½ÃÀ庸°í¼­
»óǰÄÚµå
1766036

PEM ¿¬·áÀüÁö Àç·á ½ÃÀå ¿¹Ãø(-2032³â) : Àç·á À¯Çü, Ãâ·Â, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ¼¼°è ºÐ¼®

Materials for PEM Fuel Cells Market Forecasts to 2032 - Global Analysis By Material Type, Power Output, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀåÀº 2025³â¿¡ 20¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇß°í, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)Àº 18.5%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 66¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾ç¼ºÀÚ±³È¯¸·(PEM) ¿¬·áÀüÁö Àç·á´Â ¿ì¼öÇÑ ¼º´É, ¼ö¸í, È¿À²À» Á¦°øÇϱâ À§ÇØ ½ÅÁßÇÏ°Ô ¼±Åõ˴ϴÙ. ¾ç¼ºÀÚ ±³È¯¸·Àº °¡½º À庮 ¿ªÇÒÀ» Çϸ鼭 ¾ç¼ºÀÚ¸¦ ¿î¹ÝÇÏ´Â ÇʼöÀûÀÎ ºÎǰ Áß ÇϳªÀÔ´Ï´Ù. ÀϹÝÀûÀ¸·Î ³ªÇǿ°ú °°Àº ÆÛÇ÷ç¿À¸£¼úÆù»ê Æú¸®¸Ó·Î ±¸¼ºµË´Ï´Ù. ¾ç±Ø°ú À½±Ø¿¡´Â Àü±âÈ­ÇÐ ¹ÝÀÀÀ» ÃËÁøÇϱâ À§ÇØ ¹é±ÝÀ» ÁÖ¼ººÐÀ¸·Î ÇÏ´Â Ã˸Ű¡ »ç¿ëµË´Ï´Ù. ÀϹÝÀûÀ¸·Î ź¼Ò¼¶À¯ Á¾ÀÌ ¶Ç´Â õÀ¸·Î ±¸¼ºµÈ °¡½º È®»êÃþ(GDL)Àº ±ÕÀÏÇÑ °¡½º ºÐÆ÷¿Í È¿°úÀûÀÎ ¼öºÐ Á¦¾î¸¦ º¸ÀåÇÕ´Ï´Ù.

¹Ì±¹ DOE¿¡ µû¸£¸é, ¹é±Ý Ã˸Ÿ¸ PEM ¿¬·áÀüÁö ½ºÅà ºñ¿ëÀÇ ¾à 41%¸¦ Â÷ÁöÇϰí ÀÖ´Ù(2020³â ½ºÅà ºñ¿ëÀÇ ³»¿ªÀº 40´Þ·¯/kW¸¦ ¸ñÇ¥·Î ÇÏ´Â °æ¿ì). ÀÌ´Â DOEÀÇ ÀÚµ¿Â÷ ¿¬·áÀüÁö ½Ã½ºÅÛ ºñ¿ë ¸ñÇ¥ÀÎ 40´Þ·¯/kW¸¦ ´Þ¼ºÇϱâ À§ÇÑ ¹é±ÝÀÇ ºñ¿ë ºÎ´ãÀÌ ¾ó¸¶³ª Å«Áö¸¦ ¹Ý¿µÇÕ´Ï´Ù.

