÚµéÀº Á¤¹æÇâ ÁøÈ ¹× ÇÕ¸®Àû ¼³°è¿Í °°Àº ±â¼úÀ» »ç¿ëÇÏ¿© ´Ü¹éÁúÀÇ ¾ÈÁ¤¼º, Ȱ¼º ¹× ƯÀ̼ºÀ» Çâ»ó½Ã۱â À§ÇØ ´Ü¹éÁúÀÇ ±¸Á¶¸¦ º¯°æÀï´Ï´Ù. ±× ¿ëµµ¿¡´Â »ê¾÷ °øÁ¤¿ë È¿¼Ò, Ä¡·á¿ë Ç×ü, Áø´Ü¿ë ´Ü¹éÁú °³¹ßÀÌ Æ÷ÇԵ˴ϴÙ. ºÐÀÚ»ý¹°ÇÐ, °è»ê ¸ðµ¨¸µ, »ýÈÇÐÀ» °áÇÕÇÏ¿© ´Ü¹éÁúÀ» »ý¹°ÇÐÀû ¶Ç´Â »ê¾÷Àû ¸ñÀûÀ¸·Î Á¶Á¤ÇÕ´Ï´Ù.
»ê¾÷¿ë È¿¼ÒÀÇ ¿ëµµ È®´ë
»ý¸í°øÇÐ ¹× Á¦¾à ºÐ¾ß¿¡¼ È¿À²ÀûÀÎ »ê¾÷¿ë È¿¼Ò¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ´Ü¹éÁú ¿£Áö´Ï¾î¸µ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ È¿¼Ò´Â ÀǾàǰ Á¦Á¶ ¹× ¹ÙÀÌ¿À¿¬·á »ý»ê°ú °°Àº °øÁ¤À» Çâ»ó½Ãŵ´Ï´Ù. Áö¼Ó°¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ »ê¾÷¿ë ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. À¯Àü°øÇÐ ±â¼úÀÇ ¹ßÀüÀº °í¼º´É È¿¼ÒÀÇ ¼³°è¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¿ëµµ Áõ°¡´Â ½ÃÀå È®´ë¸¦ Áö¿øÇÕ´Ï´Ù. »ê¾÷°èÀÇ ¿ä±¸¿¡ ÈûÀÔ¾î ´Ü¹éÁú ¿£Áö´Ï¾î¸µÀº Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.
³ôÀº ¿¬±¸°³¹ßºñ
´Ü¹éÁú ¿£Áö´Ï¾î¸µÀº ÷´Ü °è»ê Åø¿Í ½ÇÇè Àåºñ µî ¸¹Àº ¿¬±¸ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. »õ·Î¿î ´Ü¹éÁúÀÇ ¼³°è´Â º¹ÀâÇϹǷΠ°³¹ß ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ¼Ò±Ô¸ð »ý¸í°øÇÐ ±â¾÷Àº Çõ½ÅÀûÀÎ ÇÁ·ÎÁ§Æ®¸¦ ÃßÁøÇÏ´Â µ¥ ÀÖÀ¸¸ç, ÀçÁ¤Àû Á¦¾à¿¡ Á÷¸éÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ´Ü¹éÁú ÃÖÀûÈ´Â ½Ã°£ÀÌ ¿À·¡ °É¸®±â ¶§¹®¿¡ ºñ¿ëÀÌ ´õ ¸¹ÀÌ µì´Ï´Ù. ³ôÀº ºñ¿ëÀº »õ·Î¿î ¼Ö·ç¼Ç ½ÃÀå ÁøÀÔÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. °æÁ¦ÀûÀÎ À庮ÀÌ ¹®Á¦°¡ µÇ°í, R&D ºñ¿ëÀº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.
