½ÃÀ庸°í¼­
»óǰÄÚµå
1766080

¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : ¿¹Ãø(-2032³â)

MEMs Sensors Market Forecasts to 2032 - Global Analysis By Sensor Type (Inertial sensors, Pressure sensors, Microphones, Environmental sensors and Other Sensor Types), Sensing Mechanism, Material, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é MEMS ¼¾¼­ ¼¼°è ½ÃÀåÀº 2025³â¿¡ 187¾ï ´Þ·¯, ¿¹Ãø ±â°£ µ¿¾È CAGR 11.1%·Î ¼ºÀåÇϰí 2032³â¿¡´Â 391¾ï ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù. MEMS(Micro-Electro-Mechanical Systems) ¼¾¼­´Â ¾Ð·Â, ¿Âµµ, ¿îµ¿, °¡¼Óµµ, ¼Ò¸® µîÀÇ ¹°¸®Àû ÆÄ¶ó¹ÌÅ͸¦ °ËÃâ ¹× ÃøÁ¤Çϱâ À§ÇØ ±â°è ºÎǰ°ú Àü±â ºÎǰÀ» ¸¶ÀÌÅ©·Î ½ºÄÉÀÏ·Î Á¶ÇÕÇÑ ¼ÒÇüÈ­ µð¹ÙÀ̽ºÀÔ´Ï´Ù. ÀÌ ¼¾¼­´Â ¹Ì¼¼ °¡°ø ±â¼úÀ» »ç¿ëÇÏ¿© ÀÛÀº ±â°è ±¸Á¶, ¾×Ãß¿¡ÀÌÅÍ ¹× ÀüÀÚ Àåºñ¸¦ ´ÜÀÏ ½Ç¸®ÄÜ Ä¨¿¡ ÅëÇÕÇÕ´Ï´Ù. MEMS ¼¾¼­´Â ¹°¸®Àû ÀÚ±ØÀ» Àü±â ½ÅÈ£·Î º¯È¯ÇÏ¿© µ¥ÀÌÅÍ ºÐ¼® ¹× ½Ã½ºÅÛ ÀÀ´äÀ» ¼öÇàÇÕ´Ï´Ù. MEMS ¼¾¼­´Â ÀÚµ¿Â÷, °¡Àü, ÀÇ·á, Ç×°ø¿ìÁÖ, »ê¾÷ ÀÚµ¿È­ µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù. ¼ÒÇü, ÀúÀü·Â, °í°¨µµ, ºñ¿ë È¿À²¼ºÀÌ ¶Ù¾î³ª ½º¸¶Æ® µð¹ÙÀ̽º, Ä¿³ØÆ¼µå µð¹ÙÀ̽º, ½Ã½ºÅÛ¿¡¼­ÀÇ »ç¿ë¿¡ ÃÖÀûÀÔ´Ï´Ù.

¼ÒºñÀÚ ÀüÀÚ ±â±âÀÇ ¼ºÀå

MEMS ¼¾¼­´Â ½º¸¶Æ®Æù, ¿þ¾î·¯ºí ´Ü¸»±â, ÅÂºí¸´ ´Ü¸»±â, °ÔÀӱ⠵îÀÇ ±â´É¿¡ ÇʼöÀûÀ̱⠶§¹®¿¡ ¼ÒºñÀÚ ÀüÀÚ±â±âÀÇ ¼ºÀåÀÌ MEMS ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸ð¼Ç ¼¾½Ì, Á¦½ºÃ³ ÀνÄ, ȯ°æ ¸ð´ÏÅ͸µ µîÀÇ ±â´É¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ MEMS ¼¾¼­ÀÇ Ã¤ÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ°¡ ÷´Ü ±â´ÉÀ» °®Ãá ÄÄÆÑÆ®Çϰí Àü·Â È¿À²ÀûÀÎ µð¹ÙÀ̽º¸¦ ¿ä±¸Çϰí Àֱ⠶§¹®¿¡ Á¦Á¶¾÷ü °¢ »ç´Â ¼º´ÉÀ» ³ôÀ̱â À§ÇØ MEMS ±â¼úÀ» ÅëÇÕÇÏ´Â °æ¿ì°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀÌ¿Í °°ÀÌ ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â Àüü¿¡ ³Î¸® ÅëÇÕÀÌ ÁøÇàµÊÀ¸·Î½á MEMS ¼¾¼­ ½ÃÀåÀÌ ´ëÆø ¼ºÀåÇÏ¿© ±â¼ú Çõ½ÅÀÌ ÃËÁøµÇ¾î ÀÀ¿ë ¹üÀ§°¡ È®´ëµË´Ï´Ù.