¹«°øÇØ ÀÚµ¿Â÷¿¡ ´ëÇÑ °ü½É Áõ°¡

¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)¿¡ ´ëÇÑ ¼ö¿ä´Â ƯÈ÷ ´ëÁß±³Åë, È­¹° Æ®·°, ÁöÀÚü Â÷·®À» Æ÷ÇÔÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ ģȯ°æ ±³Åë¼ö´ÜÀ¸·ÎÀÇ ÀüȯÀ¸·Î ÀÎÇØ ±Þ°ÝÈ÷ Áõ°¡Çϰí ÀÖÀ¸¸ç, PEM ¿¬·áÀüÁö ÀÚµ¿Â÷´Â ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)º¸´Ù ÁÖÇà°Å¸®°¡ ±æ°í ¿¬·á ÃæÀü ½Ã°£ÀÌ Âª¾Æ Àå°Å¸® ¹× ´ëÇü ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ½Ã°£ÀÌ Âª±â ¶§¹®¿¡ Àå°Å¸® ¹× ´ëÇü ¿ëµµ¿¡ ÀûÇÕÇÕ´Ï´Ù. ¶ÇÇÑ, ¹é±Ý ±â¹Ý Ã˸Å, °¡½º È®»êÃþ, ³ªÇǿ°ú °°Àº ¿À·¡ Áö¼ÓµÇ´Â ¸âºê·¹ÀÎ µî °í¼º´É PEM ¿¬·áÀüÁö ºÎǰ¿¡ ´ëÇÑ ¿ä±¸´Â FCEV ¼ö¿ä Áõ°¡·Î ÀÎÇØ Á÷Á¢ÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

°í°¡ÀÇ Áß¿ä Àç·á

¿ø·á, ƯÈ÷ PEM ¿¬·áÀüÁöÀÇ Ã˸ŷΠÀÚÁÖ »ç¿ëµÇ´Â ¹é±ÝÀÇ ³ôÀº °¡°ÝÀÌ °¡Àå Å« Àå¾Ö¹° Áß ÇϳªÀÔ´Ï´Ù. ¹é±ÝÀº Èñ¼ÒÇÏ°í ºñ¿ëÀÌ ºñ½Î°í ³²¾ÆÇÁ¸®Ä«°øÈ­±¹, ·¯½Ã¾Æ µî ¼Ò¼öÀÇ ±¹°¡¿¡ ÁýÁߵǾî ÀÖ¾î ¹é±Ý °ø±ÞÀº ½ÃÀå º¯µ¿°ú ÁöÁ¤ÇÐÀû ºÒ¾È¿¡ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù. ³ªÇǿ°ú °°Àº ÆÛÇ÷ç¿À·Î¼úÆù»ê(PFSA) ±â¹Ý ¸·µµ º¹ÀâÇÑ È­ÇÐ ±¸Á¶¿Í Á¦Á¶ ÀýÂ÷·Î ÀÎÇØ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¶ÇÇÑ, PEM ¿¬·áÀüÁöÀÇ Àüü ºñ¿ëÀº ÀÌ·¯ÇÑ °í°¡ÀÇ ºÎǰÀ¸·Î ÀÎÇØ »ó½ÂÇϱ⠶§¹®¿¡ ƯÈ÷ ¼ÒºñÀÚ°¡ °¡°Ý¿¡ ¹Î°¨ÇÑ ºÐ¾ß³ª »ê¾÷¿¡¼­ PEM ¿¬·áÀüÁöÀÇ Á¢±Ù¼º°ú º¸±ÞÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.