½Å±Ô »ý¹°Á¦Á¦ °³¹ß
´ÜŬ·Ð Ç×ü, À¯ÀüÀÚ Ä¡·áÁ¦ µî »õ·Î¿î ¹ÙÀÌ¿ÀÀǾàǰÀÇ °³¹ßÀº ´Ü¹éÁú ¿£Áö´Ï¾î¸µ¿¡ Å« ±âȸ¸¦ °¡Á®´Ù ÁÙ °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ »ý¹°Á¦Á¦´Â ¾Ï, Èñ±ÍÁúȯ µîÀÇ ºÐ¾ß¿¡¼ ¹ÌÃæÁ· ÀÇ·á ¼ö¿ä¿¡ ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ´Ü¹éÁú ¼³°è ±â¼úÀÇ ¹ßÀüÀº »ý¹°Á¦Á¦ÀÇ È¿´É°ú ƯÀ̼ºÀ» ³ôÀÔ´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â À¯ÀüÀÚ ÀçÁ¶ÇÕ ´Ü¹éÁú ¼ö¿ä¸¦ ÃËÁøÇÕ´Ï´Ù. ȹ±âÀûÀÎ Ä¡·á¹ýÀÇ °¡´É¼ºÀº ½ÃÀåÀÇ ³«°ü·ÐÀ» ÃËÁøÇÕ´Ï´Ù. ÀÇ·á ±â¼ú Çõ½Å¿¡ ÈûÀÔ¾î »õ·Î¿î »ý¹°Á¦Á¦´Â »ó´çÇÑ ¼ºÀå ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
ÁöÀûÀç»ê±Ç ºÐÀï
´Ü¹éÁú ¿£Áö´Ï¾î¸µ ±â¼úÀ» µÑ·¯½Ñ ÁöÀûÀç»ê±Ç ºÐÀïÀº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. »ý¸í°øÇÐ ±â¾÷ °£ÀÇ Æ¯Çã ºÐÀïÀº Á¦Ç° °³¹ß ¹× »ó¿ëȸ¦ Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ´Ü¹éÁú ¿£Áö´Ï¾î¸µÀÇ Æ¯Çã ȯ°æÀº º¹ÀâÇϹǷΠ¹ýÀû ºÒÈ®½Ç¼ºÀÌ ¹ß»ýÇÕ´Ï´Ù. ³ôÀº ¼Ò¼Û ºñ¿ëÀº Áß¼Ò±â¾÷ÀÇ °æ¿µ ÀÚ¿øÀ» ¾Ð¹ÚÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¶ÀÚÀûÀÎ ±â¼úÀ» µÑ·¯½Ñ ºÐÀïÀÌ ½ÃÀåÀÇ ¾ÈÁ¤¼ºÀ» ÀúÇØÇÕ´Ï´Ù. ¹ýÀû ¹®Á¦¿¡ ¿µÇâÀ» ¹Þ¾Æ ÁöÀûÀç»ê±Ç ºÐÀïÀÌ ½ÃÀåÀÇ Áö¼Ó°¡´ÉÇÑ ¹ßÀüÀ» À§ÇùÇÕ´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ¹é½Å ¹× Ä¡·áÁ¦ °³¹ß¿¡¼ ´Ü¹éÁú ¿£Áö´Ï¾î¸µ¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈÇß½À´Ï´Ù. ±×·¯³ª ¿¬±¸ Ȱµ¿°ú °ø±Þ¸ÁÀÇ È¥¶õÀ¸·Î ÀÎÇØ COVID ÀÌ¿ÜÀÇ ÇÁ·ÎÁ§Æ®°¡ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù. ½Å¼ÓÇÑ ¹é½Å °³¹ß¿¡ ÃÊÁ¡À» ¸ÂÃß¸é¼ ¿£Áö´Ï¾î¸µ ´Ü¹éÁúÀÇ Á߿伺ÀÌ ºÎ°¢µÇ¾ú½À´Ï´Ù. ¿¹»ê ÀçºÐ¹è·Î ÀÎÇØ À§±â µ¿¾È ´Ù¸¥ ´Ü¹éÁú ¿£Áö´Ï¾î¸µ ±¸»ó¿¡ ´ëÇÑ ÀÚ±ÝÀÌ Á¦ÇѵǾú½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ È¸º¹Àº »ý¹°Á¦Á¦ ¹× »ê¾÷¿ë È¿¼Ò¿¡ ´ëÇÑ ÅõÀÚ¿¡ ¹ÚÂ÷¸¦ °¡Çß½À´Ï´Ù. ÇコÄɾîÀÇ ¿ì¼±¼øÀ§¿¡ µû¶ó ½ÃÀåÀº »õ·Î¿î ÃÊÁ¡À¸·Î ȸº¹µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß Àåºñ ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
´Ü¹éÁú ¼³°è ¹× ºÐ¼®¿¡¼ ÷´Ü ÅøÀÇ Áß¿äÇÑ ¿ªÇÒ·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß Àåºñ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í󸮷® ½ºÅ©¸®´× ½Ã½ºÅÛ ¹× °è»ê Ç÷§ÆûÀÌ Àü¹® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´Ü¹éÁú ¿£Áö´Ï¾î¸µ ÇÁ·ÎÁ§Æ®ÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ ÀåºñÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àåºñ´Â »ê¾÷ ¹× ÀÇ·á ¿ëµµ¿¡¼ Á¤È®ÇÑ ´Ü¹éÁú º¯ÇüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. »ý¸í °øÇÐ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ±â±â ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù.