³ôÀº °³¹ß ºñ¿ë°ú ÆÐŰ¡ ºñ¿ë

³ôÀº °³¹ß ºñ¿ë°ú ÆÐŰ¡ ºñ¿ëÀº MEMS ¼¾¼­ ½ÃÀå¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¡°í ¹æÇذ¡ µË´Ï´Ù. ±×¸®°í Á¤¹Ð ÆÐŰ¡À» À§ÇÑ Æ¯¼öÇÑ Àåºñ³ª Àç·á°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ºñ¿ëÀº ´õ¿í »ó½ÂÇÕ´Ï´Ù. ±× °á°ú Á¦Ç°ÀÇ °¡°Ý °¨ÀÌ ÀúÇϵǰí, ´Ù¾çÇÑ »ê¾÷¿¡¼­ÀÇ Ã¤ÅÃÀÌ Áö¿¬µÇ°í, ƯÈ÷ ºñ¿ë¿¡ ¹Î°¨ÇÑ Áö¿ª¿¡¼­ ½ÃÀå È®´ë°¡ Á¦Çѵ˴ϴÙ.

ÀÚµ¿Â÷ »ê¾÷ÀÇ Áøº¸

ÀÚµ¿Â÷ ÀÚµ¿È­, ¾ÈÀü±â´É, ¿¬ºñÈ¿À²¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ÀÚµ¿Â÷ ¾÷°èÀÇ Áøº¸°¡ MEMS ¼¾¼­ ½ÃÀåÀ» Àû±ØÀûÀ¸·Î µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¿¡¾î¹é ½Ã½ºÅÛ, ŸÀÌ¾î ¾Ð·Â ¸ð´ÏÅ͸µ, ÀüÀÚ ¾ÈÁ¤¼º Á¦¾î, ÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ(ADAS)°ú °°Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ MEMS ¼¾¼­ÀÇ ÅëÇÕÀÌ Å©°Ô Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷³ª ÀÚÀ² ÁÖÇàÂ÷ÀÇ ´ëµÎ¿¡ ÀÇÇØ MEMS º£À̽ºÀÇ °¡¼Óµµ°è, ÀÚÀ̷νºÄÚÇÁ, ¾Ð·Â ¼¾¼­ÀÇ Ã¤ÅÃÀÌ °¡¼ÓÇϰí ÀÖ¾î ¼º´É°ú ½Å·Ú¼ºÀÌ °­È­µÊ°ú µ¿½Ã¿¡, ÀÚµ¿Â÷ ¼½ÅÍ Àüü ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