Àç·á ´ëü ¹× Ã˸бâ¼ú °³¹ß

¿¬·áÀüÁö °¡°ÝÀ» ȹ±âÀûÀ¸·Î ³·Ãâ ¼ö ÀÖ´Â Çõ½ÅÀûÀÎ ±âȸ´Â ö-Áú¼Ò-ź¼Ò(Fe-N-C) ¹× µµÇÎµÈ Åº¼Ò ±â¹Ý ÃË¸Å¿Í °°Àº ºñ¹é±ÝÁ· ±Ý¼Ó(ºñ PGM) Ã˸ſ¡ ´ëÇÑ ÇöÀç ÁøÇà ÁßÀÎ ¿¬±¸¸¦ ÅëÇØ Á¦°øµË´Ï´Ù. ¸¶Âù°¡Áö·Î, È­ÇÐÀû ³»±¸¼ºÀÌ ¿ì¼öÇϰí Á¦Á¶ºñ¿ëÀÌ Àú·ÅÇÑ ÅºÈ­¼ö¼Ò°è ¹× º¹ÇÕ¸·µµ ±âÁ¸ÀÇ ³ªÇǿ¸·À» ´ëüÇÒ ¼ö ÀÖ´Â ´ë¾ÈÀ¸·Î ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¹ßÀüÀÇ °á°ú·Î ´õ Àú·ÅÇϰí, ´õ dzºÎÇϸç, ´õ Áö¼Ó °¡´ÉÇÑ Â÷¼¼´ë ÀüÇØÁú ¸· Àç·á°¡ µîÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´ëü ¼ÒÀ縦 È®ÀåÇÏ°í »ó¿ëÈ­ÇÒ ¼ö ÀÖ´Ù¸é, ±â¾÷µéÀº ¼ÒÀç ½ÃÀå¿¡¼­ ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÇÑÁ¤µÈ ÀúÀå·®°ú ºÒÃæºÐÇÑ ¼ö¼Ò ÀÎÇÁ¶ó

Á¦Á¶, ¹è¼Û, ÃæÀü¼Ò¸¦ Æ÷ÇÔÇÑ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ÀÎÇÁ¶óÀÇ °¡¿ë¼ºÀº PEM ¿¬·áÀüÁöÀÇ º¸±Þ, ³ª¾Æ°¡ PEM ¿¬·áÀüÁö¿¡ »ç¿ëµÇ´Â Àç·áÀÇ º¸±Þ¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼­´Â ´ëºÎºÐÀÇ Áö¿ª¿¡¼­ ¼ö¼Ò ÀÎÇÁ¶ó°¡ Á¸ÀçÇÏÁö ¾Ê°Å³ª ¾ÆÁ÷ °³¹ß ÁßÀÔ´Ï´Ù. ÀÎÇÁ¶ó ±¸ÃàÀÌ º´ÇàµÇÁö ¾ÊÀ¸¸é PEM ¿¬·áÀüÁö Àç·á¿¡ ´ëÇÑ ÅõÀÚµµ À§Çè¿¡ óÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ö¼Ò ÀúÀå ¹®Á¦, ¾ÈÀü¼º ¹®Á¦, ¾ÐÃà ¹× ¾×È­ ½Ã ¿¡³ÊÁö ¼Õ½Ç µî °£Á¢ÀûÀ¸·Î ½ÃÀå È®´ë¸¦ ÀúÇØÇÏ´Â À庮µµ ÀÖ½À´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