¸ð³ëŬ·Î³Î Ç×ü ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¸ð³ëŬ·Î³Î Ç×ü ºÐ¾ß´Â ¾Ï ¹× ÀÚ°¡¸é¿ªÁúȯÀÇ Ç¥ÀûÄ¡·á¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇϹǷΠ°¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ´Ü¹éÁú ¿£Áö´Ï¾î¸µÀÇ ¹ßÀüÀº Ç×üÀÇ Æ¯À̼º°ú Ä¡·á È¿°ú¸¦ ³ôÀÔ´Ï´Ù. ¸¸¼ºÁúȯ Áõ°¡·Î ÀÎÇØ ´ÜÀÏ Å¬·Ð Ç×ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Â÷¼¼´ë »ý¹°Á¦Á¦¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°¡ ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ °ü½ÉÀº ±× äÅÃÀ» °¡¼ÓÈÇÒ °ÍÀÔ´Ï´Ù. ÀÇ·á Çõ½Å¿¡ ÈûÀÔ¾î ÀÌ ºÐ¾ß´Â °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀÔ´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº »ý¸í°øÇÐ ¹× Á¦¾à »ê¾÷ÀÇ ¼ºÀåÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡µéÀº ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¹× »ý¹°Á¦Á¦ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼´Â Àú·ÅÇÑ °¡°ÝÀÇ ÇコÄÉ¾î ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ Àΰø ´Ü¹éÁú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¼ú Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÕ´Ï´Ù. ±Þ¼ÓÇÑ »ê¾÷È´Â ½ÃÀå ÁöÀ§¸¦ ´õ¿í °ÈÇÒ °ÍÀÔ´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº źźÇÑ »ý¸í°øÇÐ ¼ºÀå¿¡ ÈûÀÔ¾î ¼¼°è ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ÷´Ü ¿¬±¸ ÀÎÇÁ¶ó¿Í »ý¸í°øÇÐ ±â¼ú Çõ½ÅÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ªÀº ¸ÂÃãÇü ÀÇ·á¿Í »õ·Î¿î »ý¹°Á¦Á¦¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ´Â ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä Á¦¾à»çµéÀÇ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ°¡ ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ´ëÇü »ý¸í°øÇÐ ±â¾÷ÀÇ Á¸Àç°¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ Ä¡·á¹ý¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿øÀº ÀÌ Áö¿ªÀÇ ÀÔÁö¸¦ °ÈÇÕ´Ï´Ù. ÷´Ü ¿¬±¸¿¡ ÈûÀÔ¾î ºÏ¹Ì´Â ±Þ¼ÓÇÑ ½ÃÀå ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
According to Stratistics MRC, the Global Protein Engineering Market is accounted for $3.5 billion in 2025 and is expected to reach $8.6 billion by 2032 growing at a CAGR of 16.2% during the forecast period. Protein engineering is the design and modification of proteins to enhance or create specific functions. Using techniques like directed evolution and rational design, scientists alter protein structures to improve stability, activity, or specificity. Applications include developing enzymes for industrial processes, antibodies for therapeutics, and proteins for diagnostics. It combines molecular biology, computational modeling, and biochemistry to tailor proteins for targeted biological or industrial purposes.
Increased use in industrial enzymes
The growing demand for efficient industrial enzymes in biotechnology and pharmaceuticals drives the protein engineering market. These enzymes enhance processes like drug manufacturing and biofuel production. The need for sustainable and cost-effective industrial solutions fuels market growth. Advances in genetic engineering techniques enable the design of high-performance enzymes. The rise in bioprocessing applications supports market expansion. Fueled by industrial needs, protein engineering is experiencing significant growth.