º¹ÀâÇÑ Á¦Á¶ °øÁ¤

º¹ÀâÇÑ Á¦Á¶ °øÁ¤Àº Á¦Á¶ ºñ¿ëÀÇ »ó½Â, °³¹ß ±â°£ÀÇ Àå±âÈ­, ÀüüÀûÀÎ È¿À²¼ºÀÇ ÀúÇ϶ó´Â Å« °úÁ¦¸¦ MEMS ¼¾¼­ ½ÃÀå¿¡ ¹Ð¾îºÙÀ̰í ÀÖ½À´Ï´Ù. È®À强ÀÌ Á¦ÇÑµÇ¾î ½Å±Ô ÁøÀÔÀÇ ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íÁ¤¹Ðµµ¿Í ¾ö°ÝÇÑ °øÂ÷°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ »ý»ê ºÒ·®À̳ª ¼öÀ²ÀÇ ¹®Á¦°¡ ¹ß»ýÇØ, ÃÖÁ¾ÀûÀ¸·Î ´Ù¾çÇÑ ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡¼­ÀÇ º¸±ÞÀ» ¹æÇØÇØ, Á¦Ç° Çõ½ÅÀ» ´ÊÃâ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº MEMS ¼¾¼­ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. ´çÃÊ ¼¼°è °ø±Þ¸ÁÀÇ È¥¶õ°ú °øÀåÀÇ °¡µ¿ Á¤Áö°¡ »ý»ê Áö¿¬À¸·Î À̾îÁ³°í, ÀÚµ¿Â÷¿Í »ê¾÷ ºÎ¹® Àüü ¼ö¿ä°¡ °¨¼ÒÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­ÇÏ°í ¼ÒºñÀÚ °¡Àü ¹× ÀÇ·á ±â±â¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀÌ¸ç ¿þ¾î·¯ºí, ¿ø°Ý ¸ð´ÏÅ͸µ, ÀΰøÈ£Èí±â µîÀÇ ¿ëµµ¿¡¼­ MEMS ¼¾¼­ ¼ö¿ä¸¦ ÃËÁøÇϰí, ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ºÎºÐÀûÀ¸·Î »ó¼âÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °ü¼º ¼¾¼­ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

°ü¼º ¼¾¼­ ºÎ¹®Àº ³ôÀº °¨µµ¿Í Á¤¹Ðµµ·Î ±â°èÀû ÀÀ·ÂÀ» Àü±â ½ÅÈ£·Î º¯È¯ÇÒ ¼ö Àֱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ƯÈ÷, ÀÚµ¿Â÷, »ê¾÷, ¼ÒºñÀÚ ÀüÀÚ±â±â ºÐ¾ß¿¡ ÃÖÀûÀÔ´Ï´Ù. °ü¼º MEMS ¼¾¼­ÀÇ ¼ÒÇüÈ­ ´É·Â°ú Àú¼Òºñ Àü·ÂÀº ±× ¼ö¿ä¸¦ ÇÑÃþ ´õ ³ô¿©, ÀÎÅÚ¸®ÀüÆ® ¼¾½Ì ±â¼úÀ» Áøº¸½ÃŰ´Â Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °ü¼º ¼¾¼­ ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø±â°£ µ¿¾È °ü¼º¼¾¼­ ºÐ¾ß´Â ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. °¡¼Óµµ°è¿Í ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ ÀÌ·¯ÇÑ ¼¾¼­´Â ½º¸¶Æ®Æù, µå·Ð, ÀÚÀ²ÁÖÇàÂ÷¿Í °°Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ µ¿ÀÛ °¨Áö, ³»ºñ°ÔÀÌ¼Ç ¹× ¾ÈÁ¤È­¿¡ ÇʼöÀûÀÔ´Ï´Ù. ±× ÄÄÆÑÆ®ÇÑ »çÀÌÁî, °íÁ¤¹Ðµµ, Àú¼Òºñ Àü·ÂÀº Á¦Ç°ÀÇ ±â´É¼ºÀ» ³ô¿©, äÅÃÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» °¡Áø Áö¿ª :

¿¹Ãø±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÀÚµ¿Â÷ ¹× ÀÇ·á¿ëµµ ±ÞÁõÀ¸·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÎÇÁ¶ó, 5G ¹× ÀÚµ¿È­ ±â¼ú¿¡ ´ëÇÑ °­·ÂÇÑ ÅõÀÚ´Â ´Ù¾çÇÑ »ê¾÷¿¡¼­ MEMS ¼¾¼­ÀÇ °³¹ß°ú äÅÃÀ» À§ÇÑ °­·ÂÇÑ ¿¡ÄڽýºÅÛÀ» Ű¿ì°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø±â°£ Áß ºÏ¹Ì´Â ¾ÈÀü±â¼ú, °¡Àü±â¼ú, ÀÇ·á±â¼úÀÇ Áøº¸·Î °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¹ÚÂ÷¸¦ °¡Çϰí ÀÖÀ¸¸ç, IoT ÅëÇÕÀ» À§ÇÑ Á¤ºÎÀÇ Áö¿øÃ¥°ú ÁÖ¿ä ±â¾÷¿¡ ÀÇÇÑ ¿Õ¼ºÇÑ R&D ÅõÀÚµµ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃã ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ±¸ºÐ
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­·Ð