ºÀ¼â, ³ëµ¿·Â ºÎÁ·, ±³Åë¼ö´Ü Á¦ÇÑÀ¸·Î ÀÎÇØ Äڷγª19 ÆÒµ¥¹ÍÀº ¿ì¼± ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ¿¡ ºü¶ß·Á »ý»ê Ȱµ¿À» Áö¿¬½ÃÄ×½À´Ï´Ù. ¹é±Ý ¹× PFSA ¸âºê·¹ÀÎÀ» Æ÷ÇÔÇÑ Çʼö ¿øÀÚÀç Á¶´Þ ¹®Á¦·Î ÀÎÇØ ÇÁ·ÎÁ§Æ® Áö¿¬ ¹× ºñ¿ë º¯°æÀÌ ¹ß»ýÇÏ¿´½À´Ï´Ù. ±×·¯³ª COVID ÀÌÈÄ Àç°Ç ³ë·ÂÀÇ ÀÏȯÀ¸·Î Àü¿°º´Àº Á¤ºÎÀÇ Ã»Á¤ ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÌ°í ¿¬·áÀüÁö ¹× ¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø Áõ°¡·Î À̾îÁ³½À´Ï´Ù. ±× °á°ú, ÀϽÃÀûÀΠħü±â¸¦ °Þ¾ú´ø ½ÃÀåÀº ¿¡³ÊÁö ȸº¹·Â°ú Żź¼ÒÈ­, ³ì»ö °æ±âºÎ¾çÃ¥, ¼ö¼Ò ·Îµå¸Ê¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ºü¸£°Ô ȸº¹µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸âºê·¹ÀÎ Àü±Ø ¾î¼Àºí¸®(MEA) ºÐ¾ß°¡ °¡Àå Å« ½ÃÀåÀÌ µÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¸âºê·¹ÀÎ Àü±Ø ¾î¼Àºí¸®(MEA) ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼Ò¿Í »ê¼Ò¸¦ Àü±â, ¹°, ¿­·Î ¹Ù²Ù´Â Àü±âÈ­ÇÐ ¹ÝÀÀÀº ¿¬·áÀüÁöÀÇ ÇÙ½É ºÎǰÀÎ MEA¿¡¼­ ÀÌ·ç¾îÁý´Ï´Ù. ÀÌ ºÎǰÀº ¾ÆÀÌ¿À³ë¸Ó, Ã˸ÅÃþ, ¸âºê·¹ÀÎ µî ¸¹Àº Çʼö ºÎǰÀÌ ³»ÀåµÇ¾î ÀÖ¾î ¿¬·áÀüÁö ½ºÅÿ¡¼­ °¡Àå °¡Ä¡°¡ ³ô°í º¹ÀâÇÑ ºÎºÐÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌ ½ÃÀåÀÇ ¿ìÀ§´Â °íÁ¤Çü, ÈÞ´ë¿ë, ÀÚµ¿Â÷¿ë ¿¬·áÀüÁöÀÇ °¢ ¿ëµµ¿¡¼­ Àå¼ö¸í, °í¼º´É MEA¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, È¿À² Çâ»ó°ú ¹é±Ý ÇÔ·® °¨¼Ò¸¦ À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß·Î ÀÎÇØ Å©°Ô Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ OEM ¹× Tier 1 °ø±Þ¾÷ü ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ OEM ¹× Tier-1 °ø±Þ¾÷ü ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀå¿¡´Â ¹«°øÇØ ¸ðºô¸®Æ¼¸¦ ÇâÇÑ Àü ¼¼°èÀûÀÎ ¿òÁ÷ÀÓ°ú ƯÈ÷ »ó¾÷¿ë Â÷·®, ¹ö½º, Æ®·°¿¡¼­ ¼ö¼Ò¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV)ÀÇ »ç¿ë È®´ë°¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¿¬·áÀüÁö ¿¬±¸°³¹ßÀº ¾ö°ÝÇÑ ¹è±â°¡½º ±ÔÁ¦¸¦ ÃæÁ·Çϰí ÁÖÇà°Å¸®¸¦ ´Ã¸®±â À§ÇØ ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í °ø±Þ¾÷üµéÀÌ ¸·´ëÇÑ ÀÚ±ÝÀ» ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ß°íÇÑ MEA, °æ·® ¾ç±ØÆÇ, È¿°úÀûÀÎ Ã˸Šµî °í¼º´É ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä´Â ÀÚµ¿Â÷ °ø±Þ¸Á Àü¹Ý¿¡ °ÉÃÄ ±â¼ú Çõ½Å°ú ±¤¹üÀ§ÇÑ ¼ÒÀç Á¶´Þ¿¡ ´ëÇÑ °­·ÂÇÑ ¸ð¸àÅÒÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ƯÈ÷ Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­ Àû±ØÀûÀÎ ¼ö¼Ò ¿¬·áÀüÁö ±â¼ú °³¹ß, ±Þ¼ÓÇÑ »ê¾÷È­, °­·ÂÇÑ Á¤ºÎ Áö¿øÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿¬·áÀüÁö ÀÚµ¿Â÷ÀÇ »ç¿ë°ú ÀÎÇÁ¶ó °Ç¼³À» Àå·ÁÇϱâ À§ÇØ ÀϺΠ±¹°¡´Â ±¹°¡ ¼ö¼Ò °èȹÀ» ¼ö¸³ÇÏ°í ¸·´ëÇÑ º¸Á¶±ÝÀ» Á¦°øÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, Çѱ¹°ú ÀϺ»Àº ÀÚµ¿Â÷ ¹× °¡Á¤¿ë ¿¬·áÀüÁö ¿ëµµ¸¦ °³¹ßÇϰí ÀÖÀ¸¸ç, Áß±¹Àº ¿¬·áÀüÁö ¹ö½º¸¦ ¹èÄ¡ÇÏ´Â µ¥ ÀÖ¾î ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÌ ±¸ÃàÇÑ Àç·á °ø±Þ¸Á°ú Á¦Á¶ ´É·ÂÀº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ¿ìÀ§¸¦ ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ ûÁ¤ ¿¡³ÊÁö ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, ¼ö¼Ò ÀÚµ¿Â÷ÀÇ »ç¿ë È®´ë, ÀÎÇ÷¹ÀÌ¼Ç ¾ïÁ¦¹ý ¹× ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ Hydrogen Shot ÇÁ·Î±×·¥°ú °°Àº È¿°úÀûÀÎ Á¤ºÎ ÇÁ·Î±×·¥¿¡ ±âÀÎÇÕ´Ï´Ù. °í¼º´É PEM ¼ÒÀç´Â »ê¾÷¿ë Żź, ¹é¾÷ Àü¿ø, ¿î¼Û µîÀÇ ¿ëµµ°¡ È®´ëµÊ¿¡ µû¶ó ÀÌ Áö¿ª¿¡¼­ ³ôÀº ¼ö¿ä¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºÏ¹Ì´Â ÁÖ¿ä ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ¿¬±¸±â°ü, Ã˸Å, ¸âºê·¹ÀÎ, ¾ç±ØÆÇ ¹× ¾ç±ØÆÇÀÇ ±Þ¼ÓÇÑ ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ´Â °íµµÀÇ Á¦Á¶ ¿ª·®ÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ ÇâÈÄ ¸î ³â µ¿¾È ÁÖ¿ä ¼ºÀå °ÅÁ¡À¸·Î ÀÚ¸®¸Å±èÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀå : Àç·á À¯Çüº°