High R&D costs
Protein engineering requires substantial investment in research, including advanced computational tools and laboratory equipment. The complexity of designing novel proteins increases development costs. Small biotech firms often face financial constraints in pursuing innovative projects. The lengthy process of protein optimization adds to the expense. High costs can delay market entry for new solutions. Triggered by financial barriers, R&D costs challenge market growth.
Development of novel biologics
The development of novel biologics, such as monoclonal antibodies and gene therapies, presents significant opportunities for protein engineering. These biologics address unmet medical needs in areas like cancer and rare diseases. Advances in protein design techniques enhance the efficacy and specificity of biologics. Growing investments in personalized medicine drive demand for engineered proteins. The potential for breakthrough therapies fuels market optimism. Spurred by medical innovations, novel biologics offer substantial growth prospects.
Intellectual property disputes
Intellectual property disputes over protein engineering technologies can hinder market growth. Patent conflicts among biotech firms may delay product development and commercialization. The complexity of patent landscapes in protein engineering creates legal uncertainties. High litigation costs can strain resources for smaller companies. Disputes over proprietary techniques disrupt market stability. Influenced by legal challenges, IP disputes threaten sustained market progress.
The COVID-19 pandemic accelerated demand for protein engineering in vaccine and therapeutic development. However, disruptions in research activities and supply chains delayed non-COVID projects. The focus on rapid vaccine development highlighted the importance of engineered proteins. Budget reallocations limited funding for other protein engineering initiatives during the crisis. The post-pandemic recovery has spurred investments in biologics and industrial enzymes. Guided by healthcare priorities, the market is rebounding with renewed focus.
The instruments segment is expected to be the largest during the forecast period
The instruments segment is expected to account for the largest market share during the forecast period, due to the critical role of advanced tools in protein design and analysis. High-throughput screening systems and computational platforms drive demand for specialized instruments. The growing complexity of protein engineering projects fuels their adoption. These instruments enable precise protein modification for industrial and medical applications. Rising investments in biotech R&D further support market growth. Powered by technological advancements, the instruments segment holds the largest market share.
The monoclonal antibodies segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the monoclonal antibodies segment is predicted to witness the highest growth rate, due to their critical role in targeted therapies for cancer and autoimmune diseases. Advances in protein engineering enhance their specificity and therapeutic efficacy. The rising prevalence of chronic diseases drives demand for monoclonal antibodies. Ongoing research into next-generation biologics fuels market expansion. The focus on personalized medicine accelerates its adoption. Propelled by medical breakthroughs, this segment is set for the highest growth rate.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to its growing biotechnology and pharmaceutical industries. Countries like China and India are investing heavily in bioprocessing and biologics development. The region's focus on affordable healthcare solutions drives demand for engineered proteins. Government support for biotech innovation bolsters market growth. Rapid industrialization further strengthens the market's position. Backed by robust biotech growth, Asia Pacific leads the global market.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, due to its advanced research infrastructure and biotech innovation. The region's focus on personalized medicine and novel biologics fuels demand. Significant investments in R&D by major pharmaceutical companies drive market expansion. The presence of leading biotech firms enhances market growth. Regulatory support for innovative therapies strengthens the region's position. Motivated by cutting-edge research, North America is poised for rapid market growth.
Key players in the market
Some of the key players in Protein Engineering Market include Thermo Fisher Scientific Inc., Danaher Corporation, Agilent Technologies, Inc., Bio-Rad Laboratories, Inc., Merck KGaA, Bruker Corporation, Waters Corporation, PerkinElmer, Inc., Amgen Inc., Eli Lilly and Company, Genentech, Inc., Codexis, Inc., Genscript Biotech Corporation, Integrated DNA Technologies, Inc., Novo Nordisk A/S, Sanofi S.A., Johnson & Johnson, Vertex Pharmaceuticals Incorporated, Lonza Group, and Kyowa Kirin Co., Ltd.
In March 2025, Merck KGaA opened a biologics innovation hub in Asia Pacific, focusing on protein engineering for novel therapeutics. The facility leverages AI and high-throughput screening to develop targeted biologics, addressing unmet medical needs.
In February 2025, Agilent Technologies launched a next-generation protein analysis system for biologics research. Equipped with advanced spectrometry, it supports precise protein modification for industrial and medical applications, enhancing research efficiency and scalability.