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • ºÐ¼® ¹üÀ§
  • ºÐ¼® ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • ºÐ¼® Á¢±Ù
  • ºÐ¼® ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼Ò°³
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ½ÃÀå ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • ½ÅÇü Äڷγª ¹ÙÀÌ·¯½º °¨¿°(COVID-19)ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±ÞÀÚÀÇ Çù»ó·Â
  • ¹ÙÀ̾îÀÇ Çù»ó·Â
  • ´ëü Á¦Ç°ÀÇ À§Çù
  • ½Å±Ô ÁøÃâ±â¾÷ÀÇ À§Çù
  • ±â¾÷°£ °æÀï

Á¦5Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : ¼¾¼­À¯Çüº°

  • °ü¼º ¼¾¼­
  • ¾Ð·Â ¼¾¼­
  • ¸¶ÀÌÅ©
  • ȯ°æ ¼¾¼­
  • ±¤ÇÐ ¼¾¼­
  • ÃÊÀ½ÆÄ ¼¾¼­
  • ±âŸ À¯ÇüÀÇ ¼¾¼­

Á¦6Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : ¼¾½Ì ¸ÞÄ¿´ÏÁòº°

  • Á¤Àü¿ë·®½Ä
  • ¾ÐÀü½Ä
  • ¾ÐÀü ÀúÇ×½Ä
  • ±¤ÇнÄ

Á¦7Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : Àç·áº°

  • ½Ç¸®ÄÜ
  • Æú¸®¸Ó
  • ¼¼¶ó¹Í
  • ±Ý¼ÓÀç·á

Á¦8Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • °¡Àü
  • ÀÚµ¿Â÷
  • ÀÇ·á
  • »ê¾÷
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • Åë½Å
  • ±âŸ ¿ëµµ

Á¦9Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • OEM(»ó´ëó »óÇ¥ Á¦Á¶ ±â¾÷)
  • ¾ÖÇÁÅ͸¶ÄÏ

Á¦10Àå ¼¼°èÀÇ MEMS ¼¾¼­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä µ¿Çâ

  • °è¾à, »ç¾÷ Á¦ÈÞ ¹× Çù·Â, ÇÕÀÛ »ç¾÷
  • ±â¾÷ ÇÕº´¡¤Àμö(M&A)
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®Àå
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Bosch Sensortec
  • STMicroelectronics
  • Texas Instruments
  • Analog Devices
  • InvenSense(TDK)
  • NXP Semiconductors
  • Murata Manufacturing
  • Broadcom Inc.
  • TE Connectivity
  • Omron Corporation
  • Honeywell International Inc.
  • Infineon Technologies
  • Robert Bosch GmbH
  • SiTime Corporation
  • MEMSIC Inc.
  • Knowles Corporation
  • Qorvo Inc.
  • Sensirion AG
  • Alps Alpine Co., Ltd.
  • Panasonic Corporation
SHW 25.07.16

According to Stratistics MRC, the Global MEMs Sensors Market is accounted for $18.7 billion in 2025 and is expected to reach $39.1 billion by 2032 growing at a CAGR of 11.1% during the forecast period. MEMS (Micro-Electro-Mechanical Systems) sensors are miniaturized devices that combine mechanical and electrical components at the microscale to detect and measure physical parameters such as pressure, temperature, motion, acceleration, and sound. These sensors integrate tiny mechanical structures, actuators, and electronics onto a single silicon chip using microfabrication technology. MEMS sensors convert physical stimuli into electrical signals for data analysis and system response. They are widely used in various industries, including automotive, consumer electronics, healthcare, aerospace, and industrial automation. Their small size, low power consumption, high sensitivity, and cost-effectiveness make them ideal for use in smart and connected devices and systems.