  • ¸·Àü±ØÁ¢ÇÕü(MEA)
  • ¹ÙÀÌÆú¶ó Ç÷¹ÀÌÆ®
  • °¡½º È®»êÃþ(GDL)
  • Ã˸Å
  • ¾ÆÀÌ¿À³ë¸Ó
  • °³½ºÅ¶ ¹× ¾Á
  • ÄÚÆÃ ¹× Ç¥¸é ó¸®
  • ±âŸ Àç·á À¯Çü

Á¦6Àå ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀå : Ãâ·Âº°

  • ÀúÀü·Â(1kW ¹Ì¸¸)
  • ÁßÃâ·Â(1-10kW)
  • °íÃâ·Â(10kW ÀÌ»ó)
  • ÃʰíÃâ·Â(100kW ¹Ì¸¸)

Á¦7Àå ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀå : ¿ëµµº°

  • °íÁ¤Çü Àü·Â
  • ÈÞ´ë¿ë Àü·Â
  • ¿î¼Û
  • ±âŸ ¿ëµµ

Á¦8Àå ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷ OEM ¹× Tier 1 °ø±Þ¾÷ü
  • ÁÖÅà ¿¡³ÊÁö °ø±Þ¾÷ü
  • »ó¾÷ ¹× »ê¾÷ ½Ã¼³
  • ¹æÀ§ ¹× ¾Èº¸±â°ü
  • Åë½Å ÀÎÇÁ¶ó »ç¾÷ÀÚ
  • À¯Æ¿¸®Æ¼ ¹× Á¤ºÎ ÇÁ·Î±×·¥
  • Ç×°ø¿ìÁÖ ¹× ÇØ¾ç integrator

Á¦9Àå ¼¼°èÀÇ PEM ¿¬·áÀüÁö Àç·á ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • BASF SE
  • ITM Power PLC
  • PowerCell Sweden AB
  • Nuvera Fuel Cells, LLC
  • W.L. Gore & Associates Inc
  • Johnson Matthey
  • Plug Power Inc.
  • Intelligent Energy Limited
  • Giner Inc.
  • Ballard Power Systems
  • Shanghai Shenli Technology Co., Ltd.
  • Pragma Industries Inc
  • Umicore
  • DuPont
  • ElringKlinger Inc
LSH

According to Stratistics MRC, the Global Materials for PEM Fuel Cells Market is accounted for $2.04 billion in 2025 and is expected to reach $6.69 billion by 2032 growing at a CAGR of 18.5% during the forecast period. Proton Exchange Membrane (PEM) fuel cell materials are carefully chosen to provide excellent performance, longevity, and efficiency. The proton exchange membrane, which carries protons while serving as a gas barrier, is one of the essential parts. It is usually composed of perfluorosulfonic acid polymers like Nafion. Both the anode and the cathode employ catalysts, most frequently based on platinum, to speed up electrochemical reactions. Typically composed of carbon fiber papers or cloths, gas diffusion layers (GDLs) guarantee uniform gas distribution and effective water control.

According to the U.S. DOE, platinum catalysts alone contribute approximately 41 % of the cost of a PEM fuel cell stack (based on a 2020 stack-cost breakdown targeting US $40/kW). This aligns with the 41% figure you mentioned and reflects the significant cost burden of platinum in achieving DOE's cost target of $40/kW for automotive fuel cell systems.

Market Dynamics:

Driver:

Increasing interest in zero-emission automobiles

The need for fuel cell electric vehicles (FCEVs) has grown dramatically as a result of the global shift to greener transportation, particularly in industries including public transportation, freight trucks, and municipal fleets. PEM fuel cell vehicles are perfect for long-distance and heavy-duty applications since they have greater ranges and quicker refueling periods than battery electric vehicles (BEVs). Additionally, the requirement for high-performance PEM fuel cell components, such as platinum-based catalysts, gas diffusion layers, and long-lasting membranes like Nafion, is directly increased by the rise in demand for FCEVs.

Restraint:

Expensive critical materials

The high cost of raw materials, especially platinum, which is frequently employed as a catalyst in PEM fuel cells, is one of the biggest obstacles. Due to its scarcity, high cost, and significant concentration in a small number of countries, likes South Africa and Russia, platinum supply is susceptible to market swings and geopolitical unrest. Perfluorosulfonic acid (PFSA)-based membranes, such as Nafion, is also expensive because of their intricate chemical makeup and production procedures. Furthermore, PEM fuel cells' overall cost is increased by these pricey components, which restricts their accessibility and widespread use, particularly in areas or industries where consumers are price-sensitive.

Opportunity:

Developments in material substitution and catalyst technology

An innovative chance to drastically lower fuel cell prices is presented by ongoing research into non-platinum group metal (non-PGM) catalysts, such as iron-nitrogen-carbon (Fe-N-C) or doped carbon-based catalysts. Comparably, hydrocarbon-based or composite membranes, which have better chemical durability and cheaper production costs, are being explored as substitutes for conventional Nafion membranes. Moreover, next-generation PEM materials, which are more affordable, more plentiful, and possibly more sustainable, are emerging as a result of these advancements. Businesses will have an advantage in the materials market if they can scale up and commercialize these alternatives.

Threat:

Limited storage and inadequate hydrogen infrastructure

The availability of dependable hydrogen infrastructure, including manufacturing, delivery, and filling stations, is crucial for the uptake of PEM fuel cells and, consequently, the materials utilized in them. Hydrogen infrastructure is either nonexistent or in its infancy in the majority of places, particularly in developing nations. Investing in PEM fuel cell materials may be jeopardized if infrastructure is not scaled up in tandem. Additionally, barriers that may indirectly jeopardize market expansion include issues with hydrogen storage, safety issues, and energy losses during compression or liquefaction.