Market Dynamics:

Driver:

Growth in Consumer Electronics

The growth in consumer electronics is a major driver for the MEMS sensors market, as these sensors are integral to the functionality of smartphones, wearables, tablets, and gaming devices. Increased demand for features like motion sensing, gesture recognition, and environmental monitoring has propelled MEMS sensor adoption. As consumers seek compact, power-efficient devices with advanced capabilities, manufacturers increasingly integrate MEMS technology to enhance performance. This widespread integration across consumer electronics significantly boosts the MEMS sensors market, fueling innovation and expanding application scope.

Restraint:

High Development and Packaging Costs

High development and packaging costs have a negative and hindering impact on the MEMS sensors market. These expenses increase the overall production cost, limiting profitability and deterring small and medium-sized manufacturers from entering the market. The need for specialized equipment and materials for miniaturization and precision packaging further escalates costs. As a result, product affordability declines, slowing adoption across various industries and restricting market expansion, especially in cost-sensitive regions.

Opportunity:

Automotive Industry Advancements

Advancements in the automotive industry are positively propelling the MEMS sensors market, driven by the growing demand for vehicle automation, safety features, and fuel efficiency. The integration of MEMS sensors in applications such as airbag systems, tire pressure monitoring, electronic stability control, and advanced driver assistance systems (ADAS) has significantly increased. Additionally, the rise of electric and autonomous vehicles is accelerating the adoption of MEMS-based accelerometers, gyroscopes, and pressure sensors, enhancing performance and reliability while fueling market growth across the automotive sector.

Threat:

Complex Manufacturing Processes

Complex manufacturing processes pose a significant challenge to the MEMS sensors market by increasing production costs, extending development timelines, and reducing overall efficiency. These intricate fabrication steps often require specialized equipment and environments, limiting scalability and deterring new entrants. Additionally, the high precision and tight tolerances needed can lead to production defects and yield issues, ultimately hindering widespread adoption and delaying product innovation across various end-use industries.

Covid-19 Impact

The COVID-19 pandemic had a mixed impact on the MEMS sensors market. Initially, global supply chain disruptions and factory shutdowns led to production delays and reduced demand across automotive and industrial sectors. However, the crisis also accelerated digital transformation and increased reliance on consumer electronics and healthcare devices, driving the demand for MEMS sensors in applications like wearables, remote monitoring, and ventilators, thereby partially offsetting the negative effects.

The piezoelectric segment is expected to be the largest during the forecast period

The piezoelectric segment is expected to account for the largest market share during the forecast period, due to its ability to convert mechanical stress into electrical signals with high sensitivity and precision. These sensors are ideal for applications requiring rapid and accurate detection of vibrations, pressure, or force, especially in automotive, industrial, and consumer electronics sectors. The miniaturization capability and low power consumption of piezoelectric MEMS sensors further enhance their demand, making them a crucial driver in advancing intelligent sensing technologies.

The inertial sensors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the inertial sensors segment is predicted to witness the highest growth rate, due to rising demand across various sectors. These sensors, including accelerometers and gyroscopes, are essential for motion detection, navigation, and stabilization in applications like smartphones, drones, and autonomous vehicles. Their compact size, high accuracy, and low power consumption enhance product functionality, boosting adoption. As industries increasingly integrate automation and smart technologies, the demand for advanced inertial MEMS sensors continues to surge, driving overall market expansion.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to surge in automotive and healthcare applications. Countries like China, Japan, and South Korea are leading innovation and manufacturing, supported by government initiatives promoting smart technologies. The proliferation of smartphones, wearables, and IoT devices further fuels demand. Additionally, strong investments in infrastructure, 5G, and automation technologies are fostering a robust ecosystem for MEMS sensor development and adoption across diverse industries.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to advancements in safety, consumer electronics, and healthcare technologies. Increasing demand for smart devices, autonomous vehicles, and wearable health monitors is fueling the adoption of MEMS sensors across the region. Supportive government initiatives for IoT integration and robust R&D investments by key players are also accelerating market growth. North America's strong technological infrastructure and early adoption trends further enhance the market's expansion and innovation potential.