Covid-19 Impact:

Due to lockdowns, labour shortages, and limited transportation, the COVID-19 pandemic first disrupted global supply chains and delayed production activities, this had a mixed effect on the materials market for PEM fuel cells. Project delays and cost changes resulted from procurement issues with essential raw materials, including platinum and PFSA membranes. But as part of post-COVID recovery efforts, the epidemic also heightened government attention to clean energy, leading to more funding for fuel cell and hydrogen technology. As a result, even if the market suffered brief setbacks, it quickly recovered owing to greater attention on energy resilience and decarbonisation, green stimulus packages, and hydrogen roadmaps.

The membrane electrode assemblies (MEA) segment is expected to be the largest during the forecast period

The membrane electrode assemblies (MEA) segment is expected to account for the largest market share during the forecast period. The electrochemical reactions that turn hydrogen and oxygen into electricity, water, and heat take place in MEAs, which are the central component of fuel cells. This component is the most valuable and complex portion of the fuel cell stack since it incorporates a number of essential components, such as the ionomers, catalyst layers, and membrane. Moreover, the dominance of this market is greatly increased by the growing demand for long-lasting, high-performance MEAs in stationary, portable, and automotive fuel cell applications, as well as by continuous research and development to increase efficiency and lower platinum content.

The automotive OEMs & tier-1 suppliers segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive OEMs & tier-1 suppliers segment is predicted to witness the highest growth rate. This expansion is fueled by the global movement toward zero-emission mobility and the growing usage of hydrogen fuel cell electric vehicles (FCEVs), particularly in commercial fleets, buses, and trucks. Fuel cell research and development is being heavily funded by major automakers and suppliers in order to meet strict emission regulations and increase driving range. Additionally, strong momentum for innovation and extensive material procurement throughout the automotive supply chain is being created by the segment's demand for high-performance materials, including robust MEAs, lightweight bipolar plates, and effective catalysts.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share fueled by aggressive hydrogen fuel cell technology deployment, fast industrialization, and robust government assistance, especially in nations like China, Japan, and South Korea. In order to encourage the use of fuel cell vehicles and the construction of infrastructure, several countries have established national hydrogen plans and provide sizeable subsidies. For example, South Korea and Japan are developing fuel cell applications for both cars and homes, while China is at the forefront of fuel cell bus deployment. Furthermore, the areas established supply chains for materials and manufacturing capabilities further contribute to its supremacy in the worldwide market.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by rising investments in clean energy technologies, the expanding use of vehicles that run on hydrogen, and effective government programs like the Inflation Reduction Act and the Hydrogen Shot program of the U.S. Department of Energy. High-performance PEM materials are in high demand in the region because of growing applications in industrial decarburization, backup power, and transportation. Moreover, North America is positioned as a major growth hub in the years to come due to the presence of major automakers, research institutes, and advanced manufacturing capabilities that facilitate rapid innovation in catalysts, membranes, and bipolar plates.

Key players in the market

Some of the key players in Materials for PEM Fuel Cells Market include BASF SE, ITM Power PLC, PowerCell Sweden AB, Nuvera Fuel Cells, LLC, W.L. Gore & Associates Inc, Johnson Matthey, Plug Power Inc., Intelligent Energy Limited, Giner Inc., Ballard Power Systems, Shanghai Shenli Technology Co., Ltd., Pragma Industries Inc, Umicore, DuPont and ElringKlinger Inc.

Key Developments:

In May 2025, Johnson Matthey has reached an agreement to sell its Catalyst Technologies (CT) business to Honeywell International for £1.8bn. The cash and debt-free basis transaction is expected to deliver net sale proceeds of c.£1.6bn to the Group, subject to customary closing adjustments. JM will be repositioned as a highly streamlined group focused on Clean Air and PGMS, driving sustained strong cash generation to support attractive ongoing returns to shareholders.

In May 2025, ITM Power has signed an agreement confirming our selection as the supplier of over 300MW of electrolysers. ITM Power is pleased to announce that we have signed an agreement with a customer, who wishes to remain confidential at this stage, confirming our selection as the supplier of over 300MW of electrolysers to produce green hydrogen for use in a power plant in the Asia-Pacific (APAC) region, thereby avoiding carbon emissions.

In April 2025, BASF and the University of Toronto have signed a Master Research Agreement (MRA) to streamline innovation projects and increase collaboration between BASF and Canadian researchers. This partnership is part of a regional strategy to extend BASF's collaboration with universities in North America into Canada. This is a great achievement for BASF, as it marks the company's first MRA with a Canadian university.

Material Types Covered:

  • Membrane Electrode Assemblies (MEA)
  • Bipolar Plates
  • Gas Diffusion Layers (GDL)
  • Catalysts
  • Ionomers
  • Gaskets and Seals
  • Coatings & Surface Treatments
  • Other Material Types

Power Outputs Covered:

  • Low Power (<1 kW)
  • Medium Power (1-10 kW)
  • High Power (>10 kW)
  • Very High Power (>100 kW)

Applications Covered:

  • Stationary Power
  • Portable Power
  • Transportation
  • Other Applications

End Users Covered:

  • Automotive OEMs & Tier-1 Suppliers
  • Residential Energy Providers
  • Commercial & Industrial Facilities
  • Defense & Security Agencies
  • Telecom Infrastructure Operators
  • Utilities & Government Programs
  • Aerospace & Marine Integrators

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Materials for PEM Fuel Cells Market, By Material Type

  • 5.1 Introduction
  • 5.2 Membrane Electrode Assemblies (MEA)
  • 5.3 Bipolar Plates
  • 5.4 Gas Diffusion Layers (GDL)
  • 5.5 Catalysts
  • 5.6 Ionomers
  • 5.7 Gaskets and Seals
  • 5.8 Coatings & Surface Treatments
  • 5.9 Other Material Types

6 Global Materials for PEM Fuel Cells Market, By Power Output

  • 6.1 Introduction
  • 6.2 Low Power (<1 kW)
  • 6.3 Medium Power (1-10 kW)
  • 6.4 High Power (>10 kW)
  • 6.5 Very High Power (>100 kW)

7 Global Materials for PEM Fuel Cells Market, By Application

  • 7.1 Introduction
  • 7.2 Stationary Power
  • 7.3 Portable Power
  • 7.4 Transportation
  • 7.5 Other Applications

8 Global Materials for PEM Fuel Cells Market, By End User

  • 8.1 Introduction
  • 8.2 Automotive OEMs & Tier-1 Suppliers
  • 8.3 Residential Energy Providers
  • 8.4 Commercial & Industrial Facilities
  • 8.5 Defense & Security Agencies
  • 8.6 Telecom Infrastructure Operators
  • 8.7 Utilities & Government Programs
  • 8.8 Aerospace & Marine Integrators

9 Global Materials for PEM Fuel Cells Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 BASF SE
  • 11.2 ITM Power PLC
  • 11.3 PowerCell Sweden AB
  • 11.4 Nuvera Fuel Cells, LLC
  • 11.5 W.L. Gore & Associates Inc
  • 11.6 Johnson Matthey
  • 11.7 Plug Power Inc.
  • 11.8 Intelligent Energy Limited
  • 11.9 Giner Inc.
  • 11.10 Ballard Power Systems
  • 11.11 Shanghai Shenli Technology Co., Ltd.
  • 11.12 Pragma Industries Inc
  • 11.13 Umicore
  • 11.14 DuPont
  • 11.15 ElringKlinger Inc
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