Key players in the market

Some of the key players profiled in the MEMs Sensors Market include Bosch Sensortec, STMicroelectronics, Texas Instruments, Analog Devices, InvenSense (TDK), NXP Semiconductors, Murata Manufacturing, Broadcom Inc., TE Connectivity, Omron Corporation, Honeywell International Inc., Infineon Technologies, Robert Bosch GmbH, SiTime Corporation, MEMSIC Inc., Knowles Corporation, Qorvo Inc., Sensirion AG, Alps Alpine Co., Ltd. and Panasonic Corporation.

Key Developments:

In January 2025, Panasonic unveiled an innovative new energy efficient approach to heating, ventilation, and air conditioning (HVAC) that uses significantly less energy than conventional technologies.

In December 2024, Panasonic announced the launch of its BalancedHome Elite and Elite Plus Series of Energy Recovery Ventilators (ERV). Available in top and side port configurations and compliant with major building codes, the new BalancedHome series ERVs are versatile and efficient, giving builders the flexibility to choose between eight different models with four different CFM levels.

In November 2024, Panasonic and Arm announced a strategic partnership aimed at standardizing automotive architecture for Software-Defined Vehicles (SDVs).

Sensor Types Covered:

  • Inertial sensors
  • Pressure sensors
  • Microphones
  • Environmental sensors
  • Optical sensors
  • Ultrasonic sensors
  • Other Sensor Types

Sensing Mechanisms Covered:

  • Capacitive
  • Piezoelectric
  • Piezoresistive
  • Optical

Materials Covered:

  • Silicon
  • Polymers
  • Ceramics
  • Metallic materials

Applications Covered:

  • Consumer electronics
  • Automotive
  • Healthcare
  • Industrial
  • Aerospace & defense
  • Telecommunications
  • Other Applications

End Users Covered:

  • Original Equipment Manufacturers (OEMs)
  • Aftermarket

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global MEMs Sensors Market, By Sensor Type

  • 5.1 Introduction
  • 5.2 Inertial sensors
  • 5.3 Pressure sensors
  • 5.4 Microphones
  • 5.5 Environmental sensors
  • 5.6 Optical sensors
  • 5.7 Ultrasonic sensors
  • 5.8 Other Sensor Types

6 Global MEMs Sensors Market, By Sensing Mechanism

  • 6.1 Introduction
  • 6.2 Capacitive
  • 6.3 Piezoelectric
  • 6.4 Piezoresistive
  • 6.5 Optical

7 Global MEMs Sensors Market, By Material

  • 7.1 Introduction
  • 7.2 Silicon
  • 7.3 Polymers
  • 7.4 Ceramics
  • 7.5 Metallic materials

8 Global MEMs Sensors Market, By Application

  • 8.1 Introduction
  • 8.2 Consumer electronics
  • 8.3 Automotive
  • 8.4 Healthcare
  • 8.5 Industrial
  • 8.6 Aerospace & defense
  • 8.7 Telecommunications
  • 8.8 Other Applications

9 Global MEMs Sensors Market, By End User

  • 9.1 Introduction
  • 9.2 Original Equipment Manufacturers (OEMs)
  • 9.3 Aftermarket

10 Global MEMs Sensors Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Bosch Sensortec
  • 12.2 STMicroelectronics
  • 12.3 Texas Instruments
  • 12.4 Analog Devices
  • 12.5 InvenSense (TDK)
  • 12.6 NXP Semiconductors
  • 12.7 Murata Manufacturing
  • 12.8 Broadcom Inc.
  • 12.9 TE Connectivity
  • 12.10 Omron Corporation
  • 12.11 Honeywell International Inc.
  • 12.12 Infineon Technologies
  • 12.13 Robert Bosch GmbH
  • 12.14 SiTime Corporation
  • 12.15 MEMSIC Inc.
  • 12.16 Knowles Corporation
  • 12.17 Qorvo Inc.
  • 12.18 Sensirion AG
  • 12.19 Alps Alpine Co., Ltd.
  • 12.20 Panasonic Corporation
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